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Abstract. The problem of dynamic distributed sensor fusion, where time

sensor readings are fused concurrently by physically isolated
modules, is considered. A large number of criticai applications including
target tracking, remote sensing, and autonomous vehicle navigation can
depend on interpreting sensor readings in real time. Independent sensor
medules recsive partially contradictory data, but their answers must
agree within computed accuracy bounds. Real-time constraints cause

quires that the problem be viewed in four dimensions and processed
efficlently. We present a new  methad that robustly tolerates a limited
of . component

O(f*N log N}, where N is the total number of modules and f is the num-

failures. This method has complexity

. ber of faulty modules tolerated, Experimental results are given showing

the, merits of the proposed method,
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1 Introduction

Sensor integration is concemed with the synergistic use of

multiple sources of information.! A major component of
sensor integration is sensor fusion, merging multiple inpnt3 ™

into a common representation.? Sensor fusion can be di-
vided into the following classes’;

1. Complementary sensors do not depend on each other
directly but can be merged to form a more complete
picture of the environment, for example, a set of ra-
dar stations covering nonoverlapping geographic re-
gions. Complementary fusion is easily implemented
since no conflicting information is present.

sensor fusion in real time. They are distributed in that each
sensor module moves independently and has local intelli-
gence. To work in this environment, a dynamic distributed

~fusion algorithm must Tolerate bothi$Ensor nbise and tem-

poral uncertainties. The sensors are independent processing
elements (PEs) that must coordinate their activities in the
presence of partially contradictory data, We propose a
methodology, consisting of two real-time processing steps,
that guarantees robust agreement among the PEs.

Our method aceepts readings from potentially heteroge-
neous modules and is tolerant of a large number of error
sources. These sources of error include clock skewing,

rransmissicn_dalaysﬁ'mdﬂrbiﬁ'ary-faﬂurwhrﬁmilm‘ T
ber of modules. This method js independent of-the hard- -

2. Competitive sensors each provide equivalent infor-

~ mation about the environment. A typical competitive
sensing configuration is a form of N-modular redun-
dancy. For example, a configuration with three iden-
tical radar units can tolerate the failure of one unit,
This is a general problem that is challenging since it
involves interpreting conflicting readings;

3. Cooperative sensors work together to derive informa-
tion that neither sensor alone could provide. An ex-
ample of cooperative sensing would be using two
video cameras in stereo for 3-D vision. This type of
fusion is dependent on details of the physical devices
involved and can not be approached as a general
problem.

The configurations discussed in this paper are competitive
fusion problems. This is a large class of challenging prob-
lems. .

This paper considers distributed multisensor systemns
which are dynamic in that they are used for competitive
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- ware and methodology used for sensing and data associa-

tion. Each module should use the methods most appropriate
for its componénts, The overall system is then able to com-
pensate for errors made by any subset of modules, as long
as the cardinality of the subset is within well-defined
bounds. This may in fact be the best way of handling a
number of difficult problems such as data association, -
where no single method has been found to handle all the
sources of error treated by our method.

The main assumption made regarding the overall system
dynamics is similar to the assumption made for application
of the extended Kalman filter, A linear equation must
present an adequate estimate of the dynamic system, Our
interest is in finding a computationally efficient fault-
tolerant method of fusing noise corrupted sensor data, In
contrast to the extended Kalman filter, it is not assumed
that the noise is Gaussian. The only assumption made is
that the noise is within predefined bounds for most of the
$ensors, a given number of sensors may return readings
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with an arbitrarily large amount of noise without adversely
affecting the results of the method.

The paper is organized as follows. Section 2 formally
describes the problem under consideration. Section 3 de-
tails the approach we propose for distributed dynamic sen-
sor fusion, Section 4 demonstrates an application of this
method, The paper concludes with a brief discussion in

Sec, 5 that contrasts this approach with established meth-
ods. '

2 Problem Description

We consider a broad class of sensor fusion problems and
classify them as distributed dynamic sensor fusion. These
problems are characterized by the use of multiple redundant
sensors that collect time-sensitive data. The problems in-
herent in distributed data fusion are discussed in Ref, 4,
where an algorithm is given for robust agreement. This
paper extends that approach to real-time problems in three
dimensions by combining it with the multidimensional sen-
sor fusion method described in Ref., 5. This paper differs
from the previous papers in that multidimensional data are
fused, and that an explicit framework is derived for dealing
with data that varies over time. The time-critical nature of
dynamic distributed fusion requires the use of computation-
ally efficient algorithms, and introduces additional uncer-
tainties.

The problem to be solved can be phrased as follows:-An
object O is observed by N independent modules
nty, mg,....n, . We use the term module instead of sensor

to signify that each-module has local intelligence, memory,
and sensors. The modules may be heterogeneous or homo-

geneous. Every module communicates with all other mod-
ules. We do not consider network topology directly, since
network faults are included in the modet as failures of com-
munications components of individual modules. Similarly,
data association errors are included in the model as sensor
component failures.

Each m; determines the instantaneous location and ve-

velocity

o?e:ct O Jelodt

Module m ] .
At‘ti.mc f; measures O giving
values (3, 35,3, x1 1 27
within agmi’razy éod.ngs
Each module transmits the

data it receives to the other

modutes. Transmission time._
is also uneertain.

Module m;
At time #;measures O giving
values (¥, 01,3, 2)
within accuracy geunds

Fig. 1 Modules m, and m; measure the position and velocity of
object O,

fusing raw data, but still provides information about the
environment at a level below decision fusion, This ap-
proach enables a fault tolerant system to infer information
about its changing environment by using a number of het-
erogeneous methods, such as extended Kalman filters, at
lower levels of abstraction.

Each module measures object O relative to its own po-
sition and velocity. For each element of the sextuplet d;

= (¥;,¥:.2;,X{ \¥{ 2} ) measured by a correctly functioning

module m; there are two sources of uncertainty: measire-

ment inaccuracy (measurement noise} and ‘uncertainty in
the frame of reference of-the measurement (position noise),
Similar uncertainties exist for the data module m; receives
from all other modules.

Our discussion uses Cartesian coordinates. The method
is equally valid for a problem phrased in spherical coordi-
nates. A system relying on range and angle information can
be implemented with only trivial modifications. Note that

locity of O in three dimensions, and broadeasts this data d; to adequately handle a value that changes over time, some

,,,,,, _to alLothenmadules._AssumingﬁegLsenser—has—}imkedwkﬂeﬁsufvoﬁ&re—rate—ofﬂchangrof e vatue st be avail- ~ - " -
accuracy and a limited number of readings may be arbj- able, -

trarily faulty, each m; uses identical logic to deduce the
position of O. Figure 1 illustrates this problem. Note that,
in spite of the problem being presented as an object-
tracking problem, any problem involving changing values
in multiple dimensions can be put in this framework, A
number of remote sensing applications such as charting sea
currents and weather systems can easily be modeled in this
manner. We present this approach phrased as a target-
tracking problem since it is the most intuitive abstraction,

This method is situated at a medium level of sensor
fusion, the feature level as defined by Luo and Kay.2 It
fuses information regarding image features that have al-
ready been extracted from the raw sensor data. Broida® re-
fers to this type of approach as *‘track-level” fusion, he

notes that this type of approach has advantages in fault- -

tolerance and bandwidth requirements over more central-
ized approaches. In this approach, a number of tasks, such
as data association, can be performed as a part of the sens-
ing task by the local sensor modules. This level of fusion is
appropriate for the problem since it does not require the
bandwidth that would be needed by a lower level approach
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Each module has a local clock and takes readings at

known intervals. The time needed to transmit readings be-
tween modules varies slightly. This causes a small variation
between modules regarding the exact time the measurement
was made (temporal noise). This temporal noise At is due
to both the skewing of local clocks and variations in trans-
mission times. Figure 2 shows these uncertainties in rela-
tion to module m; .

The final source of error consists of arbitrary errors
caused by equipment malfunctions (failure). A discussion
of methods used for tolerating arbitrary failures in systems
can be found in Barborak’ and its application to sensor
fusion in Brooks and Iyengar.* We denote a method that
tolerates all the sources of error listed in this section as
being robust. '

Certain assumptions must be true for this problem to be
well posed. From basic principles it is clear that the trajec-
tory of O in 3-D space can be described by a piece wise
continuous function f{t). The following theorem concemn-
ing the function £(¢) explains which dynamic distributed

. sensor fusion problems are computationally tractable.
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Messuurement errors Object®  position  velociy containing a good estimate of the position of object @ in
attach an uncertaing fxpzt (xiyiz) the neighborhood of time ¢, and a measure of the uncer-
factor Ao each element tainty of df (Adf ). The values of df may not necessarily

- ofthe data vector ;. : Daivectons &y through 4 be identical at each m;, but all df; must be contained

are transmitted to m; within the uncertainty range Adf ; forall m;,

each data vector contains .

measurment ervor. In The modules described are also reasonable. A large

addition the time needed number of inexpensive sensors are commerctally available

i ”L;mmﬁfml" Snsenain for measuring the location of an object in space and for

Ve [ocal . . . .

e measuring an object’s velocity. Many of these velocity sen-

of module my through a1y g } h 84 .y . > Yy

are not precisely known by sors use the Doppler effect in combination with some form

mj.

of electromagnetic radiation: microwave, laser, radar, etc. f
xﬁ?f; ﬁiﬁ‘fiiﬁ?ﬁﬁ?ﬁfﬁl‘i Theorem 2. Within the context given, it is impossible to
frame. Tt has 1o uncertainty regarding derive bounds for fused values of the velocity of 0.
its own position, time and velocity.
Froof.  The only assumption made regarding the second
Fig. 2 Data uncertainties for module m,. derivative of f(¢) is that it is negligible when multiplied by
the temporal noise squared. Since the temporal noise may
be extremely small, the velocity of O can vary greatly

. within this short period of time. In fact, as At—0 the sec-
Theorem 1. Module m; receives data from module m; ond derivative of f(¢;) may be arbitrarily large. The infor-
whxcl) is xdemlﬁefi as having b_een taken at fime ;. The mation available, therefore, gives no criteria for judging the
tracking problem is well posed if and only if the temporal correctness of values of £(+,), and no criteria for bounding
noise At between any two modules i and Jj is small enough !

the possible values of fused velocity.

that the first two factors of a Taylor series expansion of Theorem 2 shows that to reliably fuse velocity data,

f(t) is an adequate approximation of f(¢) for

t—Ar<rss+Ar more str.ict .assun:nptions are neede(.i. These assumptions

! ! ) may be justified in many practical instances, to treat the

Proof.  The Taylor expansion of f(z;) at time ¢ is largest possible set of problems we do not make any as-

sumptions regarding the second (or higher) order deriva-

FOd+f ) (e—1p =82+ (- £y tive(s)-of f(t). For this reason, we restrict ourselves to fus-
Tl — f-.')""' o o ing the position data and making an estimate of_th:_lcdi‘_ocig&__ -

data that has no accuracy bounds.
If At is large the magnitude of Ar” grows as n—oe and

the value of f(1) will depend predominately on the higher 3 gew Paradigm for Distributed Dynamic Sensor
order terms of the Taylor series expansion, when these usion

terms are nonzero. The data sextuplets only contain infor- The distributed real-time sensor fusion methodology pre-
mation regarding the first two terms, so that the value of sented in this section assumes known limits to position,
f(#) would be impossible to infer from the data available if measurement, and temporal noise, These accuracy limita-
higher order terms are significant. This shows that Theorem tions can either be known a priori or calculated using

1 is necessary. sample variance and an appropriate probability distribution )
o v e . _Conversely, as Af--0 the values of A" -approaeh-zero - -~ for each sensor modnte -~ — - —————- -~ — — — -

as n—, Therefore there exists a sufficiently small Az so __M_ijmethodiolc:a;@s-failureaﬁuptej&oubeﬁh’—modules -
7 " that Tor any given f(r), only the first two factors of the by using the readings from the correctly functioning mod- *
Taylor expansion are non-negligible. This shows that Theo- ules to mask out the readings of the faulty modules, A
rem 1 is sufficient. module functions correctly as long as none of the noise
From Theorem | we sce that the location of O at time ¢ factors exceed the accuracy limits for the module, IfN is
is approximated by a linear function of the measured veloc- the total number of modules in the system, f must be less

ity and position of O at time ¢,. Another assumption that than N/2D, where D is the total number of dimensions in
must be made is that the number of failures (arbitrary er- . the problem, For the distributed dynamic data fusion prob-
rors) is limited, This is intuitively reasonable since the cor- lem, D is equal to 4, three spatial and one temporal dimen-

rect information must outweigh the incorrect information in sions, s0 f<N/8. This limitation has been derived by con-
some manner. The exact limit needed for this problem and sidering intersections of readings from continuous valued
a reference to the proof of this lmit is given in Sec. 3. sensors, the derivation of this limit can be found in Chew T

Note that the restriction given by Theorem 1 is roughly and Marzulio.?
equivalent to the restriction required for using the extended The method we use is known as fault masking,” which is
Kalman filter. The system must be approximated by a linear closely related to N-modular redundancy'® and the Byzan-
system. In addition, since we are considering physical sys- tine generals problem.” From the problem definition, the f

tems, the instantaneous velocity is always well defined for correct answer must be contained in a range defined by the

objects of non-negligible mass where Newtonian mechan- intersection of N—f or more sensor readings. By compar-
ics adequately describe the system. ing all values returned by the modules we find the region
To solve the dynamic distributed sensor fusion problem containing all ranges where groups of N — S or more read-

an algorithm must compute both a fused data vector df ings concur. The limits of this region form a new virtual
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sensor reading.® The number of possible intersections is
limited by f (Ref. 11) and their distribution is limited by
the accuracy of the individual modules, Chew and Marzullo
proved that the fused data is at least as accurate as the data
from the least accurate module.?

The first step in our distributed dynamic sensor fusion
methodology finds the smallest four dimensional region
containing all points where N' ~ f or more sensors agree,
This region defines the accuracy limits of the fused data,
and can be found using the algorithm described in Sec. 3.1.
This algorithm® has complexity O(f°N log N).

The second step in our method uses the results of step 1
to find an answer that robustly approximates the answer
computed by all other modules in the system. Finding a
robust approximation is nontrivial because the data re-
ceived by each PE may differ radically due to the influence
of the faulty modules. The robust approximation algorithm
is given in Sec. 3.2, and has complexity* OV log N).

Used in combination, these steps provide a fused answer
that satisfies our robustness criteria and provides reliable
accuracy bounds for the fused answer. The accuracy of the
fused answer is always at least as accurate as the least
accurate module in the system when temporal disturbances
ate taken into account. The overall complexity of our ap-
proach for sequential machines is O(f*N log N). This paper
differs from our previous work in three important respects:
(1) it combines the two methods into a unifying sensor
fusion framework, (2) it is the first presentation of a fault-
tolerant approximate agreement algorithm for multidimen-
sional problems, and (3) it puts sensor fusion in a dynamic
context. e ‘ T,

It is important to realize that many applications for sen-
sor data involve dynamic processes and sensor fusion in-
volving distributed sensors must therefore account for tem-
poral differences between modules,

3.1 Finding the Optimal 4-D Region

This step is an extension of the method presented in Brooks
et al.” and Brooks and Iyengar.'? We describe the algorithm

- as performed by module ;. The identical algorithm is per-

plairied in Sec. 2, each module m; measures one data sex-
tuplet d; and receives N sextuplets transmitted from the
other medules, The time of arrival t; of d; is recorded.
Module m; has a priori knowledge of the acceptable tem-
poral noise (At) for each module and the average transmis-
sion time (T;) from m ; to m;. Medule m;’s measurement
was taken within the time range 1,£ At; . For all m(j#i)
the measurement was taken sometime within the range
{j_ Tﬂi A.fj . .

Analogous to the limit of acceptable temporal noise,
there are known acceptable accuracy limits for every ele-
ment of the sextuple 4 ; from module m ;- These are repre-

sented by Ax;, Ay;, Az;, Ax!, Ay;, and Az!.
jrBYjs BZp, AX; i i

Thecrem 3. The lower limit for x from reading d; is
x; = [Ax;+ (xj + Axj)*Atr;], and the upper limitx; + Ax;
+ (x}f +Ax})*Atj.

Proof.  The velocity of O measured by m; in direction x

J
is x} . It is given that if m ; functions correctly the actual
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_ ) If the measurement was
Measured at time ¢, attime {~A¢,

Measwrement uncedzinty hAxApAsz

Object 0

% position
DR R R
S

T

Posiion B e e e R
(x-{x' +Ax) AL y- uld have reached.
velocity

(xHAX, Ay ALY

Flg. 3 Temporal uncertainty Increasing the spatial uncertainty of the
location of O, .

velocity x' must be in the rangex; ~ Ax; <x' < x;+ Axj.
So that the maximum possible velocity for O at the time of
the measurement is x; + Axj.

The lower limit is found by assuming that the reading
was actually taken at time #;+ A¢ ; and that the_object was
moving at the maximum velocity. This means that O
movedthe digtange, (,-—; + Ax;)*Arfromits actual position
at time ¢; before the reading was taken. In addition to this,
the measurement inaccuracy for ®7 is taken into account,
This establishes the lower bound for the correct position of
O at time ¢; in dimension x as x;=[Ax;+(x}

Similarly the upper bound is found by assuming that the
reading was actually taken at time t;—At;. Which means
that after the reading object @ moved distance (x}

“+ Ax YAt before-arriving at its True pasition at img 7;.~~ ~
"~~~ ~~formed concurrently on all MOdUIes 77g b1 ...,y . Asex-~ ~ Laking the-uncertainty for x-into-aceount,-an upper-bound -~ - - -

of x;+ Ax;+(x} +Ax})>:< At; is established,

This shows that with temporal uncertainty A;, position
uncertainty Ax;, and velocity uncertainty Ax} , the x coor-
dinate of O at time ¢; is bounded by X = [Ax; + (x]
+ Ax})* At;] and Xj+ Axp+ (x} + Ax}f)* At;.

Identical logic is used to prove corresponding limits on
the position of O in the y and : spatial dimensions. Again,
an identical approach can be taken using spherical coordi-
nates when appropriate. This relationship is illustrated by
Fig. 3. Note, unless a specific distribution is assumed
within the uncertainties, the likelihood of O being at any
specific position within this range is unknown.

The reading from every module m i Now consists of up-
per and lower bounds in each of four dimensions. This
form may be referred to as either a 4-D hyper-rectangle, or
a 4-rectangle. We denote this new form of the input data
vector d; as dj'- . The set of d} is used to find the smallest
possible d-rectangle where we can be certain that O was
contained within the spatial dimensions of the 4-rectangle
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Dimension 1:  Se¢nsor A duces to N log N*[(2 f+ 1)5}/2 f. The worst case com-
plexity is therefore in the order of O(f*N log N).
Regions where PRSI SensorC s H
. N-for more readings ———— The algorithm is
intessect. . . .
Algorithm: Optimal region
Dimension 2 for Sensors A and B: Dimension 2 for Sensors B and C: Input: The number of dimensions D, and a set of sensor
Sensor A Sensor B readings S

4 SensorC
—_——

- =i 27§ Sensor B

Output: A set of 4-rectangles describing regions which
Cliues with Nof M— may be correct readings
or more members valid

in first two dimensions Step 1. Initialize a tist of cliques, which we will call C,
Dimension 3 for Sensors A and B: Dimension 3 for Sensors B and C: to NULL. Remember, a clique is a set of intersecting
Sensor B Sensor B sensor readings.
T Sensor A T——=  SensorC

Step 2. Calculate the uncertainty ranges using the tem-

poral uncertainty. Put S in the form of N 4-rectangles.
Step 3. Sort all elements of S into ascending order along
: the x dimension. A reading is considered active if its
Fig. 4 The 3-D problem with =3 and f=1. Final set of cliques tower bound has been traversed and its upper bound has
consist only of cligue AB. yet to be traversed. Traverse the fist in order, keeping
track of the active readings. When N — F or more read-
ings are active, perform step 4 on the clique A of active

. - . . . readings using data from the y dimension.

at :?ome time wur.un the tupe dlmer?s:on of the 4-rectangle. Step 4. Sort all data for theydimension {y,z,ort) in
This 4-rectangle is the optimal region. ] clique A into ascending order, Traverse the list of read-
To caleulate the optimal region, m; convers the reac’imgs ings in ascending order. When a region is- found with
from all m; into a set of dj’-. The x ranges of the d; are N~f or more readings active perform step 5 on this

Aand B interseet in all three dimensions. Band C only intersect in two,

sorted by their lower bound. The ranges are traversed in clique of active readings A’.

sorted order, keeping track of how many modules agree in Step 5. There are three possible cases:

any region. Any intersection of N — f or more modules rep- Case 1. Step 4 treated dimension y. Perform step 3 re-

resents a range of possibly correct values for x. When an - cursively using A” for A and data from the z dimension.

intersection of cardinality N—f or greater is found, this Cas? 2. Step 4 m::ated dimension z. Perform step 3 re-
“process is porformed recursively for the y, z, and +dimen- - Oursively using A/-for A and date.from the 7 dimension.-

sions using exclusively the dj’ of modules whose values are S{is; t?; Ste? 4 Lreat?q d}mensmq f. The 4_s~rectangle of

contained in the intersection rsection of A is inserted into the list C. _

. . o, . Step 6. Steps 3 through 5 have treated all the SENSor
Any intersection of cardinality N— f or greater in the ¢

data. List C now contains 4-rectangles describing all
cliques that correspond to intersections of {(N—F) or
more sensor readings in all four dimensions; C is used
as input data for the agreement algorithm,

dimension is 4-rectangle representing an intersection of
readings from N~ f or more modules in all four dimen-
sions. A list is kept of all such 4-rectangles. When the

procedure terminates, the list contains all combinations of ‘The maximum upper-bound and minimum lower-bound
N—f or more modules whose readings agree in all 4 di- of all elements of C are found for each dimension, This
7~ mensiofis To hely visualizé this process, Fig. 4 showsd is the”accuracy bound Tor the algorithm.

—— ~—simplified-example—of this ‘logicwith—three ~dimensiong,———
three modules, and one fault tolerated. Remember that the
actual problem has four dimensions and the system must 3.2 Robust Agreement Using the Optimal Region
contain at least nine modules to tolerate one fault.

Any combination of N~ f or more sensors on the list Step 2 of our methodology uses the output of Sec. 3.1-to
y . find a numeric value that converges with the values deter-
could be the set of correctly functioning modules, and one

. i ) mined by the other modules. More details regarding the
of their ranges must therefore contain the correct reading. distributed agreement problem can be found in Brooks and
We call a set of modules a clique and define C as the set of Tyengar. Agreement in this problem increases the precision
cliques with N— f or more elements whose readings inter- of the readings and thus aids coordination among the mod-

sect in all four dimensions. We define R as the set of asso- ules, This is a nontrivial problem since the algorithm must
ciated ranges. tolerate a limited number of faulty inputs that may be arbi-

The elements of R are sorted in each dimension. The trarily different for each module. Note that even the correct
accuracy limitations of our procedure in any- dimension are inputs are inexact. The solution to this problem is based on
defined by the smallest lower bound and the largest upper research done on the Byzantine generals problem. More

information on the Byzantine Generals Problem can be
found in Barborak et al.’
The algorithm is

bound of any element of R in that dimension.

The overall complexity comes from the recursion in step
5. Using Jayasimha's finding that there are at most 2 f+1
cliques of size N—f or greater at each dimension,!! we Algorithm: Robust agreement

construct a recursion relation for step 5. The relation re- Input: A list C of 4-rectangles

Optical Engineering, Vol, 36 No. 3, March 1997 771
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Medule A

Module B

4 A
i vas B
¢ <

[+
Midpoint of intersection AC: Midpoint of intersection AB:

i.5 25
Midpoint of interesction ABC: Midpoint of intersection BC:

235 4.0
Module 4 finds Module B finds
5L+ (2.5)=21 24(2.5)+ 24 (4.0) = 3.25

Fig. 5 Robust agreement by modules A and B when faulty module
C sends different information to both.

Output: A value in each dimension that is within the
accuracy limits found by all other modules

Step 1. Sum the midpoints of the x values of each
4-rectangle in C multiplied by the number of sensors
whose readings intersect in that range, and divide by the
total number of factors. Output this value as the answer
in the x dimension,

Step 2. Sum the midpoints of the ¥y values of each
4-rectangle in C multiplied by the number of sensors
whose readings intersect in that range, and divide by the
total number of factors. Output this value as the answer
in the y dimension.

Step 3. Sum the midpoints of the z values of each
4-rectangle in C multiplied by the number of sensors
whose readings intersect in that range, and divide by the
total number of factors. Output this value as the answer
in the = dimension.

Step 4. Sum the midpoints-of the ¢ values of each
4-rectangle in C multiplied by the number of sensors
whose readings intersect in that range, and divide by the
total number of factors. Output this value as the time 7
the measurement was made.

Each dimension is handled identically. The value in di-

meinsion x is found by summing the midpoint of all x re-
gions contained in R multiplied by the cardinality of the
clique whose intersection defines the region. This sum is
normalized by dividing it by the sum of the cardinalities.of
all the cliques in R. Figure 5 shows a simplified example of
the calculations performed on two modules that receive dif-
ferent information from the faulty module C. The values in
the y, =, and ¢ dimensions are found by identical calcula-
tions using regions defined in the corresponding dimension.

As long as our assumptions hold, this method provides a
robust approximation of the position of ¢ at the approxi-
mate time calculated by the procedure. The values found by
any module will be within the bounds calculated in Sec. 3.
by any other module. These bounds are at most as large as
the uncertainty of the least accurate individual module as
demonstrated in Chew and Marzullo.® Note that this uncer-
tainty in the spatial dimensions is dilated by the movement
of O during temporal uncertainty as proved by Theorem 3,

A proof of convergence and strict convergence bounds
of 2 f/N for each iteration of this algorithm are given for
the case where all modules have the same accuracy in Ma.
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haney and Schneider.”® In the cage where modules have
differing accuracies the same proof can be used to give
pessimistic bounds by assuming each module has the accu-
racy of the least accurate moduie.

Fusing values of the velocity components is more prob-
lematic. No assumption is made directly regarding the ac-
celeration of O, two modules could correctly measure the
velocity of O within Ar and have significantly different
results. A reasonable value for x’ can be obtained, how-
ever, by finding the average value of x’ in each clique in C
and then computing the weighted average of these averages
in a manner similar to the robust agreement algorithm,
Identical calculations provide estimates for the value of y’
and z’.

This estimate is reasonable since only modules whose
spatial readings intersect with readings from N — f or more
other modules will be contained in the average. These mod-
ules have a high probability of being correct. Also, modules
that are included in many intersecting regions will be
weighted more heavily than modules included in only a few
intersections, This reduces the variation in the fused veloc-
ity vatue from module to module.

4 Experimental Results

This section illustrates our method by presenting a sample
problem, followed by results obtained from a simulation
based on a target tracking problem. All results given in this
section use the same modules to observe object O. Each
module: has known accuracy limits, which are given in

© Table 1. Ag stated previously, all modules thaf function”
correctly broadeast the same correct reading to all the other
modules. These readings consist of a sextuple d;
= {X;,¥5.25.%) 3] /). A value for the time the reading
was taken ¢; is computed by the module m; that receives
the reading. The simulation uses a pseudo-random number
generator to ensure that the actual value is within the given
tolerance limits of the reported reading, and all readings
that fulfill this requirement are equally likely,

~ - - - — ———---—-Outof nine-modules; one fauity modute-can be toleraed. - - - - - -
~.. The faulty module f is chosen at random with each itera - - .

tion of the simulation, Sensor f sends each m; a different
reading. The faulty reading is generated within accuracy
constraints that are larger than those given in Table 1.
These errors are more difficult for the algorithm to process
correctly than wildly incorrect readings which will be fil-
tered out completely in step 1.

The time the reading is taken t; is generated using a
uniform distribution, to be within the temporal noise limit
Aty of the correct ¢ but the reading is chosen at random
from within ty2 Aty Itis not certain that the correct time ¢
is contained within the temporal noise limits of the reading.
Remember that all modules take readings at what they con-
sider to be regular intervals, The system cannot be entirely
synchronous, however, since there is no common clock and
since data transmission may inject additional delays. The
temporal noise models both clock skewing and variance in
the transfer times between modules, as explained in Sec. 2.
If temporal noise cannot be limited, fusion of dynamic data
from distributed sensors is not feasible,

The velocity readings are chosen within five times the
allowed noise limits, and the readings within the spatial
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Table 1 Known accuracy [imitations for modules 1 to 9,

Allowable Uncertainty

Module

Temporal  x position  y position  z position  x velocity  y velocty  z velocity

1 0.01 0.5 0.4 (+1] 0.1 0.1 a1

2 0.02 0.3 0.25 0.2 0.08 0.08 02

3 04 0.1 01 0.3 0.05 0.1 0.05
4 0.0 0.4 0.5 0.3 0.04 0.04 0.04
5 0.1 0.05 0.08 0.05 0.01 0.01 0.01
5] 0.08 0.2 0.25 0.3 0.12 012 0.13
7 0.03 0.35 0.44 0.35 0.09 0.09 0.09
8 0.15 0.09 0.08 012 0.09 0.05 0.05
9 0.18 .35 0.45 0.2 0.1 0.1 0.1

dimensions are chosen within twice the allowed noise lim-
its. Since the uncertainty allowed is a function of the ve-
locity, these readings will be likely to overlap correct read-
ings and will have a larger uncertainty range than normally
allowed. The incorrect readings can not be trivially dis-
missed and illustrate the need of a robust agreement proto-
col.

The errors allowed for the faulty module were chosen
deliberately to simulate the types of errors that would be

most difficult for the approximate agreement protocol to
handle correctly.

4.1 Detailed Example of Distributed. Dynamic Sensor .
Fusion

For this example, module 2 is faulty. Table 2 gives the
upper and lower bounds returned by the correctly function-
ing modules, and the values found by expanding the uncer-
tainty to account for temporat noise. Note that O i located
at the origin (0,0,0) and traveling with a velocity of (0.1,
0.1, 0.1). We position O at the origin to make the resuits
easier for the reader to evaluate, This choice of coordinates
is arbitrary and has no influence on the algorithm. Table 3

> Tekle 2-Readings-from this elght correctly functioning sensors.

QOriginal Mod. 1 -Mod. 3 -Mod, 4 Mod. 5 Mod. 6 Mod. 7 \ Mod. 8 Mod. 9
Min. ¢ -0.0088 ~0.0138 -0.0142 -0.1449 -0.1199 —-0.0150 ~0.1629 —0.2448
Max. ¢ 0.0112 0.0262 0.0058 0.0551 0.0401 0.0450 0.1371 0.1152
Min. x -0.4309 —-0.1350 —0.0460 -0.0968 —-0,3519 -0.5173 -0.0B47 ~0.2274
Max, x 0.5691 0.4650 0.7540 0.0032 0.0481 0.1827 0.0953 0.4726
Min, x* 0.0239 0.0938 0.0782 0.0057 -0.0114 “©.0630 0.0571 ~0.0705

,,,,,, Max.x'— — — — 0.2239--- - —-©:2538 ~ — - ;1582 —— -~ Q{157 —- - - 02288 T 02430 T T T 02371 Tpioes
T MY T TTTOTIATT T 03861 . —07268  -0.0408  —0.0888 ~0.0297 ~0.1265 -0.2143

Max. y 0.0853 0.1139 0.2731 0.0592 0.1114 0.8503 0.0335 06857
Min. y' 0.0016 —0.0507 0.0572 0.0956 —0.0077 —0.0358 0.0273 0.0298
Max ' 0.2018 0.1093 0.1372 0.1156 0.2323 0.1442 0.1273 "0.2208
Min. z —0.8813 ~0.2835 ~0.0739 --0.0333 --0.0365 —0.1279 -0.0213 —0.2258
Max, z 0.1187 0.1165 0.5261 0.0667 0.5635 0.5721 0.2187 0.1744
Min. 2’ 0.0175 0.0560 0.0481 0.0977 ~-0.0212 —0.0407 0.0650 -0.0310

Max, z' 0.2175 0.4560 0.1281 0.1177 0.2388 0.1393 0.1850 0.1690

Expanded

Min. x ~0.4331 —0.1401 —~0.0476 -0.1084 -0,3702 -0.5246 —-0.1202 —0.2507
Max, x 0.5713 0.4701 0.7556 0.0147 0.0684 0.1899 0.1309 0.4959
Min, y —0.7168 -0,3883 —0.7283 —0.0524 —0.4072 —0.0341 ~0.1456 ~0.2557
Max, y 0.0873 0.1161 - 0.2744 0.0707 0.1300 0.8546 0.0526 0.7270
Min. z -0.8835 —0.2926 —0.0752 ~0.0451 —0.0558 -0.1320 -0.0480 ~0,2560
Max. z 0.1209 0.1256 0.5274 0.0785 0.5826 0.5763 0.2435 0.2048
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Tahle 3 Faulty readings from module 2.

Module Recelving Faulty Reading From Madule 2

Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mad, 5 Mod, 6 Mod, 7 Med. 8 Mod. 9

Min. ¢ -0.3584 ~0.4428 =0.7731 -0.3672 —0.0447 —0.3577 —0.5228 0.0481 ~0.7837
Max. ¢ 0.4406 0.3571 0.0269 0.4328 0.7553 0.4423 0.2772 0.8481 0.0163
Min, x —0.0005 —0.1907 =0.2450 0.0273 —0.1299 —0.2862 -0.2715 —0.2433 —0.0932
Max. x 0.1895 0.0093 —0.0450 0.2273 0.0701 —-0.0862 —-0.0715 —0.0433 0.1068
Min, x' 0.0026 —0.1523 ~0.0127 0.1045 ~0.1442 -0.1969 —0.0921 0.0877 —0.1648
Max. x' 0.1026 —0.0523 0.0873 0.2045 —0.0442 —~0.0969 0.0079 0.1877 —0.0648
Min. y —-0.2030 —-0.1022 —0.2240 -0.1797 0.0498 —0.,0591 0.0744 —0.2382 -0.0671
Max, y —0.0030 0.0878 —0.0240 0.0203 0.2498 0.1409 0.2744 -0.0382 0.1329
Min. y' —0.2157 0.3310 0.0180 0.2128 —0.1949 0.3180 0.0025 0.4981 0.1177
Max. y' —0.0157 0.5810 0.2180 0.4128 Q.0051 0.5180 0.2025 0.6981 0.3177
Min, z —0.3465 —{0.3882 ~0.0435 | -0.3580 —0.7502 0.3118 —-0.0459 0.2213 - ~0.6407
Max. z 0.2535 0.2118 0.5585 0.2420 —-0.1502 0.9118 0.5541 0.8213 - —0.0407
Min. z* 0.1824 0.0951 -0.1428 0.1813 0.1681 0.1913 ~0.1550 —-0.0468 0.1428
Max. z* 0.2824 0.1951 —0.0428 0.2813 0.2681 0.2913 —0.0550 0.0534 0.2428
Expanded : A

Min, x —0.0416 —0.1698 =-(.2800 —0,0545 ~0.1122 —0.2474 —~0.2747 —-0.3184 —0.0672
Max. x 0.2405 -0.0117 —-0.0101 0.3091 0.0524 ~0.1249 —0.0683 0.0318 0.0809
Min y —-0,1967 —0.3386 —-0.3112 —0.3448 0.0477 —-0.2663 —0.0066 -0.5175 ~0.1942
Max. y —0,0082 0.3342 0.0632 0.1854 0.2518 0:3481 0.3554 0.2410 0.2600
Min, z - —0.4594 -0.4662 -0.0284  —0.4705 -0.8574 0.1953 ~0.0239 01999 . -0.7378
Max. z 0.3665 0.2898 0.5384 0.3546 —0.0430 1.0283 0.5321 0.8426 0.0564

shows the original upper and lower bounds transmitted by
the faulty module 2 to all modules and the corresponding
expanded uncertainty ranges.

Initial inspection of the data confirms that the actual
values of d=(0, 0, 0, 0.1, 0.1, 0.1) are contained within the

racy limits given in Table 3, however, do not always en-

close the correct values. On the other hand, the values in
Table 3 sometimes enclose the correct values and are often
close to the actual values. These readings can only be par-
tially filtered by the matching procedure in step 1 of the
algorithm.

Step 1 is run concurrently on all modules and produces a
list of regions where N — f or more readings intersect in all
four dimensions. Table 4 Tists the nine valid regions that are
found by module [. Note that the regions farthest from the
actual value usually appear only in one or two 4-rectangles,
while regions containing the actual value occur several
times. The most extreme example of this is given by the
time variable,

The data from Table 4 is processed in two ways. First
the lower and upper bounds are sorted. In this way, the
minimum lower bound and the maximum upper bound pro-
vide limits for the accuracy of the sensor readings.

Then step 2 finds a robust value that converges with the
values found by the other modules. For module 1 this is
done by computing the midpoint of each range in Table 4,
multiplying these midpoints by the cardinality of the re-
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gion, summing these values, and dividing the sum by the
total number of factors (in this case 72). Table 5 presents
the results of this process for all nine modules in this ex-
ample. Note that the values found by each module are
much closer to the real values {r=0, x+=0, y=0, =0,

of the original data. e

Summary statistics of this example are given in Table 6.
The results found are very good approximations of the ac-
tual values. Even the extreme values found by the moduies
are well within the original accuracy bounds. It is also in-
teresting to note that the amount of disagreement between
the modules is minimal. Note that the average position and
average error differ in that the ervor is the absolute value of
the position when the actual target position is the origin.

4.2  Simulation Results

The simulation has been tested using a large number of
scenarios with different seeds for the pseudo-random num-
ber generator and a number of different combinations of
modules, The results always differ slightly but are qualita-
tively very similar, For the sake of comparison in this pa-
per, we use only the modules defined in Table . Remem-
ber that a new faulty module is chosen at random with each
iteration of the algorithm, so that every module is defective
_for a significant number of iterations. As the number of

=0:1} thanany of the-initial-readings. - - -
___ Similarly, the accuracy bounds are tighter than the bounds _ _ __ .



8rooks and lyengar: Real-time distributed sensor fusion . . .

Table 4 Tha 4-rgctangfes where eight or more readings intersect In all four dimensions.

Region A 8 c D £ F G H !
Cardinality 8 8 8 8 8 8 8 8

Min. ¢ -0.0138 —0.0088 -0.0088 ~0.0088 -0.0088 —0.0088 ~0.0088 -0.0088 0.0058
Max, ¢ ~0.0088 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0058 0.0112
Min. x -0.0416 -0,0478 -0.0416 —0.0416 " —-0.0418 ~-0.0416 -0.0416 0.0147 —0.0416
Max. x 0.0147 ~0.0416 0.0147 0.0147 0.0147 0.0147 0.0147 0.0664 0.0147
Min, x* 0.0386 0.0412 0.0337 0.0295 0.0369 0.02986 ‘0.0412 0.0296 0.0318
Max. x’ 0.1836 0.1987 0.1812 0.1871 0.1881 0.1971 0.1987 0.1971 0.1918
Min. y -0.0341 -0.0341 ~0.0524 —0.0341 —0.0341 -0.0341 =0.0092 -0.0341 ~0.0341
Max, y —-0.0092 0.0526 —0.0341 -0.0092 -0.0092 —0.,0082 0.0526 —-0.0092 —0.0092
Min, y’ -0.0125 0.0147 -0.0078 ~0.0243 -0.0109 —0.0243 0.0147 -0.0243 —0.0185
Max. y’ 0.1350 0,1622 0.1422 0.1457 0.1424 0.1457 0.1622 0.1457 0.1430
Min, z —0.0451 ~0.0451 —-0.0451 ~0.0460 ~0.0451 0.0785 —-0.0451 —0.0480 —0.0451
Max. z 0.0785 0.0785 0.0785 —0.0451 0.0785 0.1209 0.6785 0.1209 - 0.0785
Min. 2’ 0.0445 0.0239 0.0518 - 0.0345 0.0415 0.0345 0.0239 0.0345 0.0407
Max, z* 0.2120 0.2039 0.2218 0.2245 0.2126 0.2245 0.2039 0.2245 0.2232

Table 5 Results of distributed dynamic sensor fusion algorithm for each module,

Robust
Values Mod. 1 Mod. 2 Mod. 3 - Mod, 4 Mod. 5 Mod. 6 Mod, 7 - Mod. 8 _ Mod. 9 _
ot —00015 -00015  —00015 -0.0015  —-00015  —0.0015 00018  -0.0015  -0.0015
x 00108 -00348 00341 -00143  -00210  -0.0164  —00644  -0.0104  —0016r
X' 0.1136 0.0952 0.1114 0.1240 0.0995 0.1200 0.1086 0.1200 0.0938
y ~0.0159 0.0093 0.0089 0.0093 0.0467 0.0093 0.0184 0.0093 0.0093
¥ 0.0683 0.1322 0.0912 0.1156 0.0701 0.0884 0.0888 0.0884 0.1023
z 0.0212 0.0190 0.0263 00212 -0.0308 0.0167 0.0238 0.0167 0.0068
CL.o.Z 0267 04190 00057 Q1302 01247 _ _ 04439 - -0.0078 .. 0439 —-— -G48 - - - - -
- —-Accuragy ... [ —— e —— e — e T T .
Bounds
Min. ¢ “00138  -00138  -00138  -00138  -0.0138  -0.0088 00088  -0.0088  —0.0138
Max. ¢ 0.0112 0.0112 0.0112 0.0112 0.0112 0.0058 0.0112 0.0058 0.0112
Min. x 00476 -0.1084 01084  -00545  -0.1084  -00476 01084  -0.0476 00872
Max. x 0.0664 0.0147 0.0147  0.0864 0.0524 0.0147 0.0147 0.0147 0.0664
Min. x' 0.0295 0.0102 0.0277 0.0423 0.0112 0.0412 0.0199 0.0412 0.0087
Max, X' 0.1987 0.1987 0.1987 0.2008 0.1887 0.1987 0.1987  0.1987 0.1987
Min. y 00524 -00524  -00524  ~00524  -0.0341  -00341 00341  —00341  —0.0524
Max. y 0.0526 0.0707 0.0632 0.0707 0.0707 0.0526 0.0526 0.0526 0.0707
Min. ~0.0243 0.0147 0.0050 0.0293  —-0.0217 0.0147 0.0078 0.0147 0.0147
Max. y* 0.1622 0.2216 0.1750 0.1993 0.1622 0.1622 0.1703 0.1622 0.1874
Min. z 00460 -00460  -00451  -0.0460  -0.0460  —-0.0451 00451 00451  —0.0480
Max. z 0.1209 0.1209 0.1200 0.1209 0.0785 0.0785 0.0785 0.0785 0.0785
Min. z* 0.0239 00236  —0.0061 0.0344 0.0239 00239  —-00015 0.0239 0.0239
Max. 2’ 0.2245 0.2136 0.2039" 0.2244 0.2227 02039 0.2039 0.2039 0.2196
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Table 6 Summary of final resuits from example.

Average positien t=-0.0011

X=~0.0253 y=00116 z=0.0134
Average position error 1=0.0015 x=0,0253 y=0.0151 z=0.0203
Average velocity x=0.1093 y=0.0039 z=0.1163
Average velocity error x=0.0119 y=00172 z=0.0177
Maximum position 1=0.0018 x=-0.0108 y=0,0467 z=0.0263
Minimum position {=-0.0015 x=-0.0644 y=-0.0159 z=-0.,0308
Maximum velocity x=0,1240 ={,1322 z=0.1302
Minimum velocity x=0.0938 y=0.0683 Zz=0,0957
Size of maximum disagreement {=0.0033 Xx=0.0535 y=0.0626 z=0,0571
Size of maximum velogity x=0.0302 y=0.0640 2=0,0345

disagreement

Average upper bounds t=20.0100 x=0.0361 y=0.0618 z=0.0973
Average lower bounds t=-0.0121 x=—0.0776 y=-0.0442 z=-0.04586
MaxImum upper bound t=0.0112 x=0.0664 y=0.0707 z=0.1209
Minimum lower bound 1=-0.0138 x=-0,1084 y=-0,0524 z=-0.0460

iterations increase the average values found approach the
cotrect values asymptotically, On the other hand, the aver-
age error remains relatively constant. The maximum and
minimum values found quickly reach values that are close
to their extremes and then remain almost constant, These
results match our expectations as to how the method should
function. Table 7 summarizes the results of testing the
simulation with increasing numbers of iterations; If is inter-
esting to note the small magnitude of change between 10
and 2000 iterations. The magnitude of the extreme values
found during 2000 iterations are still extremely small,
which indicates that the method is indeed robust,

One theoretical shortcoming of our method is that the
inaccuracy of the position vector is influenced by the ve-
locity of the object O. In theory, a problem could arise
when faulty modules return inflated velocity readings for

______ cy_bounds_then become inflated and counld _

theoretically decrease the accuracy of the entire system.

One way to avoid this would be to put limits on the.accel-
eration accepted by the system and discard readings where
the velocity of fewer than f modules conflict with the rest
of the modules.

To test the magnitude of this problem, we have run
simulations with increasing velocity. Table 8 summarizes
our results. The results given in Table 8 are encouraging.
Although the accuracy of the system is lessened as the
speed of O increases, the magnitude of this effect is not
very large. Increasing the speed of the object by a factor of
200 has increased the average position error by a factor of
about 10. Based on these results and the inaccuracies inher-
ent to the problem it appears that this factor is not very
significant. It is therefore not essential to limit the accelera-
tion accepted by the system since the fusion algorithm ap-
pears to be capable of compensating for this effect.

6 Conclusion

This paper presents a model of the inaccuracies inherent in
real-time multisensor systems. In discussing these inaccu-
racies, a declaration of the requirements for robust fusion
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has been made. Many approaches exist for solving similar
problems. In this section we briefly compare our method
with: weighted average, Kalman filtering, Bayesian infer-
ence, and Dempster-Shafer inference.

Weighted average was one of the first approaches used
for data fusion. Given N sensor readings XXy param-

. eters wy,..,wy, where X, w;=1 are used. to find a fused

sensor reading 2 wx; . Judicious choice of w; can compen-
sate for semsors with different accuracy and reliability. This
method was tested with the robot HILARE? It is simple
and efficient, with complexity O{N). It is suitable for real
time, On the other hand, it ignores the noise factors in-
volved and does not compensate for module failures, The
failure of any module with a nonzero weight w can resuit in
the entire system failing. It also fails to provide any mea-

sure of the accuracy of the value obtained. These draw- __ _

backs make it unsuitable for use in a distributed system.

cept behind distributed Kalman filters.’* The main differ-
ences are that we consider a less restrictive noise mode! and
explicitly consider temporal noise. Kalman filters are a
great improvement over the weighted-average approach,
The exact algorithm can be found in Bramer and Siffling.'
Extended Kalman filters could be vsed for our tracking ex-
ample since our assumptions enable the problem to be
phrased as a set of linear equations.

If the noise factors are Gaussian, the extended Kalman
filter provides a minimum variance unbiased estimate of the
position of O along with a covariance matrix providing a
measure of the quality of this estimate. If the noise is not
Gaussian, this can be problematic. A recent attempt to use
Kalman filters with non-Gaussian noise for sensor data fu-
sion js Maheshkumar et al.'® Note that a Kalman filter can
handle temporal noise only if it is small enough to be only
one component of the over-all Gaussian noise. Also, equip-
ment failure is not tolerated by Kalman filters. Thus the
Kalman filter only satisfies part of the robustness criteria
we set in this paper.

1€ probiem posed in this paper is not unlike the ¢on-~~ — ~
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Table 7 Summary statistics of sensor fusion over 1 0 and 2000 iterations.

10 iterations
Average position t=0.0003 - x=0.0030 y=-0.0172 z=-0.0107
Averags position error t=0.0029 x=0,0243 ¥=0.0254 Z=0.0203
Average velocity x=0.1025 y=0.1092 z=0,1055
Average velocity error x=0.0155 ¥=0.0169 z=0.0138
Maximum posilion {=0.0086 Xx=0,0615 y=0,0522 z=0,1080
Minimum position =-0.0058 Xx=-0,0471 y=-0.0714 z=-0,0494
Maximum velocity x=0,1583 y=0.1648 z=0.15763
Minirmum velocity =0,0515 y=0.0575 z=0.0094
Size of maximum disagreement t=0.0089 x=0.0585 y=0.0802 z=0.1167
Size of maximum velocity x=0.0930 y=0.0666 z=0.0956
disagreement
Average upper bounds 1=0.0093 x=0.0639 ¥=0.0361 z=0.0421
Average lower bounds t=-0.0091 x=-0.0586 y=-0.0731 z=-0.0606
Maximum upper bound i=0.0168 x=0.1310 y=0.0947 z=0,1881
Minimum lower bound t=-0.0148 x==0.0998 y=-0.1635 z=-0,1213
2000 iterations
Average position t=0.0000 x=-0.0001 =-0.0005 z=0,0000
Averags position error 1=0.0023 x=0.0194 ¥=0.0198 z=0.0202
Average velocity x=0.1008 y=0.1009 z=0.1012
Average velocity error x=0.0163 y=0.0163 Zz=0.0196
‘Maximum position =0.0132 x=0.0975 y=0.1248 Z=0,1430
Mintmum position o =20019. | x=-0.1055 . y=-0,1214 z=—0.1680
Maximum velocity Xx=0.2078 y=0,1871 z=0.2306
Minimum velocity ==0.0001 y=0.0120 Z=-0.0304
Size of maximum disagreement t=0.0177 x=0.1396 y=0,1350 z=0.1977
Size of maximum velocity x=0,1365 y=0.1382 z=0,1975
disagreemsant
Average upper bounds {=0.0094 x=0,0573 y=0.0565 z=0,0581
Average lower bounds t=—0,0004 x=-0.,0571 ¥=-0.0574 z=--0,0578
© 7~ Maximom upper bourd ~ 7T T F<0.0248 T x=02191 . y=02631 2=0,3344 o
oo ————Minlmumlower bound- — ——— ——t=-=0.0285— y==0273] 7 y=—02713  z=-0.3066

Kalman filters are reasonably efficient and can be imple-
mented as a series of matrix manipulations. On sequential
machines they are of complexity O(W?), but they could be
implemented as specially designed parallel hardware so ag
to reduce the complexity dramatically.!” At the moment
Kalman filters are probably the most widely applied ap-
proach to this type of problem. The computational com-
plexity of the filters can unfortunately lead to excessive
processing times for large systems.

Bayesian inference uses sensor inputs along with an ¢
priori model of the environment and known conditional
probabilities to find a maximum likelihood value for the
fused sensor readings.® The use of prior information in
Bayesian inference can be problematic and lead to unstable
results under certain conditions.2 This is a drawback since

the prior information necessary for reliable results is not
always available.

Dempster-Shafer reasoning is an extension of the Baye-
stan approach which does not have these deawbacks, Un-
fortunately, the Dempster-Shafer approach has O(2")
complexity.? The exponential complexity of the Dempster-
Shafer approach makes it unsuitable for real-time applica-
tions. It is also unclear how to combine the possibility of
arbitrary errors due to component failure with either ap-
proach.

Therefore weighted averaging, Kalman filters, and
Bayesian techniques do not fulfili our robustness require-
ments. In addition to this, Kalman filters and Dempster-
Shafer techniques have complexities of O(N®) and O(2"),
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Table 8 Results with 10 times and 200 times the velocity of the previous problem.

1000 iterations with ¢=(0,0,0,1,1,1)

significantly more computation than the method presented
in this paper.

The method we have presented is capable of dealing
with dynamic problems in a deterministic manner with
complexity O(f'N log N). This method can be run on each
node in a distributed system and provides answers that en-
able coordination among independent modules even in the
presence of a limited number of arbitrary errors.

This method is suitable for real-time applications, toler-
ates up to MN/8 faulty modules since it deals with uncer-
tainty in four dimensions, provides accuracy limits for the
results obtained, and is general in scope and can be applied
to a large number of potential applications.
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