
Robust Distributed
Computing and

Richard R. Brooks
S. Sitharama Iyengar
Louisiana State University

I
Sensors that supply data

to computer systems are

inherently unreliable. When

sensors are distributed,

reliability is further

compromised. How can a

system tell good sensor

data from faulty? A hybrid

algorithm combines proposed

iolutions to address the

problem.

0018-9162/96/$5 00 0 1996 IEEE

ur modern world contains many automated systems that must
interact with changing environments. Because these environ- 0 ments cannot be predetermined, the systems rely on sensors to

provide them with the information they need to perform their tasks.
Sensors providing data for control systems are the unenviable interface
between computer systems and the real world. Programming automated
control systems is difficult because sensors have limited accuracy, and
the readings they return are frequently corrupted by noise.

To avoid systems being vulnerable to a single component failure, it is
reasonable to use several sensors redundantly. For example, an automatic
tracking system could use different kinds of sensors (radar, infrared,
microwave) that are not vulnerable to the same kinds of interference.
Redundancy presents a new problem to system designers because the sys-
tem will receive several readings that are either partially or entirely in
error. It must decide which components are faulty, as well as how to inter-
pret at least partially contradictory readings.

To improve sensor-system reliability, researchers have actively studied
the practical problem of combining, orfusing, the data from many inde-
pendent sensors into one reliable sensor reading. When integrating sen-
sor readings, robustness and reliability are crucial properties. It is
increasingly obvious that sensor integration, which must include some
type of fusion, is necessary to automate numerous critical systems.l

Redundant sensors in an automated control system form one type of
distributed system. A key advantage of distributed computing is that it
adds a new dimension of integrity to computing. Compuiations made by
a network of independent processors are insensitive to a single hardware
failure. Instead, the concerns in a distributed system are

determining how many component failures a network can tolerate

how the network separates the output from correctly functioning
and still be reliable and

machines from that of defective machines.

The central question is, how can an automated system be certain to
make the correct decision in the presence of faulty data? Much depends
on the system's accuracy--the distance between its results and the desired
results-and on the system's precision-the size of the value range it
returns.

To solve the problem algorithmically, we basically have sensorfusion
and Byzantine agreement. Danny Dolev2 presented one Byzantine agree-
ment algorithm to solve the Byzantine generals problem posed by Leslie
Lamport and colleague^.^ The Byzantine generals problem presupposes a
distributed decision-making process in which some parti'cipants not only

June 1996 -

Figure 1. Node 3 cannot distinguish between the
two scenarios shown. It is impossible for it to deter-
mine if node 1 or node 2 is the faulty node.

Node 2 broadcasts that
Node 1 broadcasts "Retreat"

Node 1

"Attack"

Node 3 broadcssts

Figure 2. A trivial example of how a faulty node, 2,
can defeat Byzantine agreement when the network
has connectivity less than 2~ + 1. The broadcast
from node 1 is modified by node 2 so that nodes 3,
4, and 5 receive the wrong message. One faulty
node corrupts the majority of the network.

make the wrong decision but maliciously attempt to force
disagreement within the group. An algorithm that solves
this problem can reliably be used in distributed computing,
because even the failure of a limited number of machines
in a network cannot cause the network to malfunction.

In this article, we describe a hybrid algorithm we devel-
oped that satisfies both the precision and accuracy require-
ments of distributed systems. We used established

methods for distributed agreement based on data of lim-
ited accuracy. The inexact-agreement and approximate-
agreement algorithms have been successfully used for
implementing clock synchronization protocols and pro-
posed as models for sensor a~eraging .~ ,~ The sensor-fusion
algorithm is well established as a method for accurately
averaging sensor reading^.^,^ Our hybrid algorithm is suit-
able for use in both environments and manages to provide
increased precision for distributed decision-making with-
out adversely affecting system accuracy.

B TIN
P EM

A discussion of existing BGP research is beyond the
scope of this article. (For an excellent survey on the sub-
ject, see Michael Barborak.*)

Byzantine generals problem
The Byzantine generals problem concerns a mythical siege

of a city by the Byzantine army. The army's commander-in-
chief has several troops positioned around the city. Each
position is under a general's command. The commander-
in-chief knows that many of his generals and messengers
are traitors who are loyal to the opposing army. He must
tell all his generals to either attack or retreat.

The generals can discuss the decision among themselves
via messengers. If all loyal armies follow the orders of a
loyal commander-in-chief, they stand a good chance of
success. If one part of the army attacks while another part
retreats, they face certain defeat. How can the loyal gen-
erals guarantee, by exchanging messages among them-
selves, that all generals make the same decision, and that
this decision is given by a loyal commander-in-chief?3

This problem is directly applicable to distributed com-
puting. It can be rephrased as a system of N independent
processing elements (PES), up to 7 of which may be faulty.
We must develop a protocol that guarantees for all mes-
sages broadcast by any processorx:

The nonfaulty processors agree among each other on

IfXis nonfaulty, the agreement should equal the con-
the contents of the data received fromx.

tents of the message sent fromX.

This is also called general interactive consistency.9
This problem has some interesting characteristic^.^ It

can be solved only if 7, the number of traitors, is less than
one third of N, the total number of PES. The proof in Figure
1 is done by showing that, in a graph of only three nodes
with one faulty node, it is impossible for a correct PE to
determine which of the other two nodes is faulty.

Dolev showed that 7 must be less than half the connec-
tivity of the graph.2 This is intuitively evident, as Figure 2
shows: Because a node can change messages passing
through it, any part of the graph that receives a majority
of messages potentially modified by traitors will be
deceived. In other words, to tolerate T faults, the system
must have at least 32 + 1 PES, and every PE must be con-
nected directly to at least 27 + 1 other PES.^ It has been
proven as well that an algorithm that solves the Byzantine
generals problem must execute at least 7 + 1 rounds of
broadcasts between nodes."

Computer

Many algorithms have been found to solve the
Byzantine generals problem. Dolev presented a typical
one.2 We won’t present the details of these algorithms
here, but it’s worth noting that they require each node to
rebroadcast all the information it has received. A lower
bound of O(N7) messages must be broadcast to ensure
agreement, and the message size grows exponentially
with each round, finishing with size O(N2 + 1).8

Approximate agreement
The approximate-agreement problem posed by Dolev

assumesNindependent PES; each one starting with its own
real value and all looking for avalue within distance E from
the values held by the other PES. An approximate-agree-
ment algorithm must fulfill the following two require-
m e n t ~ : ~

1. Agreement. All nonfaulty PES must halt with output

2. Validity. These values must all be contained in the
values within E of each other.

range of initial values held by nonfaulty PES.

As we mentioned earlier, a system’s accuracy is the dis-
tance between its results and the desired results. A dart
player’s accuracy is the distance from the bull’s-eye to the
dart farthest from the bull’s-eye. A system’sprecision is the
size of the value range it returns. A dart player’s precision
is the radius of the smallest circle that encloses all darts
thrown. Figure 3 illustrates the difference.

The agreement requirement corresponds to the system’s
precision. The algorithm will terminate with each PE pos-
sessing a value within the given value E of all values held
by the other PES. (Note that E can be arbitrarily small.)

The validity requirement corresponds to the system’s
accuracy. Let’s call 6 the range of values returned by cor-
rectly functioning PES. As long as the answer returned is
within range 6, it is at least as accurate as some correctly
functioning PE.

Dolev thus aimed to increase the system’s precision. This
gain in precision cannot cause the system to become less
accurate than the startingvalue of the least accurate cor-
rectly functioning PE.

Dolev4 took a rigorous, set-theoretical approach to solv-
ing the problem, but we can also present the approach intu-
itively. From the definition of system accuracy, a PE‘s value
is invalid onlywhen outside the allowed accuracy, 6. Since
at most 7 PES are faulty, 7 or fewer PES have values that are
less than the lower bound of 6. Similarly, there are at most
7 PES whose values are greater than the upper bound of 6.
The number of PES is at least 37 + 1, so discarding the 7

smallest and the 2 largest values leaves at least 2 + 1 values
within the range 6. Taking the mean of a subset of these
values gives a value that must also fall within 6.

The algorithm4 for the synchronous approximate-agree-
ment problem is thus:

Algorithm: Approximate-agreement
Input:
Output:

A set of PES, each with a value.
A set of PES, each with a new value
converging toward a common value.

Step 1. Each PE broadcasts its value.

Figure 3. The difference between accuracy and pre-
cision. Accuracy is the distance of an answer from
the correct answer; precision is the distance
between a number of results of the same type.

Step 2. Each PE receives the values from the
other PES and sorts the values into
vector v.
The lowest zvalues and the highest
z values are discarded from v at each
PE.
Each PE forms new vector v‘ by taking
the remaining values v[i 21 where
i = OJ, ... (that is, the smallest remain-
ing value and every remaining 7’th
value in order.)
The new value is the mean of the val-
ues in v‘.

Step 3.

Step 4.

Step 5.

Dolev also presented an algorithm for the equivalent
asynchronous p r ~ b l e m . ~ It is virtually identical except that:

N must be greater than 52
Step 3 discards the 22 lowest and 22 highest values
Step 4 forms v‘ by taking the values from v[2” i j‘ 71
where i = OJ, ...

Dolev proceeded to show that both algorithms converge
and can be forced to converge within any arbitrarily small
range E by performing several iteration^.^

Alan Fekete improved upon these results with algo-
rithms for three different failure scenarios: crash-fail, fail-
ure by omission, and Byzantine failure.ll The algorithm
for Byzantine failure is similar to Dolev’s algorithm except
that it eliminates some faulty values by verifying that all
PES broadcast the same value to all correctly functioning
PES. This is done by using a Byzantine agreement algo-
rithm like Dolev’s.2 Fekete filtered out the remaining
extreme values and calculates the mean of the remaining
values. The Fekete algorithm requires N > 42 and has a
convergence rate superior to the algorithm given in D01ev.~

Unfortunately, this improvement requires increased net-
work traffic, so it is therefore doubtful that it can be
exploited.ll Reducing the number of iterations needed for
convergence is impractical when the elapsed time needed
to perform each iteration increases due to network band-
width limitations. This is especially true when dealingwith
sensor data that must be processed in a timely manner.

June 1996

Inexact agreement
Stephen Mahaney and Fred Schneider have studied the

inexact-agreement variant of the Byzantine generals
p r ~ b l e m . ~ In posing their problem, Mahaney and
Schneider explicitly considered both system accuracy and
precision. In their context, precision is the maximum dis-
tance between the values of any two correctly functioning
PES, and accuracy is the maximum distance that a PE’s
value can be from the real value and still be considered
correct. (Instead of the symbol 6 that Mahaney and
Schneider used, we use E here to represent precision for
consistency with the above discussion. Similarly,
Mahaney and Schneider used the symbol K for accuracy,
but we use 6.)

An inexact-agreement algorithm will take values from
N PES, up to T of which may be arbitrarily faulty (N 31)
and return a reading on each PE which is:

within 6 of the actual value (accurate)
e within E of the values on all the other PES (precise)

Like approximate agreement, these algorithms will con-
verge and can be used iteratively to provide any arbitrary
level of precision. This gain in precision could unfortu-
nately result in a loss of accuracy for some PEs.l

Note the difference between Mahaney and Schneider’s
definition of accuracy-dzstancefrom the
abstract value being estimated5-and
Dolev’s-mmmum dzstance between any
two accurate readings at the start of the algo-
rithm.4 Dolev‘s definition is more restrictive
than Mahaney and Schneider’s because it
does not account for skewed readings. As
long as acceptable values exist on both sides
of the physical value, the two definitions are
functionally equivalent. Unfortunately, this
is not always the case. Mahaney and

Schneider’s definition is closer to the physical scenario being
modeled and often more relevant, since the discrepancy
between data and the value to be measured is of primary
interest.

Mahaney and Schneider presented two algorithms that
perform inexact agreement. Both algorithms use sets of
“acceptable”va1ues. Avalue is acceptable if it is within dis-
tance 6 ofN - z other values. The problem definition states
that we have at most T faulty PES, and it is thus evident
that any value which is not acceptable cannot be correct.

FAST CONVERGENCE. The f a s t convergence algorithm
(FCA) presented by Mahaney and Schneider is performed
on each PE:

Algorithm: Fast convergence algorithm
Input:
Output:

Step 1.

Step 2.
Step 3. e(A) is computed.
Step 4.

A set of PES, each with a value.
A set of PES, each with a new value
converging toward a common value.
Each PE receives the values from all
other PES and forms a set V.
Acceptable values are put into a set A.

Any unacceptable values are replaced
in V by e (A).

Step 5. The new PE value is the average of the
values in V.

The value e(A) can be any of a number of functions on
the values stored in A. Mahaney and Schneider suggested
average, median, or midpoint of the value range as possi-
ble choices for e(A) that maybe appropriate for different
applications.

CRUSADERS’ CONVERGENCE. Mahaney and Schneider
also proposed the crusaders’convergence algorithm (CCA).
CCAis the same as FCAexcept that it performs a Byzantine
agreement algorithm on set V between steps 1 and 2. This
extra step increases the algorithm’s convergence ratio, sim-
ilar to Fekete’s results. Mahaney and Schneider reported
that adding one round of Byzantine agreement increases
the convergence ratio enough that one iteration of CCA pro-
vides more precision than two iterations of FCA.S

Both FCA and CCA are guaranteed to converge if
I < N/3. It is also proven that performance for these algo-
rithms degrades gracefully as long as T < 2*N/3 . In this
casegracefil degradation means the algorithm will either

Be unable to form an acceptable set and stop.
Provide answers that are not as good as whenz < N / 3
but are within reasonable precision and accuracy
bounds.

S R F
Sensors, as we have discussed, are integral to systems

that rely on them to perform tasks in changing environ-
ments. Unfortunately, sensors are subject to errors, uncer-
tainties, and mechanical failures. To avoid a system’s being
vulnerable to a single component failure, several sensors
are used redundantly, as in our earlier example of an auto-
matic tracking system. However, redundancy poses a new
problem because of the inevitable erroneous readings that
will occur.

Keith Marzullo6 proposed a model with abstract sen-
sors, which consist of a range of values returned by a sen-
sor, and concrete sensors, which are the physical devices
that return the value. Because all sensors have limited
accuracy, the value returned by an abstract sensor consists
of a lower bound and an upper bound. In this way, sensor
inaccuracies can be dealt with explicitly.

The sensor-fusion problem we address is: Given a set of
N sensors, all with a limited accuracy and at most T of the
sensors being faulty, what is the smallest value range
where we can be certain to find the correct value?

As with the approximate-matching algorithms, we have
a set of N real values whose correctness depends on their
being within a certain distance of the unique correct value,
as well as up to T values that may be arbitrarily in error.
Each sensor is represented by the upper and lower bound
it gives for the value it measures. The size of this range is
the accuracy, 6, for that sensor. It is often advantageous to
use sensors of different types; therefore, it is not assumed
that 6 is uniform for the sensors, and the algorithm makes
no precision restraints.

Marzullo pointed out that readings are useful only if
they are correct and if the range is small enough. This is
why a sensor is considered correct only when the range it

Computer

returns is of limited size and contains the physical value
being sought. On the basis of these definitions and restric-
tions, Marzullo has proven that it is possible to find the
smallest region containing the physical variable. This
region’s size will be less than or equal to the largest accu-
racy of any component sensor.

Finding all regions in whichN-z sensor readings inter-
sect provides a correct solution to the sensor-fusion prob-
lem. It’s easy to see that the correct value must be in one
of these intervals. The correct range is thus defined by the
value of the smallest lower bound and the largest upper
bound of these intersections.6

Our optimal-region algorithm modifies Brooks’ and
lyengar’s12 multidimensional algorithm and is roughly
equivalent to Marzullo’s6 algorithm:

Algorithm: Optimal region
Input:
output:

Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

A set of sensor readings S.
A region describing the region that
must be correct.

Initialize a list of regions, which we
will call C, to NULL.
Sort all points in S into ascending order.
A reading is considered active if its
lower bound has been traversed and
its upper bound has yet to be
traversed. Work through the list in
order, keeping track of active
readings. Whenever a region is
reached where N - z or more readings
are active, add the region to C.
All points have been processed. List C
now contains all intersections of
(N - z) or more sensor readings. Sort
the intersections in C.
Output the region defined by the low-
est lower bound and the largest upper
bound in C.

This algorithm can be implemented for a distributed sen-
sor network, where all sensors (PEs) fuse information in
parallel. In a distributed environment, the algorithm’s pre-
cision is bounded by the accuracy.

Precision and accuracy
Approximate-agreement and sensor-fusion algorithms

both accept data from many independent sources, where
a minority of the data is arbitrarily incorrect, and the cor-
rect data does not agree perfectly. Both try to find a result
that accurately represents the data from the correct PES,
while minimizing the influence of data from faulty PES.

Approximate agreement emphasizes precision, even
when this conflicts with system accuracy. For both approx-
imate and inexact agreement, the overall accuracy of the
readings remains constant and can decrease for some PES.
This approach is justified when processor coordination is
more important than the quality of the results. For exam-
ple, these algorithms are useful for clock synchronization
among PES.

Sensor fusion, on the other hand, is concerned solelywith
the accuracy of the readings, which is appropriate for sen-

sor applications. This is true despite the fact that increased
precision within known accuracy bounds would be benefi-
cial for coordinating distributed automation systems.

Any desired level of precision can be
attained by iterating the approximate-
agreement algorithm. The accuracy
requirements of inexact agreement could
eventually make it impossible to perform
further iterations, putting a lower limit on
the precision attainable. It’s impossible to
achieve a higher precision or accuracy by
iterating the sensor-fusion algorithms.

By allowing each PE to have its own accu-
racy, the sensor-fusion algorithm allows the
use of heterogeneous sensors. The band-
width needed for one iteration of all algo-
rithms not containing Byzantine agreement is linear in the
number of processors. If a Byzantine preprocessing step is
added,511 the number of bits to be broadcast will be expo-
nential in the number of rounds R needed for Byzantine
agreement on the values, O(NR + 1) whereR will be greater
than z + l.ll Some algorithms perform agreement with a
polynomial number of bits but a larger number of rounds,
making performance less than asymptotically optimal.ll For
this reason, algorithms with a Byzantine agreement step
are inappropriate for real-time systems.

The complexity of the sensor-fusion and FCA algorithms
is O(MogN). This comes from sorting the N values into
increasing order. I t is interesting that Mahaney and
Schneider’s “acceptability” criteria correspond to PES
whose values intersect with the values of at least N - z
other PES. Marzullo’s algorithm and the sensor-fusion
algorithm can be trivially modified to determine if a PE is
“acceptable.” This is the key idea behind the hybrid algo-
rithm we present.

One iteration of Dolev’s approximate-agreement algo-
rithm requires finding the z largest and z smallest ofNval-
ues. This can be done by finding and removing the
maximum and minimum of the Nvalues z times, or by sort-
ing the set in increasing order. The algorithm can there-
fore be implemented in min[O(Nz),O(MogN)] time,
depending on whether z < log N.

BROOKS-IYENGAR
HYBRID ALGORITHM

To satisfy the requirements of both the inexact-agree-
ment problem and the sensor-fusion problem, we merged
the optimal region algorithm with FCA to produce an algo-
rithm that provides the best accuracy possible and
increases the precision of distributed decision-making.

The data used by this algorithm can take any of the fol-
lowing three forms:

Real values, all with the same implicit accuracy.
Real values, along with an explicit accuracy value

A range consisting of an upper and lower bound.
transmitted along with the value.

The algorithm is:

Algorithm: Brooks-Iyengar hybrid
Input: A set of data S.

June 1996

alues broadcast to other sites. 7
I s1 s2 s3 s4

4.7 f 2.0 1.6c 1 6 3.0 c 1.5 18k10
30e1.6 1,0 I 1.6 2.5 i 1.6 0921.6

- - _- - _-

-~ ~-

step 4 must be within this range, it is within
the accuracy bounds defined by Mahaney
and Schneider5 and by Marzullo.6 The
accuracy bound returned by the algorithm
will necessarily contain Dolev’s accuracy
constraint as a subset.

The precision analysis Mahaney and

Output: A real number giving the precise
answer and a range giving its explicit
accuracy bounds.
Each PE receives the values from all
other PES and forms a set V.
Perform the optimal region algorithm
onV and return a set A consisting of the
ranges of values where at least N - T PES
intersect.
Output the range defined by the lowest
lower bound and the largest upper
bound in A. These are the accuracy
bounds of the answer.
Sum the midpoints of each range in A
multiplied by the number of sensors
whose readings intersect in that range,
and divide by the number of factors.
This is the answer.

Step 1.

Step 2.

Step 3.

Step 4.

The asymptotic complexity of this algorithm, like FCA
and the sensor-fusion algorithm, is 0 (Noghi). This is due
to step 2, which requires sorting the input by its lower
bounds. Steps 3 and 4 work on ranges where N - r or more
values intersect. Since there are at most 2r + 1 such
ranges,12 step 3 has complexity O(tlogT), and step 4 has
O(T), both ofwhich are less than O(NlogN).

As with Marzullo’s sensor-fusion approach, the hybrid
algorithm treats all data as a range of possible values
instead of as a point value. Since the problem concerns
data with accuracy and precision limitations, computa-
tions based on point values can be misleading. This dif-
ference is useful conceptually and can also be
advantageous in increasing the precision and accuracy of
the results.

Our algorithm’s accuracy is identical to that of the opti-
mal region algorithm. Since the real value computed in

Figure 4. Multiple ground radar stations are detect-
ing a target‘s position. To coordinate actions, you
need a single accurate reading.

Schneider performed is valid for the hybrid
algorithm when uniform accuracy is assumed. The values
will converge, despite arbitrary errors, at a rate of at least
~ T / N per iteration.5 This convergence must be kept as a
lower bound, since the worst-case scenario of this algo-
rithm is identical to Mahaney and Schneider’s FCA algo-
rithm. If uniform accuracyis not assumed, it is impossible
to define bounds on the convergence rate, short of it being
less than 1, since we are dealing with a set of arbitrarily
distributed numbers.

In many cases, however, the hybrid algorithm provides
superior results to FCA. FCA computes its value based
on a simple function of all values that fulfill the accept-
ability requirement that the value be within distance 6 of
N - 1 - 1 other readings. Note that a system with four PES
can tolerate one faulty PE; the values the faulty PE sends
to other nodes could differ by up to 46 and still be accept-
able. The different values are then entered directly into
the function e(A), which computes the result at each node.

In contrast to FCA, the hybrid algorithm uses the mid-
point of the region where the faultyreadings intersect with
at least N - T - 1 correct readings. Using the example of a
system with four PES, the value transmitted to two differ-
ent nodes by the faulty PE can still vary by up to 46 and be
acceptable. The value used in calculations by the hybrid
algorithm, however, differ by at most 26.

The hybrid algorithm also weights each region by the
number of PES that agree on the region. This increases pre-
cision by increasing the influence of PES that intersect
more than one set of PES. A faulty answer is most disrup-
tive when it barely fulfills the acceptability requirement
and forms one intersection withN- z - 1 other PES. When
a PE’s value contributes to many acceptable regions, it’s
closer to the value that the hybrid algorithm will return.
Weighting the region midpoints exploits this fact to
increase the algorithm’s convergence.

Note that it would also be possible to insert another step
between steps 1 and 2 that performs Byzantine agreement
among the PES. This would correspond to Mahaney and
Schneider’s CCA algorithm. While this would increase the
rate of convergence of the answer, it is unlikely that this
increase would justify the network bandwidth needed.

Figure 4 depicts a scenario we can use to show the dif-
ferences among algorithms. Multiple ground radar sta-
Iions are detecting a target’s position. To coordinate
actions, we want to have a single accurate reading.

We have N = 5, and therefore T cannot be greater than
1. Four sites, S1, S2, S3, and S4, function correctly. The
fifth site, S5, is faulty; it broadcasts different values to each
of the other four sites. Table 1 shows the values.

The four correct sites agree on the range [2.7 ... 2.81, SO

the actual value must lie within this range.

Computer

Dolev’s algorithm
Since z is 1, Dolev’s approximate-agreement algorithm

discards the highest and lowest value at each PE and aver-
ages the remaining values.
S1:

S2:

S3:

S4:

Discard 1.6 and 4.7. Averaging the remaining
values gives an answer of 2.6.
Discard 1.0 and 4.7. Averaging the remaining
values gives 2.13.
Discard 1.6 and 4.7. Averaging the remaining
values gives 2.43.
Discard 0.9 and 4.7. The problem becomes
identical to the one for S2, and the answer is
again 2.13.

Mahaney and Schneider’s FCA algorithm
All values sent by S5 are within their accuracy range of

an intersection with at least three other sites. The values
from S5 will not be disqualified for use by any site. The
answer for each site is a simple average of all five values
present at that site.

PE S1: Calculates avalue of 2.82.
PE S2: Calculates 2.42.
PE S3: Calculates 2.72.
PE S4: Calculates 2.4.

Optimal region sensor-fusion algorithm

tainties of each site, including the faulty S5.
This algorithm uses the ranges defined by the uncer-

S1: Four PES intersect in range [1.5..2.7]. Five PES
intersect in [2.7..2.8]. Four PES intersect in
[2.8..3.2]. The correct answer must therefore lie
in [1.5..3.2].

S2: Four PES intersect in range [1.5..2.6], and four
PES intersect in [2.7..2.8]. The correct answer
must be in [1.5..2.8].

S3: Four PES intersect in range [1.5..2.7]. Five PES
intersect in [2.7..2.8]. Four PEs intersect in
[2.8..3.2]. The correct answer must therefore lie
in [1.5..3.2].

S4: Four PEs intersect in range [1.5..2.5], and four
PES intersect in [2.7..2.8]. The correct answer
must be in [1.5..2.81.

Brooks-lyengar hybrid algorithm
The ranges the sensor-fusion algorithm finds are the

accuracy limits the hybrid algorithm returns for each site.
To find the answer for a site, the hybrid algorithm makes
a weighted average of the midpoints of the regions found
by the sensor-fusion algorithm.

S1: The weighted average is: (4 2.1 + 5 -L 2.75 + 4
” 3.0) / 13 = 2.625.

S2: The weighted average is: (4 + 2.05 + 4 ” 2.75) /
8 = 2.4.

S3: The weighted average is: (4 *- 2.1 + 5 ;L 2.75 + 4
’’ 3.0) / 13 = 2.625.

S4: The weighted average is: (4 -L 2.0 + 4 2.75)/ 8
= 2.375.

Results
All four algorithms solve the problem they are designed

for within the accuracy and precision bounds the algorithm
designers used. Note that the accuracy bounds the sensor-
fusion and hybrid algorithms returned all contained the
range [2.7..2.8], where the actualvalue is located.

All three algorithms designed for improving precision-
Dolev’s, Mahaney and Schneider’s, and our hybrid-
returned answers within a narrower range than the input
data. For this example, the hybrid algorithm’s output was
the most precise, with all answers lying within a range of
length 0.25. Table 2 summarizes the differences between
the algorithms.

THE HYBRID ALGORITHM WE’VE DEVELOPED effectively Solves
the problem of making the correct decision in the pres-
ence of faulty data. This is important for several reasons:

Because the same algorithm can enhance both accu-
racy and precision, many real-world distributed appli-
cations can use one unified general algorithm.
The derivations of sensor fusion and approximate
agreement are independent. One is based on set the-
ory; the other, on geometry. It thus produces two
explanations of the same problem, which makes the
solution more easily understood.

June 1996

The combined algorithm can be extended to solve
problems in many application areas.

Use of this algorithm is not limited to the applications
we’ve cited. All floating-point computations have limited
accuracy that differs from machine to machine. The hybrid
algorithm affords scientific computing increased reliabil-
ity by letting calculations be performed on a distributed
system comprising heterogeneous components. This, then,
provides a method more resistant to round-off and to
skewing errors resulting from hardware limitations.

Software reliability is a growing concern. Programs
written independently for different hardware platforms
that produce equivalent output create a situation like the
tracking system example with multiple sensor input. It’s
safe to assume that many independent programming
teams would not make exactly the same programming
error, and that of N such programs fewer than one third
or one half would be incorrect for a given instance.

This is analogous to using many sensors based on dif-
ferent technologies-thus sensitive to different types of
noise and interference-to measure the same physical
entity. The failings of one hardware component will be
compensated for by the use of another component made
in a complementary manner. These assumptions, used to
justify N-modular redundancy for hardware systems,
could be valid for software.

Critical modules of important systems require extra
effort to ensure their reliability. Reliability requires both
precision and accuracy. Unfortunately, there is often a
trade-off to be made between the two. The hybrid algo-
rithm we’ve described allows for increased precision, with-
out sacrificing accuracy in the process. The algorithm lets
distributed systems converge toward an answer that lies
within precisely defined accuracybounds. With this algo-
rithm, truly robust distributed computing applications can
be developed. I

A ~ k ~ o w ~ e ~ ~ m ~ ~ t s
We thank the anonymous reviewers whose comments

greatly improved the presentation. This work was sup-
ported in part by the Office of Naval Research, grant
N00014-94-1-0343.

References
1. S.S. Iyengar, L. Prasad, and H. Min, Advances in Distributed

Sensor Technology, Prentice-Hall, Englewood Cliffs, N.J.,
1995.

2. D. Dolev, “The Byzantine Generals Strike Again,”J. Algo-
rithms, 1982, pp. 14-30.

3 . L. Lamport, R. Shostak, and M. Pease, “The Byzantine Gen-
erals Problem,” ACM Trans. Program. Lung. Syst., July 1982,
pp. 382-401.

4. D. Dolev et al., “Reaching Approximate Agreement in the
Presence of Faults,”J. ACM, July 1986, pp. 499-516.

5. S . Mahaney and F. Schneider. “Inexact Agreement: Accuracy,
Precision, and Graceful Degradation,” Proc. Fourth ACM
Symp. Principles ofDistributed Computing, ACM Press, New
York, 1985, pp. 237-249.

6. K. Marzullo, “Tolerating Failures of Continuous-Valued Sen-
sors,” ACM Trans. Computer Systems, Nov. 1990, pp, 284-304.

7. P. Chew and K. Marzullo, “Masking Failures of Multidimen-
sional Sensors,”Proc. 10th Symp. Reliable Distributed Systems,
IEEE CS Press, Los Alamitos, Calif., 1991, pp. 32-41.

8. M. Barborak, M. Malek, and A. Dahbura, “The Consensus
Problem in Fault Tolerant Computing,”ACMComputing Sur-
veys, June 1993, pp. 171-220.

9. T. Krol, “(N, K) Concept Fault Tolerance,” IEEE Trans. Com-
puters, Apr. 1986, pp. 339-349.

10. M. Fisher and N. Lynch, “A Lower Bound for the Time to
Insure Interactive Consistency,” Information Processing Let-
ters, June 1982, pp. 183-186.

11. A. Fekete, “Asymptotically Optimal Algorithms for Approxi-
mate Agreement,” in Distributed Computing, Springer-
Verlag, Berlin, 1991, pp. 9-29.

12. R. Brooks and S.S. Iyengar, “Optimal Matching Algorithm for
Multi-Dimensional Sensor Readings,” SPIE Proc. Sensor
Fuszon and Advanced Robotics, SPIE, Bellingham, Wash., 1995,
pp. 91-99.

Richard Brooks is a PhD candidate i n computerscience a t
Louisiana State University. He has worked o n projects wi th
Goddard Space Flight Center, Radio Free Europe/Radio Lib-
erty Munich, and the French stock exchange authority. As a
consultantfor the World Bank, he h e k e d implement its net-
work i n Africa, Eastern Europe, and Central Asia.

Brooks earned a B A i n mathematical sciencesfrom Johns
Hopkins University and studied operations research and
computer science a t the Conservatoire National des Arts et
Metiers, Paris. He is a member ofACM and the Institute f o r
Operations Research and Management Science.

S. Sitharama Iyengar is chair of the Computer Science
Department and professor of computer science a t Louisiana
State University, where he directs the Robotics Research Lab-
oratory. He has been actively involved i n research i n high-
performance algorithms and data structures f o r more than
20years. He has served as principal investigator o n research
projects supported b y the Office of Naval Research, NASA,
the National Science Foundation, the Jet Propulsion Labo-
ratory, the Department of the Navy, the Department of
Energy, the Louisiana Education Quality Support Fund
Board of Regents, and Apple Computer.

Iyengar received a PhD i n engineering f r o m Mississippi
State University and a n M S f r o m the Indian Institute of
Science. He has served as guest editor f o r numerous publi-
cations and is currently a series editorfor Neuro Computing
of Complex Systems and area editor f o r Journal of
Computer Science and Information. Iyengar is a n IEEEfel-
low and a Distinguished Visitor of the IEEE Computer Society
(1 995-1 998).

Readers can contact Brooks a t Louisiana State University,
Dept. of Computer Science, Baton Rouge, L A 70803-4020;
rrb @bit.csc.lsu. edu.

Computer

