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Abstract 

This paper presents an attempt to devise and develop a domain-independent reasoning system 
(DIRS) scheme for handling dynamic threats, and uses the scheme for automated route planning 
of military vehicles in an unstructured environment. 

Automated route planning is a very important branch in applications of artificial intelligence. In 

a dynamic unstructured environment, instead of simply using static cost from a mobility model, 
a dynamic cost surface is constructed in which the total cost is a linear combination of the static 
cost and the dynamic cost. 

The principal contributions of this paper are as follows: (i) A reasoning model called “DIRS” 
is proposed to quantitatively embed dynamic information, coordinate use of static and dynamic 
information, and handle real time events that happen outside the system. (ii) A temporal relation 

is applied in the route planning process for handling dynamic threats. (iii) Dempster-Shafer 
evidential theory is used to evaluate propagation of a dynamic threat. (iv) A detailed experimental 

analysis on automated route planning of military vehicles was conducted to study the performance 

of the DIRS model. @ 1997 Elsevier Science B.V. 

Keywords: Reasoning model; Dynamic threat: Route planning; Evidential theory; Autonomous robot 

* Corresponding author. Email: iyengar@bit.csc.lsu.edu. 
’ This project was partly funded by IJS Army Research Office grant # DAAH04-93-G-0498 to Professor 

S.S. Iyengar. 

0004-3702/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved. 

PI1 SOOO4-3702(97)00035-O 



170 

1. Introduction 

E Xia et al./Art@cial Intelligence 95 (1997) 169-186 

In everyday terms, planning means deciding on a course of action before acting. Here, 

in this paper, route planning for an object means determining an optimum path for the 
object before it begins moving. In different environments, for different objects, different 

factors should be taken into account to get an optimum path. For example, for a military 
vehicle, such as a tank or autonomous land vehicle, in a battlefield environment, the 

optimum path is determined by both time of travel and safety considerations. For a car, 

in an area where a football game just finishes, the football fans should be considered to 

figure out an optimum path to go through the area. For a robot that is planning to move 

to an indicated target in a dynamic area, static obstacles as well as the mobile obstacles 

in the area must be considered. In all of the above examples, we need to have a way to 
handle dynamic factors. 

A threat, which is an object or event that prevents the actions of objects or events for 
which we are doing route planning, often owns both static and dynamic properties. The 

static properties are determined by the threat’s static strength and the environment, and 
the dynamic properties are mainly determined by the mobility of the threat. For clarity, 
in the following sections, “object” only refers to that object for which we are doing 
route planning; otherwise, we call it a threat. 

In this paper we present an event driven reasoning scheme for handling dynamic 

threats, and use the scheme for finding optimum paths for military vehicles in a dynamic 
battlefield environment. Here the dynamic battlefield environment means that there are 

mobile enemy forces like tanks, i.e. threats, which intend to destroy our object. Of 

course, our scheme can be used for civilian route planning like the examples we mention 

above. 
This paper is organized as follows. 
l First of all, we discuss related works on route planning and point out the reasons 

why these works are not adequate to handle dynamic threats. 
l Secondly, a dynamic reasoning system is proposed to handle dynamic threats. 
l Then, the proposed threat propagation method is discussed in detail. 
l Finally, An experiment on a real terrain map illustrates how the reasoning in our 

system works and shows the effectiveness of our system in handling dynamic 

threats. 

2. Related work 

In order to improve the limitation of traditional production systems, an asynchronous 
production system (APS), which is capable of real time responses to unpredictable 
changes in the environment, has been described in [ 61 and [ 71. This system provides a 
general control strategy for reasoning schemes. The architecture of the system is given 
in Fig. 1. 

In Table 1, we outline other tactical planning systems that were proposed and point 

out the reasons why these systems are not adequate for handling dynamic threats in a 
dynamic environment. 
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Fig. I, Asynchronous production system. 

Table 1 

Comparison of related systems 

Investigator(s) Brief description Reason(s) system is not 

applicable to dynamic threats 

J. Benton, S.S. lyengar 

121 (1995) 

G.Loberg [S] (1986) 

S. Badaloni [ I] (1993) 

R.C. Strudeman [ lo] ( 1984) 

W.B. Zavoli [ 121 (1985) 

W.R. Franklin [ 31 (1985) 

T.D. Garvey [Sj (1987) 

Two-level route planning in a 

battlefield environment 

A general planning approach 

A general planning approach 

Knowledge of threats is used 

for planning 

Finds a path based on a digital 

map database 

An optimum path can be found 

for a robot 

Knowledge of threats is used 

for planning optimum routes 

Cannot handle dynamic threats 

Not specifically for path planning. Used 

for large military unit like a corps 

Used for hydraulic circuit 

maintenance 

NOI specifically for path planning 

The path is on-road only 

Not applicable to a battlefield 

environment 

Applicable only to helicopters. The 

condition of Dempster-Shafer 

evidential theory is not satisfied, 
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3. A foundation of the integrated reasoning scheme for dynamic threats 

3.1. Concepts and notations 

All of the below concepts are based on graph G : (YE), where V is a set of nodes 
and E is a set of edges. 

l A path is a sequence of edges (no,nl),(nl,n2),(n;!,nj),...,(n,_l,n,,), where 
ni E V, (n;,ni+l) E E, 0 < i < m and IZ~ Z nj if i f j, 0 6 i, j 6 m. We call the 
above path a path between node no and node n,,,. 

l The mobility weight, mw(i, j), is used to measure the mobility on a path between 

node i and node j. 
l The static threat weight, stw( i, j), is used to measure the static threat on a path 

between node i and node j. 
l The static weight, sw(i, j), is a combination of the mobility weight and the static 

threat weight on a path between node i and node j. 
l The dynamic threat weight, dwi(x), is used to measure the dynamic threat of 

threat z on graph node x. 
l The path weight, pw(i, j), is a combination of static weight sw(i, j) on a path 

between node i and node j, and dynamic weights which associate with the nodes 

on the path. 
l T is a set of threats, i.e. T = (7; 1 1 < i < n}. T(x) is the combination of the 

influence of all dynamic threats on node x and 7;:(x) is the influence of dynamic 

threat 7;: on node x. 

3.2. A computational architecture of reasoning scheme 

3.2.1. Outline of scheme 

The architecture of our reasoning system is shown in Fig. 2. 
Here, inputs are an unstructured environment in which we will do route planning, 

information of threats which are dynamic in the environment, a starting position and an 
ending position in the environment. Output will be one or more optimum paths between 

the two positions. 
When all data are inputted to the system, the first thing that is done is generate a 

weighted graph from the environment with threat information and the two positions. The 

graph should satisfy the following conditions: 
l For any two adjacent graph nodes, the locations of the nodes are connected. 

Note that when we say two points are connected, this means that there is a path 
which links the two points in the environment. 

l For any point, there is at least one graph node whose location in the environment 
is connected with that point. We call the node that point’s neighbor node. 

l For any two points which are connected, either there is at least one path which 
links their neighbor nodes in the graph or both of them have a same neighbor 

node. 
l The starting and ending points are the two graph nodes’ location. 
l Threat’s locations may never be any graph node’s location. 
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Fig. 2. Reasoning system for dynamic threat. 

The graph we get is the representation space we will work on. The mobility weight 

and static weight, which are associated with edges in the graph, are calculated based on 
the environment and threats’ information. The ways to calculate the mobility weights 

and static threat weight are sensitive case by case. We will present a way in Section 5.1 

on automated route planning of military vehicles. 

3.2.2. Static module 
In the mobility base (MB), we store the graph which is generated above. For edge 

(x, y), which associates with static weight sw( x, y), we use the following format to 

represent it: 

P(x,y) : SW 

where SW E IWf, IV is the set of positive real numbers. This means that there is a path 

between adjacent nodes x and y with static weight SW. 

In fact, we use two integers, a mobility factor weight (MFW) and a static threat 
factor weight (STFW), to balance the influence of mobility and static threats. The static 
weight SW is: 

SW = W( mw, stw) = MFW * mw + STFW * stw. 

In the mobility rule base( MRB) , the mobility reasoning rules are stored as follows: 

P(&Y) : w _ P(y,x) : w 

This rule means that any path between two nodes is a two-way path. 
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PC&Y> : WI AP(y,z) : w2 ==+ P(x,z) : w1+ w2 

This rule means that the weight on a path is equal to the sum of the weights which 

are on the subpaths of the path. The path consists of the subpaths, none of which overlap 
nor overcross each other. 

P(x,y) : wt AP(x,y) : w:! j P(x,y) : min{wr,w2} 

This rule means that if there are two paths between any two nodes, we will choose 
the one with the smaller weight. 

3.2.3. Dynamic module 

In this module, we propagate the threats to get dynamic weights for the graph nodes. 

The method of threat propagation will be discussed in Section 4. 

Due to dynamic reasons, we consider not only the dynamic weight for a node, but 
also the time that threat moves to the node. Therefore, in the threat base, we will store 

the above information as follows: 

c(x) : ti,dwj 

This means that threat 7; may propagate to node x in time t; with dynamic weight 

dwi, dwi E lR+. 
For every node x, 

T(X) = {T(X) : ti,dwi 1 E E T} 

In the threat rule base (TRB), we suppose that yt , ~2, . . . , y,, (= y) be all nodes on 

the path from node x to node y and tl , tz, . . . , t,, are all nodes, each of which a threat 

locates on currently. The following rules will be applied: 

(P(-LY) : SW) A T(Yl) A W2) A.. . A VY,,) 

where 

SW = W(mw,stw), pw = W’(sw,dw), 

dw=kdw(yi) and dw(yi) = edwj(yi) 

i=l .j= I 

if time(mw(x,yi)) > time(mw(tj,yi)). 

The function W’(sw, dw), which combines SW 

weight(SFW) and dynamic factor weight(DFW), is 
combines mw and stw. 

- P(-Gy) :pw 

and dw using the static factor 

similar to the function W which 

The function time( mw( x, y) ) is used to calculate the time which is needed to traverse 
the path with mobility weight mw(x, y). As we know, the function time(mw) should 
be a monotone increasing function, that is, the larger the mobility weight is, the more 
time is needed to travel the path. Thus the following relationship must be satisfied: 

time(mwl) > time(mw2) * rnwl > mw2 
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Because we do not really care the exact amount of time which threats or the object 
spends on the way, what we really care is only the relation between the amount of time 
which threats spend on the way and the amount of time the object spends on the way. 

Therefore, we can use mw to replace the value of time(mw), that is time(mw) = mw. 

Here we suppose that the mobility of all threats and objects are the same. 

Let us take a detailed look at computing dw(y;). For clarity, we rewrite the formula 

as follows: 

dW(Yi) = edWj(Yi) if time(mw(x,y;)) > time(mW(tj,yi)). 

;=I 

The condition time(mw(x, yi)) > time(mw( t,i, yi)) determines whether or not threat 

T; will influence the planned path from node x through node y;. If time time( mw( x, y;) ), 

which is needed for the object to reach node y{, is greater than time time(mw( t.i,yi)), 

which is needed for threat Ti to reach node yi, the dynamic weight dw(yi) will be 

considered. Otherwise, threat T; will be ignored on node y, for the current planned path. 
This is the temporal relation we use in our reasoning scheme. 

3.2.4, Reasoning and maintenance modules 
The reasoning module is called for all reasoning. For example, when the maintenance 

module propagates a threat, the module is called to find an optimum path which only 
depends on mobility without threat in order to move the threat. 

In the maintenance module, once the situation of threats is changed (a new threat is 

found, a threat disappears, or a threat has moved), a change to the graph on which we 
are planning a path is activated, in order to make the graph reflect the current realistic 

situation. Then recalculation on static and dynamic threats is also motivated by the 

graph’s change. Eventually, new optimum paths are planned in the new situation. 

4. Dynamic threat propagation 

4.1. Threat propagation otl tree 

In fact, dynamic threat propagation is a quantitative predication on a threat’s move 

intention. 

In order to move threats along with graph, we now introduce a new graph node for 

each threat. This node’s location in the environment is the same with threat’s location. 
Also the node is linked to some closed graph nodes whose locations in the environment 
are connected with the new node’s location. Here we get a new graph. Note that this 

new graph is only used for threat propagation. 
Now let us take a look to threat propagation on a graph. First of all, no matter which 

path the threat probably moves along with, it will start from its initial node. So, all 

paths along which the threat will probably move form a tree in which the initial node is 
root. We call this tree a threat tree. Note that a weight on a threat tree is only mobility 
weight. Therefore, the threat propagation is discussed based upon threat tree. 
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For clarity of discussion, we assume the strength of the threat at the root is 1 and the 
threat we are discussing is c. Let 

LEAF = {x 1 x is a leaf of the threat tree}, 

TREE = {x 1 x is a node of threat tree}. 

n = /LEAFI, 

The method of how to calculate the influence of a threat on the tree’s leaf nodes is 
based on the following assumptions. 

l The whole threat will move together. This means, after the threat moves, nothing 
will be left at the original site. 

l The influence of a threat to every leaf node on the corresponding threat tree is 

only based on the mobility from the root to the leaf node. 

So we get 

II 

c dwi(x) = 1 and 
j=l 

dwi(X) = (mw - mw(x))/(n - 1) * mw, where mw = cmw(x), x E LEAF. 

Here mw(x) is the mobility weight of the path from the root to leaf x. 
For non-leaf nodes x E TREE - LEAF on the tree, we think the dynamic weight 

dwi(x) should be equal to the sum of the dynamic weights of all sons of node X. So, 

we have 

111 

dwi(x) = cdwi(y,;), x E TREE-LEAF, 
.j=l 

where yj is a son of node x and m is the number of sons of node x. 
From’ the discussion above, we obtain a method to calculate the dynamic threat of 

every node on the threat tree. In fact, this method is an application of the Dempster- 

Shafer evidential theory [ 91. Here our domain is LEAF. The method to acquire the 
value of dynamic threats on leaves corresponds to the basic probability assignment in the 

evidential theory. And we use the belief function of the evidential theory to calculate the 

dynamic threats of the non-leaf nodes. All conditions of the Dempster-Shafer evidential 

theory are satisfied in this application. 

4.2. Extended threat propagation 

For the other nodes outside the indicated tree, we only consider those nodes which 

are adjacent to one of the tree nodes except the root. The reasons of excluding the root 
here are as follows: 

l We assume that the threat’s initial intention to move is apparent. The probability 
of moving back is very small. 

l When we handle the static threat, the adjacent area has been considered. 

The influence of a threat to the non-tree nodes should be inversely proportional to the 
mobility weight which the threat will encounter as it moves along the path. Therefore 
the method to calculate the influence of a threat for a non-tree node x is: 
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dWi(X) = (mw(y)/mw(v) +mw(x,y)) 'dWi(Y), 

where mw(y) is the mobility weight from the root to tree node y which is adjacent 
to node x and mw(n, y) is the mobility weight of the edge between node x and tree 

node y. 
For a given threat, one non-tree node may get more than one dynamic weight because 

the node may be adjacent to more than one tree node. So, we have to choose only one 
from all of the dynamic weights. The method of selection is as follows: 

l First get the path(s) with the least mobility weight from the root to the node. 

l If more than one path with the same mobility weight is obtained from the above 

rule, we choose the path with the maximum dynamic weight. 

4.3. Algorithm 

Threat propagation algorithm in our system consists of two steps. The first one, called 

the top down step, calculates the time which the threat needs to reach the corresponding 
node from the root. The other, which is called the bottom up step, calculates the threat 
propagation, that is, the dynamic weight on every node in threat tree. 

The algorithm of threat propagation is as follows: 

Input: A graph and all threats in T, each of which has a threat tree. 

Output: Dynamic weight for every node on the graph. 
Begin 
1. i= 1; 
2. forall (z E T) do { 
3. fOral (Xj E LEAFi) do { 
4. calculate mw (x,j) ; 

which represents the mobility from root to x,i. 

) 
5. mw = CyLi mw(nj); where ni = JLEAF;(. 

6. forall (Xj E LEAF) do { 
7. dWi(Xj) = (mw - mW(Xj))/(?Zi - 1)mw. 

) 
8. fOral (Xj E TREE - LEAF) do { 
9. dwi(x,j) = CE, dwi(Y,), 

where y, is a son of y in Ti and m is the number of the sons. 

10. forall (Xj E TREE and Xj # root) do { 
11. forall (y is linked to Xj, where yZTREE) { 
12. dwi(y) = (mw(Xj)/mW(xj) +mw(xj,y)) *dWi(Xj) 

where mw( x,i, y) is the mobility between xj and y. 

) 

1 
End 
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Fig. 3. PIMTAS architecture. 

5. Experiments on real map 

5. I, PIMTAS 

A United States Army project, Predictive Intelligence Military Tactical Analysis Sys- 
tem (PIMTAS), is ongoing at the LSU Robotics Research Laboratory and the United 
States Army Topographic Engineering Center. Benton et al. [2] proposed a method 
called two-level hierarchical route planning in order to avoid combinatorial explosions. 

Here we describe briefly the PIMTAS system. The system architecture is shown in 

Fig. 3. 
A mobility map in which every pixel has a value of either 1 or 0, which represent GO 

and NO-GO mobility respectively, is called a binary map. A thinning algorithm [ 21 can 
be applied to a binary map in order to generate a skeletal structure that will correspond 
to a line drawn along the center of mobility corridors. A graph can be generated from 

the skeleton. An example is shown in Fig. 4, in which the left panel is a real binary 
map and the right panel is its corresponding skeleton. 

In PIMTAS, the grid level route planner is used to generate the precise route between 
adjacent graph nodes by searching pixel by pixel on the binary map, and the graph level 
route planner is used to efficiently plan a route over a larger area by searching node by 

node on the graph acquired from the skeleton of the map. 
When a threat is introduced in a map, a small area around the threat becomes a 

NO-GO area because it is too dangerous to go through the area. A larger area around 
the NO-GO area, which is influenced by the threat directly, is called static threat area. 
The dynamic threat’s influence will be beyond the static threat area. 
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Fig. 4. A real map and its skeleton. 

Fig. 5. A real terrain map with a threat 

Fig. 5, we present a real terrain map with a threat which produces a threat NO. 
modeled by the smaller circle, a static threat area in between the two circles, 
namic threat outside the larger circle. 

GO 

and 

the map, every pixel has a mobility value. But only in the static threat are :a is 
f pixel assigned a static threat value according to the type of threat and the dist; 3nce 

the pixel to the threat center. When a grid level planner searches for an optin num 
between two adjacent graph nodes, the mobility weight and static threat we :ight 
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Fig. 6. A graph from a real map without threats. 

associated with the path are respectively equal to the sums of the mobility and static 
threat values of all of the pixels on the path. Therefore, we can get the static weight 

of a graph edge by combining the mobility weight and static threat weight of the 
corresponding grid level path. 

5.2. Analysis 

We now show the results that we get when the method proposed in Sections 3 and 4 
is embedded in PIMTAS. 

Now we assume that MFW = 1, STFW = 1, SFW = 1 and DFW = 1. The combination 
function which calculates the path weight is as follows: 

SFW * (MFW * mw + STFW * stw) + DFW * dw. 

First of all, we obtain a graph, shown in Fig. 6, from the skeleton, which is shown in 
Fig. 4. The indicated mission is to find two optimum, non-competing paths from graph 
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Fig. 7. Two paths between two given points without threats on the map. 

node 85 (starting node) to node 22 (destination node). In Fig. 7, the two paths found 
go through the following nodes: 

l Path 1: 85-92-12-13-15-16-109-20-21-22, with weight 342. 

l Path 2: 85-86-93-9 I-9-8-7-6-33-30-29-23-22, with weight 490. 

Now we add a threat near node 40 in the lower right corner of Fig. 6. This threat 

creates a NO-GO area modeled by a circle, as shown in Fig. 9. We re-thin the map to 

get a new skeleton, which is shown in Fig. 8. We then use the new skeleton to obtain a 
new graph, shown in Fig. 9. The graphs in Figs. 6 and 9 are almost the same except for 
the part of the graphs near the threat location and the numbers assigned to the nodes. 

We indicate a threat tree with root T as shown in Fig. 10, where a new node T, which 

corresponds to the threat position, is added to the graph shown in Fig. 9 for threat 
propagation. The other nodes in the tree are those nodes from Fig. 9 with the same 
labels. 

Now, from the algorithm in Section 4.3, we get the mobility weight from the threat to 
the leaf nodes and the dynamic weights of the leaf nodes, which are shown in Table 2. 
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Fig. 8. New skeletons. 

Table 2 
Weights of leaf nodes 

Node number I 33 30 44 29 
Mobility weight 141 161 138 68 113 
Dynamic weight 19.3 18.S 19.4 22.3 20.5 

Table 3 
Dynamic weights of non-leaf nodes 

Node number 6 32 
Dynamic weight 37.8 51.2 

31 28 43 
19.4 20.5 42.8 

Table 4 
Weights of some non-tree nodes 

Node number 8 
Mobility weight 214 
Dynamic weight 12.7 

36 35 23 
212 292 156 
12.8 10.2 14.8 

Also, we get the dynamic weights for the non-leaf nodes, shown in Table 3. 
In Table 4, we give the mobility weights of some relevant nodes which may appear 

on the planned path and their dynamic weights. 
Among the nodes given in Tables 2-4, the ones which appear in path 2 are nodes 8, 

7, 6, 33, 30, 29 and 23, and thus the total dynamic weight of this path is 12.7 + 19.3 + 
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Fig. 9. A graph from a real map with threats. 

37.8 + 18.5 + 19.4 + 20.5 + 14.8 = 143. So, after the threat is added, the weight of path 

2 increases to 633. 
As we mentioned previously, our system also considers the time factor in deciding 

whether or not a dynamic threat on a node will be considered when we plan a path 

through the node. In Table 5, we list the amount of time that the threat needs to travel to 

a node, and the amount of time that the object needs to travel to the node. Here we find 
that the object time to node 8 is less than the threat time to the same node. According 
to the discussion in Section 3.2.3, the dynamic weight on node 8 should be ignored. 

Therefore, the dynamic weight of path 2 is 130 and the weight of the path increases to 
130 + 490 = 610. 

Now let us set DFW = 2 instead of 1. This means that the dynamic weight of path 
2 will be 2 * 143 = 286. After ignoring the dynamic weight on node 8, we get the 
dynamic weight of the path to be 2 * 130 = 260. Therefore, the weight of the path is 
260 + 490 = 750. 
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Fig. 10. A threat tree. 

Table 5 

Mobility weights of some nodes due to travel by a threat and travel by 

the object from the starting node 

Threat Object 

node 8 214 147 

node 7 141 220 

node 6 103 258 

node 33 161 316 

node 30 138 349 

node 29 113 404 

node 23 156 447 

Fig. 11 shows the result of recalculating path 1 and 2 after the threat has been added. 

Here the two paths go through the following nodes: 
l Path 1: 82-89-12-13-15-16-106-20-21-22, with weight 342. 

l Path 2: 82-8 l-71 -70-66-65-64-63-62-57-55-46-47-49-22, with weight 701. 

In contrast to the two paths in Fig. 7, path 2 in Fig. 11 is totally different due to 
the influence of the threat, which forces path 2 far away from the threat. Thus the new 
path 2 is much longer than the old one. The reasoning behind choosing this longer path 

as the new path 2 is that the weight (701) associated with the longer one is less than 

the new weight (750) associated with the original path 2. 

From the discussion of the above example, the results achieved from our system 
describe the threat propagation and the influence of the threat on path planning. For 
example, although the threat propagates to node 8, when the path through node 8 is 
to be planned, the influence of the threat is discarded because the time factor is also 
considered in our system. This result demonstrates our system’s effectiveness in handling 
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Fig. I I Two paths between two given points with threats on the map 

6. Conclusion 

In the discussion above, a dynamic reasoning model has been described. The model, 

in general, is applicable to any dynamic environment. We have then used this model to 

build up a reasoning system for handling dynamic threats in a battlefield environment. 
The results from PIMTAS have demonstrated the effectiveness and efficiency of our 

system. For the reasoning, we not only have applied a temporal relation, but also have 
given an application of Dempster-Shafer evidential theory. 
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