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I 
Sensors that supply data 

to computer systems are 

inherently unreliable. When 

sensors are distributed, 

reliability is further 

compromised. How can a 

system tell good sensor 

data from faulty? A hybrid 

algorithm combines proposed 

iolutions to address the 

problem. 

0018-9162/96/$5 00 0 1996 IEEE 

ur modern world contains many automated systems that must 
interact with changing environments. Because these environ- 0 ments cannot be predetermined, the systems rely on sensors to 

provide them with the information they need to perform their tasks. 
Sensors providing data for control systems are the unenviable interface 
between computer systems and the real world. Programming automated 
control systems is difficult because sensors have limited accuracy, and 
the readings they return are frequently corrupted by noise. 

To avoid systems being vulnerable to a single component failure, it is 
reasonable to use several sensors redundantly. For example, an automatic 
tracking system could use different kinds of sensors (radar, infrared, 
microwave) that are not vulnerable to the same kinds of interference. 
Redundancy presents a new problem to system designers because the sys- 
tem will receive several readings that are either partially or entirely in 
error. It must decide which components are faulty, as well as how to inter- 
pret at least partially contradictory readings. 

To improve sensor-system reliability, researchers have actively studied 
the practical problem of combining, orfusing, the data from many inde- 
pendent sensors into one reliable sensor reading. When integrating sen- 
sor readings, robustness and reliability are crucial properties. It is 
increasingly obvious that sensor integration, which must include some 
type of fusion, is necessary to automate numerous critical systems.l 

Redundant sensors in an automated control system form one type of 
distributed system. A key advantage of distributed computing is that it 
adds a new dimension of integrity to computing. Compuiations made by 
a network of independent processors are insensitive to a single hardware 
failure. Instead, the concerns in a distributed system are 

determining how many component failures a network can tolerate 

how the network separates the output from correctly functioning 
and still be reliable and 

machines from that of defective machines. 

The central question is, how can an automated system be certain to 
make the correct decision in the presence of faulty data? Much depends 
on the system's accuracy--the distance between its results and the desired 
results-and on the system's precision-the size of the value range it 
returns. 

To solve the problem algorithmically, we basically have sensorfusion 
and Byzantine agreement. Danny Dolev2 presented one Byzantine agree- 
ment algorithm to solve the Byzantine generals problem posed by Leslie 
Lamport and  colleague^.^ The Byzantine generals problem presupposes a 
distributed decision-making process in which some parti'cipants not only 
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Figure 1. Node 3 cannot distinguish between the 
two scenarios shown. It is impossible for it to deter- 
mine if node 1 or node 2 is  the faulty node. 

Node 2 broadcasts that 
Node 1 broadcasts "Retreat" 

Node 1 

"Attack" 

Node 3 broadcssts 

Figure 2. A trivial example of how a faulty node, 2, 
can defeat Byzantine agreement when the network 
has connectivity less than 2~ + 1. The broadcast 
from node 1 is  modified by node 2 so that nodes 3, 
4, and 5 receive the wrong message. One faulty 
node corrupts the majority of the network. 

make the wrong decision but maliciously attempt to force 
disagreement within the group. An algorithm that solves 
this problem can reliably be used in distributed computing, 
because even the failure of a limited number of machines 
in a network cannot cause the network to malfunction. 

In this article, we describe a hybrid algorithm we devel- 
oped that satisfies both the precision and accuracy require- 
ments of distributed systems. We used established 

methods for distributed agreement based on data of lim- 
ited accuracy. The inexact-agreement and approximate- 
agreement algorithms have been successfully used for 
implementing clock synchronization protocols and pro- 
posed as models for sensor a~eraging .~ ,~  The sensor-fusion 
algorithm is well established as a method for accurately 
averaging sensor  reading^.^,^ Our hybrid algorithm is suit- 
able for use in both environments and manages to provide 
increased precision for distributed decision-making with- 
out adversely affecting system accuracy. 

B TIN 
P EM 

A discussion of existing BGP research is beyond the 
scope of this article. (For an excellent survey on the sub- 
ject, see Michael Barborak.*) 

Byzantine generals problem 
The Byzantine generals problem concerns a mythical siege 

of a city by the Byzantine army. The army's commander-in- 
chief has several troops positioned around the city. Each 
position is under a general's command. The commander- 
in-chief knows that many of his generals and messengers 
are traitors who are loyal to the opposing army. He must 
tell all his generals to either attack or retreat. 

The generals can discuss the decision among themselves 
via messengers. If all loyal armies follow the orders of a 
loyal commander-in-chief, they stand a good chance of 
success. If one part of the army attacks while another part 
retreats, they face certain defeat. How can the loyal gen- 
erals guarantee, by exchanging messages among them- 
selves, that all generals make the same decision, and that 
this decision is given by a loyal commander-in-chief?3 

This problem is directly applicable to distributed com- 
puting. It can be rephrased as a system of N independent 
processing elements (PES), up to 7 of which may be faulty. 
We must develop a protocol that guarantees for all mes- 
sages broadcast by any processorx: 

The nonfaulty processors agree among each other on 

IfXis nonfaulty, the agreement should equal the con- 
the contents of the data received fromx. 

tents of the message sent fromX. 

This is also called general interactive consistency.9 
This problem has some interesting  characteristic^.^ It 

can be solved only if 7, the number of traitors, is less than 
one third of N, the total number of PES. The proof in Figure 
1 is done by showing that, in a graph of only three nodes 
with one faulty node, it is impossible for a correct PE to 
determine which of the other two nodes is faulty. 

Dolev showed that 7 must be less than half the connec- 
tivity of the graph.2 This is intuitively evident, as Figure 2 
shows: Because a node can change messages passing 
through it, any part of the graph that receives a majority 
of messages potentially modified by traitors will be 
deceived. In other words, to tolerate T faults, the system 
must have at least 32 + 1 PES, and every PE must be con- 
nected directly to at least 27 + 1 other  PES.^ It has been 
proven as well that an algorithm that solves the Byzantine 
generals problem must execute at least 7 + 1 rounds of 
broadcasts between nodes." 
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Many algorithms have been found to solve the 
Byzantine generals problem. Dolev presented a typical 
one.2 We won’t present the details of these algorithms 
here, but it’s worth noting that they require each node to 
rebroadcast all the information it has received. A lower 
bound of O(N7) messages must be broadcast to ensure 
agreement, and the message size grows exponentially 
with each round, finishing with size O(N2 + 1).8 

Approximate agreement 
The approximate-agreement problem posed by Dolev 

assumesNindependent PES; each one starting with its own 
real value and all looking for avalue within distance E from 
the values held by the other PES. An approximate-agree- 
ment algorithm must fulfill the following two require- 
m e n t ~ : ~  

1. Agreement. All nonfaulty PES must halt with output 

2. Validity. These values must all be contained in the 
values within E of each other. 

range of initial values held by nonfaulty PES. 

As we mentioned earlier, a system’s accuracy is the dis- 
tance between its results and the desired results. A dart 
player’s accuracy is the distance from the bull’s-eye to the 
dart farthest from the bull’s-eye. A system’sprecision is the 
size of the value range it returns. A dart player’s precision 
is the radius of the smallest circle that encloses all darts 
thrown. Figure 3 illustrates the difference. 

The agreement requirement corresponds to the system’s 
precision. The algorithm will terminate with each PE pos- 
sessing a value within the given value E of all values held 
by the other PES. (Note that E can be arbitrarily small.) 

The validity requirement corresponds to the system’s 
accuracy. Let’s call 6 the range of values returned by cor- 
rectly functioning PES. As long as the answer returned is 
within range 6, it is at least as accurate as some correctly 
functioning PE. 

Dolev thus aimed to increase the system’s precision. This 
gain in precision cannot cause the system to become less 
accurate than the startingvalue of the least accurate cor- 
rectly functioning PE. 

Dolev4 took a rigorous, set-theoretical approach to solv- 
ing the problem, but we can also present the approach intu- 
itively. From the definition of system accuracy, a PE‘s value 
is invalid onlywhen outside the allowed accuracy, 6. Since 
at most 7 PES are faulty, 7 or fewer PES have values that are 
less than the lower bound of 6. Similarly, there are at most 
7 PES whose values are greater than the upper bound of 6. 
The number of PES is at least 37 + 1, so discarding the 7 

smallest and the 2 largest values leaves at least 2 + 1 values 
within the range 6. Taking the mean of a subset of these 
values gives a value that must also fall within 6. 

The algorithm4 for the synchronous approximate-agree- 
ment problem is thus: 

Algorithm: Approximate-agreement 
Input: 
Output: 

A set of PES, each with a value. 
A set of PES, each with a new value 
converging toward a common value. 

Step 1. Each PE broadcasts its value. 

Figure 3. The difference between accuracy and pre- 
cision. Accuracy is  the distance of an answer from 
the correct answer; precision is the distance 
between a number of results of the same type. 

Step 2. Each PE receives the values from the 
other PES and sorts the values into 
vector v. 
The lowest zvalues and the highest 
z values are discarded from v at each 
PE. 
Each PE forms new vector v‘ by taking 
the remaining values v[i 21 where 
i = OJ, ... (that is, the smallest remain- 
ing value and every remaining 7’th 
value in order.) 
The new value is the mean of the val- 
ues in v‘. 

Step 3. 

Step 4. 

Step 5. 

Dolev also presented an algorithm for the equivalent 
asynchronous p r ~ b l e m . ~  It is virtually identical except that: 

N must be greater than 52 
Step 3 discards the 22 lowest and 22 highest values 
Step 4 forms v‘ by taking the values from v[2” i j‘ 71 
where i = OJ, ... 

Dolev proceeded to show that both algorithms converge 
and can be forced to converge within any arbitrarily small 
range E by performing several  iteration^.^ 

Alan Fekete improved upon these results with algo- 
rithms for three different failure scenarios: crash-fail, fail- 
ure by omission, and Byzantine failure.ll The algorithm 
for Byzantine failure is similar to Dolev’s algorithm except 
that it eliminates some faulty values by verifying that all 
PES broadcast the same value to all correctly functioning 
PES. This is done by using a Byzantine agreement algo- 
rithm like Dolev’s.2 Fekete filtered out the remaining 
extreme values and calculates the mean of the remaining 
values. The Fekete algorithm requires N > 42 and has a 
convergence rate superior to the algorithm given in D01ev.~ 

Unfortunately, this improvement requires increased net- 
work traffic, so it is therefore doubtful that it can be 
exploited.ll Reducing the number of iterations needed for 
convergence is impractical when the elapsed time needed 
to perform each iteration increases due to network band- 
width limitations. This is especially true when dealingwith 
sensor data that must be processed in a timely manner. 
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Inexact agreement 
Stephen Mahaney and Fred Schneider have studied the 

inexact-agreement variant of the Byzantine generals 
p r ~ b l e m . ~  In posing their problem, Mahaney and 
Schneider explicitly considered both system accuracy and 
precision. In their context, precision is the maximum dis- 
tance between the values of any two correctly functioning 
PES, and accuracy is the maximum distance that a PE’s 
value can be from the real value and still be considered 
correct. (Instead of the symbol 6 that Mahaney and 
Schneider used, we use E here to represent precision for 
consistency with the above discussion. Similarly, 
Mahaney and Schneider used the symbol K for accuracy, 
but we use 6.) 

An inexact-agreement algorithm will take values from 
N PES, up to T of which may be arbitrarily faulty (N 31) 
and return a reading on each PE which is: 

within 6 of the actual value (accurate) 
e within E of the values on all the other PES (precise) 

Like approximate agreement, these algorithms will con- 
verge and can be used iteratively to provide any arbitrary 
level of precision. This gain in precision could unfortu- 
nately result in a loss of accuracy for some PEs.l 

Note the difference between Mahaney and Schneider’s 
definition of accuracy-dzstancefrom the 
abstract value being estimated5-and 
Dolev’s-mmmum dzstance between any 
two accurate readings at the start of the algo- 
rithm.4 Dolev‘s definition is more restrictive 
than Mahaney and Schneider’s because it 
does not account for skewed readings. As 
long as acceptable values exist on both sides 
of the physical value, the two definitions are 
functionally equivalent. Unfortunately, this 
is not always the case. Mahaney and 

Schneider’s definition is closer to the physical scenario being 
modeled and often more relevant, since the discrepancy 
between data and the value to be measured is of primary 
interest. 

Mahaney and Schneider presented two algorithms that 
perform inexact agreement. Both algorithms use sets of 
“acceptable”va1ues. Avalue is acceptable if it is within dis- 
tance 6 ofN - z other values. The problem definition states 
that we have at most T faulty PES, and it is thus evident 
that any value which is not acceptable cannot be correct. 

FAST CONVERGENCE. The f a s t  convergence algorithm 
(FCA) presented by Mahaney and Schneider is performed 
on each PE: 

Algorithm: Fast convergence algorithm 
Input: 
Output: 

Step 1. 

Step 2. 
Step 3. e(A) is computed. 
Step 4. 

A set of PES, each with a value. 
A set of PES, each with a new value 
converging toward a common value. 
Each PE receives the values from all 
other PES and forms a set V. 
Acceptable values are put into a set A. 

Any unacceptable values are replaced 
in V by e (A). 

Step 5. The new PE value is the average of the 
values in V. 

The value e(A) can be any of a number of functions on 
the values stored in A. Mahaney and Schneider suggested 
average, median, or midpoint of the value range as possi- 
ble choices for e(A) that maybe appropriate for different 
applications. 

CRUSADERS’ CONVERGENCE. Mahaney and Schneider 
also proposed the crusaders’convergence algorithm (CCA). 
CCAis the same as FCAexcept that it performs a Byzantine 
agreement algorithm on set V between steps 1 and 2. This 
extra step increases the algorithm’s convergence ratio, sim- 
ilar to Fekete’s results. Mahaney and Schneider reported 
that adding one round of Byzantine agreement increases 
the convergence ratio enough that one iteration of CCA pro- 
vides more precision than two iterations of FCA.S 

Both FCA and CCA are guaranteed to converge if 
I < N/3.  It is also proven that performance for these algo- 
rithms degrades gracefully as long as T < 2*N/3 .  In this 
casegracefil degradation means the algorithm will either 

Be unable to form an acceptable set and stop. 
Provide answers that are not as good as whenz < N / 3  
but are within reasonable precision and accuracy 
bounds. 

S R F  
Sensors, as we have discussed, are integral to systems 

that rely on them to perform tasks in changing environ- 
ments. Unfortunately, sensors are subject to errors, uncer- 
tainties, and mechanical failures. To avoid a system’s being 
vulnerable to a single component failure, several sensors 
are used redundantly, as in our earlier example of an auto- 
matic tracking system. However, redundancy poses a new 
problem because of the inevitable erroneous readings that 
will occur. 

Keith Marzullo6 proposed a model with abstract sen- 
sors, which consist of a range of values returned by a sen- 
sor, and concrete sensors, which are the physical devices 
that return the value. Because all sensors have limited 
accuracy, the value returned by an abstract sensor consists 
of a lower bound and an upper bound. In this way, sensor 
inaccuracies can be dealt with explicitly. 

The sensor-fusion problem we address is: Given a set of 
N sensors, all with a limited accuracy and at most T of the 
sensors being faulty, what is the smallest value range 
where we can be certain to find the correct value? 

As with the approximate-matching algorithms, we have 
a set of N real values whose correctness depends on their 
being within a certain distance of the unique correct value, 
as well as up to T values that may be arbitrarily in error. 
Each sensor is represented by the upper and lower bound 
it gives for the value it measures. The size of this range is 
the accuracy, 6, for that sensor. It is often advantageous to 
use sensors of different types; therefore, it is not assumed 
that 6 is uniform for the sensors, and the algorithm makes 
no precision restraints. 

Marzullo pointed out that readings are useful only if 
they are correct and if the range is small enough. This is 
why a sensor is considered correct only when the range it 
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returns is of limited size and contains the physical value 
being sought. On the basis of these definitions and restric- 
tions, Marzullo has proven that it is possible to find the 
smallest region containing the physical variable. This 
region’s size will be less than or equal to the largest accu- 
racy of any component sensor. 

Finding all regions in whichN-z sensor readings inter- 
sect provides a correct solution to the sensor-fusion prob- 
lem. It’s easy to see that the correct value must be in one 
of these intervals. The correct range is thus defined by the 
value of the smallest lower bound and the largest upper 
bound of these intersections.6 

Our optimal-region algorithm modifies Brooks’ and 
lyengar’s12 multidimensional algorithm and is roughly 
equivalent to Marzullo’s6 algorithm: 

Algorithm: Optimal region 
Input: 
output: 

Step 1. 

Step 2. 
Step 3. 

Step 4. 

Step 5. 

A set of sensor readings S. 
A region describing the region that 
must be correct. 

Initialize a list of regions, which we 
will call C, to NULL. 
Sort all points in S into ascending order. 
A reading is considered active if its 
lower bound has been traversed and 
its upper bound has yet to be 
traversed. Work through the list in 
order, keeping track of active 
readings. Whenever a region is 
reached where N - z or more readings 
are active, add the region to C. 
All points have been processed. List C 
now contains all intersections of 
( N -  z) or more sensor readings. Sort 
the intersections in C. 
Output the region defined by the low- 
est lower bound and the largest upper 
bound in C. 

This algorithm can be implemented for a distributed sen- 
sor network, where all sensors (PEs) fuse information in 
parallel. In a distributed environment, the algorithm’s pre- 
cision is bounded by the accuracy. 

Precision and accuracy 
Approximate-agreement and sensor-fusion algorithms 

both accept data from many independent sources, where 
a minority of the data is arbitrarily incorrect, and the cor- 
rect data does not agree perfectly. Both try to find a result 
that accurately represents the data from the correct PES, 
while minimizing the influence of data from faulty PES. 

Approximate agreement emphasizes precision, even 
when this conflicts with system accuracy. For both approx- 
imate and inexact agreement, the overall accuracy of the 
readings remains constant and can decrease for some PES. 
This approach is justified when processor coordination is 
more important than the quality of the results. For exam- 
ple, these algorithms are useful for clock synchronization 
among PES. 

Sensor fusion, on the other hand, is concerned solelywith 
the accuracy of the readings, which is appropriate for sen- 

sor applications. This is true despite the fact that increased 
precision within known accuracy bounds would be benefi- 
cial for coordinating distributed automation systems. 

Any desired level of precision can be 
attained by iterating the approximate- 
agreement algorithm. The accuracy 
requirements of inexact agreement could 
eventually make it impossible to perform 
further iterations, putting a lower limit on 
the precision attainable. It’s impossible to 
achieve a higher precision or accuracy by 
iterating the sensor-fusion algorithms. 

By allowing each PE to have its own accu- 
racy, the sensor-fusion algorithm allows the 
use of heterogeneous sensors. The band- 
width needed for one iteration of all algo- 
rithms not containing Byzantine agreement is linear in the 
number of processors. If a Byzantine preprocessing step is 
added,511 the number of bits to be broadcast will be expo- 
nential in the number of rounds R needed for Byzantine 
agreement on the values, O(NR + 1) whereR will be greater 
than z + l.ll Some algorithms perform agreement with a 
polynomial number of bits but a larger number of rounds, 
making performance less than asymptotically optimal.ll For 
this reason, algorithms with a Byzantine agreement step 
are inappropriate for real-time systems. 

The complexity of the sensor-fusion and FCA algorithms 
is O(MogN). This comes from sorting the N values into 
increasing order. I t  is interesting that Mahaney and 
Schneider’s “acceptability” criteria correspond to PES 
whose values intersect with the values of at least N - z 
other PES. Marzullo’s algorithm and the sensor-fusion 
algorithm can be trivially modified to determine if a PE is 
“acceptable.” This is the key idea behind the hybrid algo- 
rithm we present. 

One iteration of Dolev’s approximate-agreement algo- 
rithm requires finding the z largest and z smallest ofNval- 
ues. This can be done by finding and removing the 
maximum and minimum of the Nvalues z times, or by sort- 
ing the set in increasing order. The algorithm can there- 
fore be implemented in min[O(Nz),O(MogN)] time, 
depending on whether z < log N. 

BROOKS-IYENGAR 
HYBRID ALGORITHM 

To satisfy the requirements of both the inexact-agree- 
ment problem and the sensor-fusion problem, we merged 
the optimal region algorithm with FCA to produce an algo- 
rithm that provides the best accuracy possible and 
increases the precision of distributed decision-making. 

The data used by this algorithm can take any of the fol- 
lowing three forms: 

Real values, all with the same implicit accuracy. 
Real values, along with an explicit accuracy value 

A range consisting of an upper and lower bound. 
transmitted along with the value. 

The algorithm is: 

Algorithm: Brooks-Iyengar hybrid 
Input: A set of data S. 
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step 4 must be within this range, it is within 
the accuracy bounds defined by Mahaney 
and Schneider5 and by Marzullo.6 The 
accuracy bound returned by the algorithm 
will necessarily contain Dolev’s accuracy 
constraint as a subset. 

The precision analysis Mahaney and 

Output: A real number giving the precise 
answer and a range giving its explicit 
accuracy bounds. 
Each PE receives the values from all 
other PES and forms a set V. 
Perform the optimal region algorithm 
onV and return a set A consisting of the 
ranges of values where at least N - T PES 
intersect. 
Output the range defined by the lowest 
lower bound and the largest upper 
bound in A. These are the accuracy 
bounds of the answer. 
Sum the midpoints of each range in A 
multiplied by the number of sensors 
whose readings intersect in that range, 
and divide by the number of factors. 
This is the answer. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

The asymptotic complexity of this algorithm, like FCA 
and the sensor-fusion algorithm, is 0 (Noghi). This is due 
to step 2, which requires sorting the input by its lower 
bounds. Steps 3 and 4 work on ranges where N - r or more 
values intersect. Since there are at most 2r + 1 such 
ranges,12 step 3 has complexity O(tlogT), and step 4 has 
O(T), both ofwhich are less than O(NlogN). 

As with Marzullo’s sensor-fusion approach, the hybrid 
algorithm treats all data as a range of possible values 
instead of as a point value. Since the problem concerns 
data with accuracy and precision limitations, computa- 
tions based on point values can be misleading. This dif- 
ference is useful conceptually and can also be 
advantageous in increasing the precision and accuracy of 
the results. 

Our algorithm’s accuracy is identical to that of the opti- 
mal region algorithm. Since the real value computed in 

Figure 4. Multiple ground radar stations are detect- 
ing a target‘s position. To coordinate actions, you 
need a single accurate reading. 

Schneider performed is valid for the hybrid 
algorithm when uniform accuracy is assumed. The values 
will converge, despite arbitrary errors, at a rate of at least 
~ T / N  per iteration.5 This convergence must be kept as a 
lower bound, since the worst-case scenario of this algo- 
rithm is identical to Mahaney and Schneider’s FCA algo- 
rithm. If uniform accuracyis not assumed, it is impossible 
to define bounds on the convergence rate, short of it being 
less than 1, since we are dealing with a set of arbitrarily 
distributed numbers. 

In many cases, however, the hybrid algorithm provides 
superior results to FCA. FCA computes its value based 
on a simple function of all values that fulfill the accept- 
ability requirement that the value be within distance 6 of 
N - 1 - 1 other readings. Note that a system with four PES 
can tolerate one faulty PE; the values the faulty PE sends 
to other nodes could differ by up to 46 and still be accept- 
able. The different values are then entered directly into 
the function e(A), which computes the result at each node. 

In contrast to FCA, the hybrid algorithm uses the mid- 
point of the region where the faultyreadings intersect with 
at least N - T - 1 correct readings. Using the example of a 
system with four PES, the value transmitted to two differ- 
ent nodes by the faulty PE can still vary by up to 46 and be 
acceptable. The value used in calculations by the hybrid 
algorithm, however, differ by at most 26. 

The hybrid algorithm also weights each region by the 
number of PES that agree on the region. This increases pre- 
cision by increasing the influence of PES that intersect 
more than one set of PES. A faulty answer is most disrup- 
tive when it barely fulfills the acceptability requirement 
and forms one intersection withN- z - 1 other PES. When 
a PE’s value contributes to many acceptable regions, it’s 
closer to the value that the hybrid algorithm will return. 
Weighting the region midpoints exploits this fact to 
increase the algorithm’s convergence. 

Note that it would also be possible to insert another step 
between steps 1 and 2 that performs Byzantine agreement 
among the PES. This would correspond to Mahaney and 
Schneider’s CCA algorithm. While this would increase the 
rate of convergence of the answer, it is unlikely that this 
increase would justify the network bandwidth needed. 

Figure 4 depicts a scenario we can use to show the dif- 
ferences among algorithms. Multiple ground radar sta- 
Iions are detecting a target’s position. To coordinate 
actions, we want to have a single accurate reading. 

We have N = 5, and therefore T cannot be greater than 
1. Four sites, S1, S2, S3, and S4, function correctly. The 
fifth site, S5, is faulty; it broadcasts different values to each 
of the other four sites. Table 1 shows the values. 

The four correct sites agree on the range [2.7 ... 2.81, SO 

the actual value must lie within this range. 
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Dolev’s algorithm 
Since z is 1, Dolev’s approximate-agreement algorithm 

discards the highest and lowest value at each PE and aver- 
ages the remaining values. 
S1: 

S2: 

S3: 

S4: 

Discard 1.6 and 4.7. Averaging the remaining 
values gives an answer of 2.6. 
Discard 1.0 and 4.7. Averaging the remaining 
values gives 2.13. 
Discard 1.6 and 4.7. Averaging the remaining 
values gives 2.43. 
Discard 0.9 and 4.7. The problem becomes 
identical to the one for S2, and the answer is 
again 2.13. 

Mahaney and Schneider’s FCA algorithm 
All values sent by S5 are within their accuracy range of 

an intersection with at least three other sites. The values 
from S5 will not be disqualified for use by any site. The 
answer for each site is a simple average of all five values 
present at that site. 

PE S1: Calculates avalue of 2.82. 
PE S2: Calculates 2.42. 
PE S3: Calculates 2.72. 
PE S4: Calculates 2.4. 

Optimal region sensor-fusion algorithm 

tainties of each site, including the faulty S5. 
This algorithm uses the ranges defined by the uncer- 

S1: Four PES intersect in range [1.5..2.7]. Five PES 
intersect in [2.7..2.8]. Four PES intersect in 
[2.8..3.2]. The correct answer must therefore lie 
in [1.5..3.2]. 

S2: Four PES intersect in range [1.5..2.6], and four 
PES intersect in [2.7..2.8]. The correct answer 
must be in [1.5..2.8]. 

S3: Four PES intersect in range [1.5..2.7]. Five PES 
intersect in [2.7..2.8]. Four PEs intersect in 
[2.8..3.2]. The correct answer must therefore lie 
in [1.5..3.2]. 

S4: Four PEs intersect in range [1.5..2.5], and four 
PES intersect in [2.7..2.8]. The correct answer 
must be in [1.5..2.81. 

Brooks-lyengar hybrid algorithm 
The ranges the sensor-fusion algorithm finds are the 

accuracy limits the hybrid algorithm returns for each site. 
To find the answer for a site, the hybrid algorithm makes 
a weighted average of the midpoints of the regions found 
by the sensor-fusion algorithm. 

S1: The weighted average is: (4 2.1 + 5 -L 2.75 + 4 
” 3.0) / 13 = 2.625. 

S2: The weighted average is: (4 + 2.05 + 4 ”  2.75) / 
8 = 2.4. 

S3: The weighted average is: (4 *- 2.1 + 5 ;L 2.75 + 4 
’’ 3.0) / 13 = 2.625. 

S4: The weighted average is: (4 -L 2.0 + 4 2.75)/ 8 
= 2.375. 

Results 
All four algorithms solve the problem they are designed 

for within the accuracy and precision bounds the algorithm 
designers used. Note that the accuracy bounds the sensor- 
fusion and hybrid algorithms returned all contained the 
range [2.7..2.8], where the actualvalue is located. 

All three algorithms designed for improving precision- 
Dolev’s, Mahaney and Schneider’s, and our hybrid- 
returned answers within a narrower range than the input 
data. For this example, the hybrid algorithm’s output was 
the most precise, with all answers lying within a range of 
length 0.25. Table 2 summarizes the differences between 
the algorithms. 

THE HYBRID ALGORITHM WE’VE DEVELOPED effectively Solves 
the problem of making the correct decision in the pres- 
ence of faulty data. This is important for several reasons: 

Because the same algorithm can enhance both accu- 
racy and precision, many real-world distributed appli- 
cations can use one unified general algorithm. 
The derivations of sensor fusion and approximate 
agreement are independent. One is based on set the- 
ory; the other, on geometry. It thus produces two 
explanations of the same problem, which makes the 
solution more easily understood. 
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The combined algorithm can be extended to solve 
problems in many application areas. 

Use of this algorithm is not limited to the applications 
we’ve cited. All floating-point computations have limited 
accuracy that differs from machine to machine. The hybrid 
algorithm affords scientific computing increased reliabil- 
ity by letting calculations be performed on a distributed 
system comprising heterogeneous components. This, then, 
provides a method more resistant to round-off and to 
skewing errors resulting from hardware limitations. 

Software reliability is a growing concern. Programs 
written independently for different hardware platforms 
that produce equivalent output create a situation like the 
tracking system example with multiple sensor input. It’s 
safe to assume that many independent programming 
teams would not make exactly the same programming 
error, and that of N such programs fewer than one third 
or one half would be incorrect for a given instance. 

This is analogous to using many sensors based on dif- 
ferent technologies-thus sensitive to different types of 
noise and interference-to measure the same physical 
entity. The failings of one hardware component will be 
compensated for by the use of another component made 
in a complementary manner. These assumptions, used to 
justify N-modular redundancy for hardware systems, 
could be valid for software. 

Critical modules of important systems require extra 
effort to ensure their reliability. Reliability requires both 
precision and accuracy. Unfortunately, there is often a 
trade-off to be made between the two. The hybrid algo- 
rithm we’ve described allows for increased precision, with- 
out sacrificing accuracy in the process. The algorithm lets 
distributed systems converge toward an answer that lies 
within precisely defined accuracybounds. With this algo- 
rithm, truly robust distributed computing applications can 
be developed. I 
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