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1 IntroductionRoute planning is an old discipline within computer science and has been applied insuch diverse �elds as: determining optimum routing of electrical paths on a printedcircuit board; optimizing helicopter ight paths under constraints of enemy threats,weather and fuel consumption; and optimizing the traversal of a vehicle acrossterrain. Terrain traversal, in turn, can be subdivided into on-road, o�-road or acombination of the two. This last area of o�/on-road route planning is the subjectof this paper. What is common to all route planning is the need for e�cient search.What is particularly challenging for terrain traversal is the evolving need to planthe coordinated movements of multiple vehicles with di�ering starting points anddestinations subject to the constraints of the modern battle�eld. An elevation gridwith as many as a trillion intersections may be required to represent this battle�eld.The route planning must take into account not only terrain factors but also minimizethe risk of being destroyed or damaged by enemy action. Additionally, the planningmust be fast enough to support real-time simulation of vehicles on terrain. Newapproaches to representing data and searching the data space are required. Thispaper reviews previous work, describes a new approach in detail and discusses ideasfor future research.A motorist needs a good road map that contains all the roads across which he mightwant to travel. Similarly, in planning our terrain traversal, we need the equivalentof that road map. However, our vehicle will be traveling o�-road as well as onroad and it is impossible to know ahead of time what either the starting point ordestination will be. Therefore, we need an estimate of possible speed everywhereon the map. Ideally, we would like to know how fast we can go in the up-slope,down-slope and cross-slope directions.Terrain data can be as simple as an array of elevations (which provides only a limitedmeans to estimate mobility) or as complex as an elevation array combined withdigital map overlays of slope, soil, vegetation, drainage, obstacles, transportation(roads, etc.) and the quantity of recent rain. We can use the NATO ReferenceMobility Model software [1] to compute the allowable speed at each grid point for aparticular type of vehicle. Considerable manual e�orts are required to produce theoverlays and this type of data is available only in a few regions of the world. Theusefulness of even this data is limited by the low resolution of the data; most of itis 100 meters with a very limited amount of 30-meter data. A lot of obstacles canbe hidden in a 100-meter grid cell. These factors have all served to limit the actualuse of automated o�-road route planning.What's new is the expectation that in the near future, we will have available ele-vation grid data at resolutions of �ve meters or better. This data will be primarilyfrom Interferometric Synthetic Aperture Radar (IF-SAR) systems. Scientists at



JPL [2] have demonstrated that relative accuracy of better than �ve meter can beobtained.When elevation data is only available at 30-meter or 100-meter spacing, it is im-perative to have auxiliary data (i.e. overlays) to determine if a the grid cell istraversable. In contrast, with a one meter grid, individual trees and boulders willbe discernible in the elevation data as obstacles. Knowledge of the soil type can notbe easily discerned from radar data. However, soil types change relatively slowlyand given knowledge of the geographic province, recent weather data, slope anddrainage, inferences can be drawn as to how much the soil conditions will impedemobility for any speci�c vehicle type.Automated route planning will be a key element of almost any automated terrainanalysis system that is a component of a military Command and Control System.However, instead of simply using the traversal cost factors from the mobilitymodel,a new cost surface must be constructed in which the total cost is a linear combinationof the traversal cost and a threat cost that is assigned to traversing areas adjacent tosome threat. A threat could be proximity to enemy weapons, visibility from enemyobservation sites or terrain factors which would make it di�cult to defend againstan enemy attack. The threats are often modeled by a cone centered on the threat sothat a selected path would be allowed to cross over the outer perimeter of a cone oralternatively a cylinder may be used which will totally interdict travel throughoutthe radius of the cylinder. Other more complex risks such as visibility from enemyobservation posts or from the enemies side of a battlefront can also be included inthe cost. Examples of military applications include: deployment of a network of airdefense missile batteries [3, 4], generation of military Avenues of Approach (AoA)which are used to engage an enemy force, determination of likely mine�eld sitesby analysis of choke points that limit mobility, route planning of multiple columnof tanks, automated control of mine laying or mine sweeping robotic vehicles androbotic reconnaissance vehicles. Nonmilitary application include: (1)interplanetaryexploration - In addition to their visual systems, the Martian or Lunar rover willrely on knowledge of the topography to avoid dangerous area or dead end pathsand (2) disaster relief operations: After a ood or serious earthquake, well knownroutes will no longer be available. IF-SAR data will provide an opportunity toupdate databases rapidly and to determine o�-road paths around blocked roads.There have been recent advances in deductive database technology and mediatorframeworks[5] for easily integrating both heterogeneous sources of data and softwaresystems into a coherent whole. Use of HERMES [6, 7, 8] (HEterogeneous Reasoningand Mediator Environment System) will allow the answering of queries that requirethe interrogation of multiple databases in order to determine the start and desti-nation parameters for the route planner. HERMES was recently integrated with agrid-level planner developed at TEC and complex queries that required accessingboth a relational database and the route planner were successfully answered.



In summary, the elements required for signi�cant improvement in o�/on-road routeplanning are coalescing and practical route planners capable of planning high reso-lution paths across a distance of 100 kilometers or more will be become available.Solutions are being found for collecting high resolution terrain data, navigationalsystems are achieving the accuracy to tie the data to the world geoid, hierarchicalapproaches to route planning will provide the needed computational power, andexpert systems and deductive databases will provide the intelligence to integratethe route planning into higher-level systems.Sec. 2 reviews some of the algorithms developed for o�/on-road route planning.Sec. 3 is a detailed description of a prototype system, Sec. 4.1 discusses a cooperativeapproach to planning multiple routes, Section 4.2 describes an intelligent terrainreasoning system and Sec. 5 contains concluding remarks.2 Previous WorkThis section describes several alternative search algorithms and other techniquesused to simplify the search. This review is not intended to be exhaustive, butrather to present representative trends in path planning research. Furthermore,algorithms developed for the special binary case of go or no-go are excluded.Dijkstra's Shortest Path Algorithm and the A* algorithm have been the most pop-ular approaches to o�-road route planning. Most of these planners operate at thelevel of the elevation grid, often called the pixel level. Planners normally use eight-neighbor connectedness in selecting the next pixel on the path. The angular quan-tization is then forty-�ve degrees. We can easily see the e�ect of this quantization ifwe consider an eight by eight chess board. If we assume that the traversal cost be-tween adjacent squares is 1.0 in the cardinal directions and p2 along the diagonalsthen the optimum path from one corner of the board to the opposite corner is astraight line along the diagonal. In this case the true path is at an angle correspond-ing to the angular quantization and no error is introduced by the quantization. Iftwo checkerboards are placed side by side, then the path from the lower left corner ofthe left board to the upper right corner of right board requires eight diagonal movesas before, but also eight horizontal moves. The horizontal and diagonal moves canbe distributed arbitrarily and the distance will remain unchanged. Remedies forcorrecting this digitalization error are discussed in a paper by Mitchell [9]. Thecorrection is based on whether the current pixel along a path represents a changein direction or is a continuation along the same direction. The cost is reduced ifthere is a change in direction. This approach does not globally optimize and doesnot result in only one optimum path, but it does prune those paths whose smoothpath distance is signi�cantly greater than the smooth path distance of the optimumpath.It is interesting to contrast the A* algorithm to the potential �eld method [10,11]. This approach is based on the metaphor of an object always moving downhill



seeking the point of minimum potential (lowest point). For our motion planner,the potential is composed of two factors. The �rst is a quadratic surface with itsminimum at the goal point. This �rst surface is superimposed with a potential�eld which at each grid cell is proportional to the di�culty of traversing that cell.The combined potential provides an attraction toward the goal and a repulsionfrom obstacles. However, if this method is not combined with another method thatprovides for backtracking, the robot is likely to be trapped in a local minima. Thequadratic surface is the equivalent of the heuristic function of A*, and within thecontext of A*, is an admissible function.The use of A* algorithm to compute o�-road paths is not limited to searching a grid.Three approaches have been developed in which the map of grid cells is decomposedinto a graph. All of them �rst convert the map into regions of go and no-go. Theno-go areas may be considered obstacles and are represented as polygons.� Visibility Diagram: Nilsson [12] developed the concept of generating a graph asfollows: For each obstacle polygon, visit each vertex and draw an arc to everyother vertex that is visible and for which there is not already a connecting arc.Two vertices are visibile to each other only if the traversing arc does not crossthe interior of any polygon. Note that if a polygon is concave, at least twovertices of the polygon will be mutually visible and will have arcs connectingthem. The start and destination nodes are inserted and for each of the nodes,arcs are drawn to all visible vertices. If the nodes are mutually visible, thanan arc will be drwn directly between the nodes. The A* algorithm uses theresulting graph to compute the optimum path. A variant of this approachis to use polygonally-de�ned regions of the areas which are not visible fromspeci�ed observation points. The ModSAF (Modular Semi-Automated Forces)simulation system has a route planner [13] which chooses routes that minimizeexposure from these observation points.� Another way to consider the map is to think of obstacles in the map whichforce a decision to go to the left or to the right to get past the obstacle. Thedecision point corresponds to a node in a graph with the arcs representingthe paths around the obstacles with one obstacle contained in each polygonof the resulting graph. Two alternatives for generating the obstacle graphare Voronoi diagrams and line-thinned skeletons (which are closely relatedto medial axis transformations [14].) The Voronoi diagrams generate pathswhich are equidistant from no-go areas. The medial axis graph is in manyways similar to the Voronoi diagram. An important di�erence is that if alongthe map boundary, the region is go, then an adjacent interior obstacle willbe enclosed in a polygon of the skeleton. In the corresponding Voronoi, theobstacle will not be enclosed. The desired behavior is to have the obstacleinclosed since this provides correspondence to the map which does show apath along the map boundary. The Voronoi approach is used in two systemsdescribed below. The line-thinning approach was implemented by Benton [3]in 1988 and is described in greater detail in Sec. 3.1



Military columns of armor normally travel along Mobility Corridors, o�-road routesthat meet the requirements of some minimumwidth of the corridor and with groundconditions that the speci�ed number of vehicles will be able to traverse before theroute becomes untraversable. The width requirement is greater for a tank companythan for a tank platoon. Powell[15] used computational geometry techniques toextract the Mobility Corridors from a traversability cost map. Voronoi and theircomplementary Thiessen Triangulation were used to extract the military corridors.Marti [16] at RANDCorporation developed a combined on-road/o�-road route plan-ning system that was closely integrated with a geographic information system anda simulation system. Routes can be planned for either single columns or multiplecolumns. For multiple columns, the planner keeps track of the temporal locationof each column and insures they will not occupy the same space at the same time.The road network used in their work contained over 9500 road intersections and12,800 arcs between them. Both planners use a breadth-�rst search. The o�-roadplanner uses a variable grid size which is determined by the local terrain. The costsare derived as individual grid cells are searched since both grid size and location aresubject to change. In areas where there are obstacles that can impede movement,Voronoi diagrams are used to derive the medial path between the obstacles. Thesepaths are combined into a graph that can be used by the route planner. This systemdi�ers from the others in that it does not use a precomputed cost surface and it haselements of a hierarchical system.Mitchell, Peyton and Kiersey [17] incorporated a route planner with multi-levelhierarchical control into a robot visual simulation system. The bottom layer ofthe hierarchy is a vision-based route planning system with the vision supplied bysimulating an acoustic ranging device. The system permits planning of routes froman arbitrary starting point to an arbitrary end point. If the starting point is o�-road, the planner uses A* to compute a path to an adjacent road. A graph-basedA* planner then computes the optimum path along the road network to the pointon the road nearest the destination. The o�-road planner then completes the pathto the destination. The o�-road planner also performs the correction for angularquantization error described above. If the simulated vehicle senses an obstaclewhile traversing a road, then a reex planner attempts to go not more than someset distance o�-road to get around the obstacle. If the reex planner fails to �nd adetour, then the higher-level planner is called to replan the route from the currentlocation to the destination. This replanning may require backtracking along theroad just traversed. The obstacle encountered on the road can be a fallen tree, shellcrater, etc. The user of the simulation can interactively lift an obstacle onto theroad. This change is automatically incorporated in the database.Kreitzberg [18] at JPL has developed the Tactical Movement Analyzer (TMA).The system uses a combination of digitized maps, satellite images, vehicle type andweather data to compute the traversal time across a grid cell. TMA can computeoptimum paths that combine both on-road and o�-road mobility, and with weatherconditions used to modify the grid cost factors. The smallest grid size used is



approximately 0.5 km. Kreitzberg uses the concept of a signal propagating fromthe starting point and uses the traversal time at each cell in the array to determinethe time at which the signal arrives at neighboring cells. The earliest time for arrivalat a cell is saved. All eight neighbors of a cell on the queue are examined. Theadvantage of this algorithm is that it is not necessary to make additional calculationsto determine the time at which a vehicle arrives at a given cell. The concomitantdisadvantage is that traversal is the only factor in computing the optimum path;risk factors do not a�ect the choice of the optimum path.Another approach has been to develop algorithms which are parallelizable. Further-more, if the algorithm depends only on the nearest neighbors, then it can be madeto run on a very simple data parallel architecture known as the Cellular Automata(CA). Each cell is a processor which communicates only with its nearest neigh-bors and can perform simple arithmetic or boolean operations on the data storedin the cell and its adjacent neighbors. The results of the operation are stored inthe cell. Stiles and Glickstein [19] developed a Parallelizable Route Planner (PRP)algorithm which is well adapted to running on a cellular automata. For each cycleof the automata, the wavefront of the search expands to the adjacent unexplorednodes. Thus the minimum number of iterations required to determine a path is thelength of the path measured in number of cells traversed. Stiles and Glickstein im-plemented the CA on a CM2 Connection Machine with 65536 processing elements.Their speci�c application was for helicopter route planning, but their algorithm canobviously be adapted to ground-based vehicles.Other researchers have chosen to decompose the map into regions that are de�nedby having a constant traversability across the region. The advantage of this ap-proach is that the number of regions will, in general, be far fewer than the numberof grid cells since the regions always consist of one of more grid cells. The disad-vantages include di�culty in de�ning the center of the region and the computationdi�culties in determining the optimum path between two adjacent cells. Rich-bourg [20] and Mitchell [9] have made use of an analogy with the Snell's Law usedin optics. This law speci�es the path of a ray when it crosses from a region withone index of refraction to another region with a di�ering index of refraction. Theray traced by a path conforming to Snell's Law is a minimal traversal-time path.Thus by substituting the reciprocal of the maximum traversal speeds for the corre-sponding optical indexes of refraction in Snell's Law, one is guaranteed (with someexceptionsa) that a path generated by this analogous Snell's Law will be a mini-mal traversal-time path. However, this procedure provides only local optimizationbetween adjacent nodes. A simultaneous solution for the optimality requirementat all the region edges leads to a polynomial of degree exponential to the numberof edges along the path [9]. The optimum region-to-region path can be obtainedby using either Dijkstra's Continuous Algorithm (DCA) developed by Mitchell [9]or an A* approach developed by Richbourg [20]. For the DCA, polygonal regionsaHowever, the optical Snell's Law must be modi�ed for the case of critical reection in whichthe angle is su�ciently large that there is total internal reection of the light ray. In this case theoptimum path will travel along the edge and exit later.



must be decomposed down to triangles while Richbourg's algorithm allows arbitrar-ily shaped polygons. Both algorithms use iteration to re�ne an initial approximatepath to the �nal optimized path which obeys Snell's Law at all boundary inter-sections. Mitchell optimized for worst case performance while Richbourg designedhis algorithm to optimize average-case performance. This was done by extensiveuse of pruning and heuristics to keep the search space small. The DCA has timecomplexity of the seventh power of the number of edges in the map. The worstcase performance of DCA is much better than that of Richbourg's A* algorithmbut the average-case performance of the A* is better than that of the DCA. Insummary, Richbourg states that the \two algorithms rely on common precepts buthave fundamentally di�erent capabilities and operational characteristics"[20].3 Prototype Hierarchical SystemThe route planners described in Sec. 2 use many innovative concepts and have awide variety of capabilities. Several of these systems are within some sense of theword hierarchical. If, however, hierarchical is de�ned to require that search meth-ods be applied at two levels of resolutions, then none of these systems can be calledhierarchical. None of them can be easily extended to provide high resolution plan-ning (one meter) over distances of one hundred kilometers or more. The prototypesystem described in this section does meet this strict de�nition of hierarchy. Inaddition, Sec. 4.2 describes the use of a deductive database and a mediator to easethe integration of our route planner into larger systems and also provides a highlevel logical programming language for framing queries which include calls to bothrelational data bases and the route planner.This new system is currently being developed in a joint e�ort by the U.S. ArmyTopographic Engineering Center (TEC) and the Computer Science Department ofLouisiana State University (LSU). The new system is called Predictive IntelligenceMilitary Tactical Analysis System (PIMTAS). It integrates the Hierarchic RoutePlanner [3, 4] previously developed at TEC with software developed at LSU. PIM-TAS will use an LSU-developed event-driven version [21] of the CLIPS [22] expertsystem shell and the PIMTAS grid-level route planner integrates the best featuresof the LSU and TEC planners. The aerial planning capability of the LSU planneris included in PIMTAS.The primary rationale for developing a hierarchical route planner was to avoid theintensive computation of a grid-level route planner in computing a path with alength of over a thousand pixels. An additional requirement was that no potentialroutes be discarded simply because the path is too narrow to show up at the higherlevel of the hierarchy. This last requirement precludes the possibility of initiallyusing a coarse grid and successively re�ning the path found at the coarse level witha �ner resolution grid. The HRP and its enhancements under PIMTAS will bedescribed in the following subsection with a concluding subsection describing theuse of an event-driven expert system shell that will provide the overall intelligence



of PIMTAS. Several examples will be included showing how PIMTAS will provideintelligent and adaptive control for rapid, real time responses to unexpected, realtime events.3.1 A Hierarchical approach to route planningIn Sec. 2, it was shown how the map plane can be decomposed into regions basedon aggregating pixels with similar traversability characteristics. Another way toconsider the map is to think of obstacles in the map which force a decision to go tothe left or to the right to get past the obstacle. The decision point corresponds toa node in a graph with the arcs representing the paths around the obstacles withone obstacle contained in each polygon of the resulting graph. Line thinning is themethod used to generate the skeleton.The skeleton of the go-to areas acts as the link between the two levels of the hier-archy. The skeleton is �rst converted into a graph structure with the nodes repre-senting decision points and the arcs representing the alternative paths that can betaken. Arcs are an artifact of the thinning process and do not take into account thecost of traversing a given pixel. Therefore, a grid-level route planner is required todetermine the actual paths between the nodes and to assign a cost to the traver-sal. A graph-level planner does long distance planning across an expanse of manynodes. However, the nodes themselves are an artifact of the thinning process andthe �nal path should not be constrained by the locations of the nodes. Thereforethe �nal step is a relaxation process which removes the constraint imposed by thenodes of the skeleton. This is accomplished by de�ning new nodes half way alongthe path between the original nodes. The graph-level planner then computes thepath between the new nodes. Typically, the relaxation step improves traversal timeby about ten percent. Roads can be given a preference for use by the HRP by spec-ifying a higher speed category for roads then for any o�-road region. The grid-levelplanner will then automatically select a road for travel whenever travel on the roadresults in a lower overall cost. In summary, the Hierarchic Route Planner makesuse of the full resolution of the data in making the skeleton and the combination ofgrid-level and graph-level plans provides precise and accurate planning across longdistances.The advantage in the hierarchy used in the HRP is that the reduction in the numberof nodes from the grid level to the graph level is on the order 1000 to 1. If the spacingbetween nodes in the graph averages 50, the length of the search path is 30 nodesdeep, and a cartesian distance between the start and goal is 1000 pixels, then thenumber of grid-level pixels that would need to be expanded would be on the orderof one million. In actual practice, far fewer than 1000 nodes would be expanded inthe graph search. Thus there is a 1000 to one increase in speed in this example.The disadvantage of the HRP is that in a pre-processing step, all the nodes of thegraph which are directly connected must have their connecting path and associatedcost computed using the grid-level planner. This is a one-time cost and thereafterlong distance routes can be quickly computed.



3.2 PIMTAS architectureInput data is a cross country mobility map containing data on topography, veg-etation, soil types, transportation, traversability, etc., plus information about thedisposition of enemy and friendly forces and the location of weather fronts. For agiven vehicle type, this input data is used to specify go and no-go regions on themap. For traversal across terrain, each map pixel has a cost penalty which is a lin-ear combination of the traversal time which depends on slope, soil type, vegetation,soil moisture, etc. and a threat penalty which depends on its proximity to enemythreats (missiles, anti-aircraft guns, etc.) Map pixels that are too close to the top ofa hill, a threat, or a weather front are labeled as points to be avoided by assigningthem a high cost penalty.Interactive Control: The Interactive Control module provides the militaryplanner (e.g., a tank commander or helicopter pilot) a way to choose how muchemphasis he wishes to place on each of the above factors. For example, if theplanner wants to reach the goal quickly and is willing to use a dangerous routeto do so, he would place a large weight on time and a small weight on threats.PIMTAS would then generate a direct path that may go close to enemy threats.On the other hand, if time is not a major factor and the planner's primary concernis safety, he would place a large weight on threats and a small weight on time, inwhich case PIMTAS would generate a path that stays as far away from threats aspossible and consequently may be much longer.Generating the Skeleton: The �rst step is to construct a go/no-go map fromthe original traversability map that was derived using the NATO Mobility ReferenceModel. Currently, areas are called no-go only if they are water, obstacle or urbanareas. This last restriction follows military doctrine that urban areas are to beavoided. The grid-level planner will not be bound by the no-go representation atthe graph level since it uses the multivalued traversability data. The �nal step is toremove small islands of go completely surrounded by no-go and also small islandsof no-go completely surrounded by go. The user speci�es whether eight-neighborconnectedness or four-neighbor connectedness is to be used to determine if a givenblob is isolated or connected. The maximum size of a blob that can be removedis a program variable. The clean-up operation typically cuts the number of nodesin half. A node of the line-thinned skeleton may actually be located in a no-goisland which was deleted when the binary map was constructed. In this case, thenode is moved to the nearest go areas. The smoothed binary map is now readyto be thinned. Fig. 1(a) and (b) compare the original noisy binary map and thecleaned-up map. The map data is from an area near Lauterbach, Germany.A newly developed single-pass line-thinner [23] was used to do the skeletonization.It does eight-neighbor connectedness along both diagonals and unlike other single-pass algorithms, it thins concave corners at the same rate at which it thins convexcorners. Thus the right angle in the letter L is preserved when it is thinned. On anSGI 100/50 Indy workstation and using a GCC compiler, a 237 by 224 pixel imagewas thinned in less than two seconds.



(a) (b)Figure 1: (a) is a binary traversability map and (b) is the cleaned binary traversabil-ity map.Vectorization: The Raster-to-Graph module scans the skeleton to �nd all nodesand the connections between them. In some case, there are many arcs departingfrom a node and the node consists of two or more pixels. In an extreme case, anode may have seven arcs attached and with the node consisting of seven pixels.Simplifying the Graph: Several procedures are used to simplify the graph.The ideal is to have a graph with a distance of at least 50 to 100 between pixels.The grid-level planner has the responsibility for doing planning over short distances.After the initial conversion to graph form, many leaf arcs are only a few pixels longs.These arcs are all pruned. Frequently, there are adjacent nodes which need to bemerged into a single node. The node-merger module merges nodes if the separationof the nodes is less than a threshold value. As a result of the previous pruning andmerging, some nodes will have only two arcs connected to them. Such nodes areeliminated unless there is a large change in direction between the two arcs incidentto the node. A �nal simpli�cation was to remove all leaf nodes.Grid-level Planner: The grid-level route planner computes paths between allnodes which were linked in the original skeleton. Since the paths that must becomputed are typically short, several paths can be computed in less than a second.The planner uses the A* algorithm to compute the optimum path with the costa weighted sum of the threat and traversal-time costs of each pixel traversed plusan underestimation of the cost to completion. The estimator function is the keyquantity that determines how e�ciently the algorithmworks. The approach we usedwas to center a set of concentric annuli on the destination point with the spacingbetween annuli equal to that of the data grid. The cost to completion from somearbitrary point that is in the kth annulus from the center can not be less than thesum of the �rst k values of the vector max value(n).



Graph-level Planner: The graph-level planner operates on the graph such asthe one shown in Fig. 3 and uses the weights between nodes computed by thegrid-level planner. The graph-level planner computes a user-speci�ed number ofindependent paths. Such paths are de�ned to be paths that do not share any nodesor arcs. This requirement insures that two tank columns will not share the samepath at the same time. The A* algorithm is used to compute the �rst path and asis normal with A*, it prunes the search tree of more costly paths to a given node.The complication comes with computing additional paths between the start andgoal nodes. Arcs that form part of the �rst path are e�ectively removed from thegraph when succeeding paths are computed. Support for pruning some node in thesearch tree may be a node which is part of the previously computed route. Sincethe node is not available for use in planning the current path, it can not providesupport for pruning an element of the search tree. There are two steps in updatingthe linked list and search tree: (1) Remove from the linked list all nodes that have afather-ptr ancestor that is of type \route." The start node is marked non-terminalrather than route and thus does not cause the entire tree to be pruned. (2) Thelinked list is scanned for nodes that are marked pruned. For each pruned node, wetraverse the down-ptr list until a node is located that has the same node-nbr as thepruned node. If this node is of type \route" then the pruned node is changed to\terminal." The �nal step is for the user to specify the starting position and thegoal position.Experimental Results: Fig. 2 is the end result of generating a binary map,thinning the map, converting it to a graph, simplifying the graph, using the grid-level planner to compute paths between all connected nodes in the graph and �nallyspecifying a start point and an end point for computing three independent routes.We see that there are three independent routes computed from user selected startat the top of the �gure and a destination point at the bottom. The gray regionsof the map correspond to go areas and black represents no-go regions. It should beremembered that di�erent gray areas can have large di�erences in allowable speedsand the optimum path may not be a straight line across a given gray area. Thethree unrelaxed routes are shown as solid white lines and the relaxed paths areindicated by dashed lines. The unrelaxed paths are constrained to go through thenodes of the original skeleton. The locations of some of these nodes can be seen inFig. 2(a) by locating those points on the unrelaxed paths that di�er most sharplyfrom those of the relaxed paths. The three unrelaxed paths in Fig. 2(a) were on theaverage 18.5 percent more costly than the corresponding relaxed path. Fig. 2(b)shows paths with threats removed and added a �xed time after travel was initiatedon the three routes.4 New ApproachesThis section discusses several new concepts which have not yet been implemented inPIMTAS. In the current implementation of PIMTAS, when multiple independentroutes are requested, the system computes the best route between the starting



(a) (b)Figure 2: (a)Three independent routes on combined mobility/threat map of areanear Lauterbach, Germany. Threats can be identi�ed by the black circular holesin the gray background. Small white circles within threat-circles identify threatsremoved in (b). (b) Same routes with one threat removed and three threats added.Small white circle within threat-circle indicate added threat. Start of dotted pathindicates time at which threats changed and paths were recomputed.point and the destination, removes the segments that make up the route from thelinked list of nodes used for A* and computes the next best route. This procedurecontinues until the requested number of routes have been found or until the plannercan no longer �nd a new route. The problem is that the �rst route is plannedwithout regard to subsequent planning of routes. An algorithm is presented thatguarantees that the sum of the cost of the speci�ed number of routes is a minimum.In the next section the algorithm is developed from consideration of an eight nodegraph in which PIMTAS fails to compute an optimum solution. Using this graph,the requirements for a new algorithm that will compute an optimum set of routesis developed.Sec. 4.2 describes HERMES (HEterogeneous Reasoning and Mediator System),which was developed at the University of Maryland. With HERMES combinedwith PIMTAS, we will be able to answer complex queries that require accessing arelational data base, a geographic information system as well as a route planner inorder to answer a query. The salient features of HERMES are described and severalexample queries are presented.



4.1 Cooperative selection of multiple pathsThe Hierarchical Route Planner, discussed in Sec. 3 has the ability to sequentiallycompute several non-competing optimum paths. Non-competing indicates that theselected routes do not share any arc-segments or nodes in the graph representationof mobility. It will occasionally be observed that if the �rst selected path were to bemodi�ed slightly, with only a small increase in traversal time, then the second pathcould use a signi�cantly shorter path. In Fig. 3a, use of the A* algorithm to gofrom node 0 to node 7 results in the path 0-1-2-5-6-7 with a cost of 5. The secondand third paths will be 0-4-7 and 0-3-7 each with a traversal cost of 10. The sum ofthe three traversals is 25. The corresponding search tree is shown in Fig. 3(b) forthe case in which no heuristic knowledge is used. If we had instead chosen 0-1-4-7as the �rst path with a greater cost of 7, then the other two paths would be 0-2-5-7and 0-2-6-7 each with a cost of seven. The cost of the three paths is 21 compared to25 previously. What we need is an algorithm that will simultaneously optimize allpaths. Fig. 3(c) is a search tree which does give the optimum solution for the threepaths. Comparing the search trees of Fig. 3(b) and Fig. 3(c), we see that the keydi�erence is that in the �rst search tree, node 2 on the branch 0-1-2 caused pruningof node 2 on the branch 0-2. At the time this node was pruned, the A* algorithmhad no way to know that the wrong pruning choice had been made in order to theoptimize the sum of all the paths.In order to simultaneously optimize two or more paths, we will need a separatesearch tree for each separate route. The maximum number of possible routes willbe limited by the number of arcs connected to the start node and to the destinationnode. For the sake of simplicity, let whichever of these two nodes that has thefewest number of arcs attached be considered the start node and the other nodethe destination node. We will need to search each one of the arcs leaving the startnode and generate the associated search tree. For convenience, all four search treesstarting from node 0 of Fig. 3a are shown in Fig. 3(d) as if they were a single tree butwith dotted lines from the start node to each of its connecting nodes. Without loss ofgenerality, h(n) is assumed zero for all n. There can be only one independent routeper search tree since each tree is characterized as having only one arc connected tothe start node. The underlined nodes marked A.W. are precisely those nodes whichwould be pruned in an ordinary search tree. However, pruning leads to selectionof the single-path-e�cient route 0-1-2-5-6-7. The solution is to explore the nodesmarked A.W. in an alternative world. Thus what would be pruning in a regularsearch tree is a collision here and all alternatives must be explored. Some termsmust be de�ned. When a collision occurs between nodes from di�erent search trees,one node is marked A.W. and let us call the other node the collider node. Let nreqbe the number of requested routes and narcs be the number of arcs connected tothe start node. Obviously nreq must be less than or equal to narcs. Using thesede�nitions, some node kA:W: marked for alternative world exploration need neverbe explored if some world has already been explored in which nreq routes have beenfound and provided that the cost of each route is less than or equal to f(kA:W:).
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Fig. 3(e) shows the result of the expanding the alternate world of the 0-2 node inFig. 3(d). O.W. indicates node which was expanded in the parent world but whichwas pruned in this alternate world. Parentheses around Dest, Prune, A.W. andO.W. indicate level of recursion at which the node was marked. One set indicatesparent world and two sets indicate grandparent world. When the 0-1-2 node wasmade a terminal node and its branches removed, the nodes 0-3-2 and 0-3-6 wereno longer in collision with descendents of the 0-1-2 node. Now however, they areboth in collision with the descendents of the 1-2 node in this alternate world. Notethat the 0-4 node is now marked (A.W.) to indicate that the collision occurred inthe parent world. Fig. 3(f) shows the result of expanding the alternate world ofthe 0-3-6 node in Fig. 3(e). In this world we have the three desired routes thatoptimally connect nodes 0 and 7.We must now consider the rules which determine when we will explore an alternateworld . If we wait too long, more backtracking may be required for the collidernode in the alternate world. If we explore an alternate world node to soon, it maybe the case that we needlessly explored that world. The answer is to treat thealternate world node as simply another node on the open list. Each time a worldis discovered with the speci�ed number of routes, the solution is returned and thecost of the routes is summed for comparison with other solutions found in otheralternate worlds. For the set of solutions for a given world, let us de�ne the cost ofthe highest cost solution to be fsoln max The search is completed when the f costof every node on the open list is greater than fsoln max of some alternate world.We still have one unanswered question: How do we do backtracking on the collidernode? In the current implementation of the graph-level planner, the pointers ofthe search tree only permit traversal up the tree. We need to excise the nodesof the search tree that point to the collider node. A new pointer must be added,which will allow traversal down the tree. The excising of limbs can then be easilyaccomplished.In summary, a separate search tree is maintained for each path, with normal pruningwithin a tree. When two search trees collide, the node which ordinarily would bepruned is marked A.W. and is saved for expansion in an alternate world. The A.W.node will also have a pointer to the collider node. The A.W. node is added tothe open list and the alternate world is explored when it is popped from the openlist. When an alternate world is created, the limbs of the collider node are tracedand removed from the search tree. Any other nodes which were marked as A.W.or pruned because of one of the excised nodes will become a terminal node in thealternate world. Operation of the A* now continues on the modi�ed search tree. andthe conditions for termination of the search remain unchanged from the algorithmdescribed in Sec. 3.2. When the search of an alternate world is completed, and ifthe number of independent routes is greater than mreq then fsoln max is computedfor the set of solutions found in that world. When unwinding the recursion, if allnodes on the open list of the parent world are greater than the fsoln max from thedescendent world, than search in the parent world is terminated and the unwinding



continues until the top-level world is reached. When the search terminates in thatworld, the overall search is completed and the best solution set has been found.4.2 Intelligent Terrain Reasoning in HERMESHERMES (HEterogeneous Reasoning and Mediator System) [24] is a system thathas been developed at the University of Maryland to facilitate the developmentand rapid deployment of mediators for di�erent kinds of applications. It uses theHybrid Knowledge Base paradigm, due to Lu, Nerode and Subrahmanian [7] toprovide deductive database support for multiple modes of reasoning and multipletypes of data.HERMES also incorporates a mediator development toolkit that allows the mediatorauthor to rapidly develop interfaces between HERMES and disparate data sources(called domains in HERMES). The language in which the mediator is written is asimple rule-based language with certain speci�c constructs, and with a special com-piler that can be used to implement these special constructs. A rule is a statementof the form A  �1& : : :&�m kB1& : : :&Bnwhere each of A;B1; : : : ; Bn are atoms, in the sense of logic and each of �1; : : : ;�mis a special atom of the formin(X; domainname : hdomainfunctioni(harg1; : : :argki):The predicate \in" is used to query external data bases or programs such as PIM-TAS. The mediator may, for instance, contain a call to PIMTAS of the formin(Route; pimtas : route((35; 70); (200;98)))This atom succeeds just in case the variable symbol, Route is instantiated to oneof the routes between (35; 70) and (200; 98) that is returned by PIMTAS.We can now see how we could answer a complex query in which we want to �nda route to a currently unknown destination. We need to get to a place that hasan air�eld as well as certain types of ammunition. Presumably these resources areneeded in order for the autonomous/manned vehicle to satisfy its mission. Note,in particular, that this may not have been the initial mission of the vehicle { itmay be the case that the battle�eld situation has changed drastically since theoriginal mission plan was constructed, and this reects a new decision taken by thepersonnel (if any) operating the vehicle. The salient feature about this exampleis that the identity of the destination is unspeci�ed, though the properties that asuitable destination should satisfy are speci�ed. In order for an appropriate solutionto be found to this problem, it may be necessary to access heterogeneous databasesdistributed at di�erent sites.



Solving complex queries using HERMES and PIMTASLet us now see how the complex examples described earlier may be solved within theHERMES framework, using PIMTAS as a domain. For this, let us suppose that wehave one relational database(e.g. Paradox) containing a relation called facilitieshaving the schema (Name,Facility). Thus, this relation may contain a tuple of theform (awasa; airport) denoting that the place, Awasa, has an airport. Other tuplesin the relation facilities may be similarly interpreted. There may be anotherdatabase (e.g. DBASE) containing a relation called supplies having the schema(Place,Item) { an example tuple in this relation is (Awasa; gas) specifying that gasis available at Awasab.HERMES may now be used to integrate three domains { PIMTAS, DBASE,and PARADOX. In addition, a fourth spatial domain that identi�es points (xy-coordinates with place names) is needed to solve the queries posed above.Query: Let rte1 be a ternary predicate such that rte1(O;D;R) is satis�ed i�R is a route from the origin to an unspeci�ed destination such that the destinationhas an air�eld as well as certain types of ammunition. For this, we may de�ne thefollowing clause in the mediator:rte1(O; D; R) in(P1; paradox : select=(facilities; facility;\airfieldd00))&in(P2; dbase : select=(supp; item; \ammunition00)&= (P1:place; P2:place)&in(D; spatial : findpt(P1:place))&in(R; pimtas : route(O; D)):Suppose the vehicle is at location `; then it can ask the query rte1(`; D; R):This is then processed as follows: PARADOX is invoked and asked to SELECT alltuples from the facilities relation that have the facility �eld set to airfielddSubsequently, P1 gets instantiated to one of these selected tuples. DBASE is thenasked to SELECT all tuples form the supplies or supp relation that have the item�eld set to ammunition. P2 is instantiated (or points to) one such tuple. We thencheck if P1 and P2 have the same place �eld { that is, have we found a single placewith ammunition and having an air�eld? If not, the HERMES inference enginelooks for other possible instantiations of P1 and P2 that satisfy these constraints.After such instantiations are obtained, the xy-location of the place P1:place (whichis the same as P2:place is computed using the spatial domain. . D gets instantiatedto this xy-location, i.e. D is a pair (x; y), and PIMTAS is then called to �nd a routebIn reality, these relations are somewhat more detailed, but we keep them simple here in orderto facilitate an easy presentation.



from the origin (i.e. the place where the autonomous/manned vehicle is currentlylocated) to the place D. 2We have now shown how the HERMES system may be used, in conjunction withsystems such as PIMTAS, to solve problems that neither could solve in isolation.The reader who is interested in a detailed account of HERMES is referred to thefollowing papers [24, 6, 7, 8].5 ConclusionsIn Sec. 2, we reviewed the advantages and limitations of the various methods ofdecomposing the map plane in order to e�ciently search the map plane. Although anumber of these methods have elements of a hierarchical organization, none of themprovide the capability to e�ciently plan high resolution routes over long distances.In Sec. 3, we described a hierarchical implementation that can e�ciently search alarge map plane without loss of �ne resolution detail.Intelligence is being added to the route planner by linking the planner to an asyn-chronous production system[21] built on top of the CLIPS [22] expert system shelldeveloped by NASA. The expert system will provide intelligent and adaptive controlfor rapid, real time responses to unexpected, real time events. It can, for example,analyze the obstacles and determines places where use of obstacle breeching equip-ment could signi�cantly reduce the length of an optimum route. The HERMESsystem described in Sec. 4.2 provides a capability to easily interface the route plan-ning system to diverse databases and Geographic Information Systems (GIS) andto ask complex queries that require interrogation of the GIS and database as wellas to a route planner in order to obtain an answer. This capability was recentlydemonstrated.AcknowledgementsWe thank Anne Brink for writing the initial grid-level route planner which wasthe basis for the design of the PIMTAS grid-level planner and we thank WilliamSeemuller for writing software used to remove noise from the binary Go/NO-GOmap. This work was supported by the Army Research O�ce under Grant Nr.DAAL-03-92-G-0225 and by the National Science Foundation under Grant Nr. IRI-9109755. Partial funding for this work was also provided by the U. S. Army Corpsof Engineers.References[1] Richard B. Ahlvin and Peter W. Haley, NATO reference mobility model, edition IIusers guide, Waterways Experiment Station, Vicksburg, MS, (1992).
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