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Velocity Vectors for Features of
Sequential Oceanographic Images

E. C. Cho, S. S. lyengaFellow, IEEE Guna SeetharamaNiember, IEEE Ronald J. Holyer, and Matthew Lybanon

Abstract—This paper investigates a fundamental problem of
determining the position, orientation, and velocity field of the
Gulf Stream in time-varying imagery. We propose an approxi-
mation method to characterize the deformation of these image
motions for the purpose of estimating the velocity field of these
images. The technique is focused on the interpretation of the
change in the extracted features of the Gulf Stream. The un-
derlying technique employs a triangulation of the region by a
simplicial approximation of the velocity field on each triangle. A
generalized computational framework, an outline of the mathe-
matical foundation, and an implementation are presented in this
paper.

Index Terms—Features, oceanographic images, simplicial ap-
proximations, triangulation, velocity vectors.

I. INTRODUCTION

NFRARED (IR) images of the ocean obtained from satellitd

sensors are widely used for the study of ocean dynamig
(Garcia [4], Kelly [6], [7], and Vastano [13], [14]). One
oceanographic application of satellite IR imagery that is espe
cially fruitful is the study of mesoscale features. Streams, cofdy. 1. Advanced Very High Resolution Radiometer (AVHRR) image of the
eddies. and warm eddies are examples of mesoscale oc%?ﬁsneam region of the north Atlantic acquired on April 17 and 18, 1989.
f ’ ith di . h i K Is is a warmest-pixel composite of images acquired by an AVHRR aboard
eatures wit dlmenS|on§ _On t e order 0_ 59_300 m. Atﬂe NOAA-11 satellite. The rectangular area highlights the location of the
example of a north Atlantic image is shown in Fig. 1. The Gulfynamic feature that is being tracked (refer to Section IlI-F and Fig. 7).

Stream and its associated eddies are examples of mesoscale

features. The Gulf Stream is warmer than the Surgasso Sg@urate methods of tracking features in satellite images of
to its south and much warmer than the waters to its norﬁ!h.e ocean to observe and quantify surface |ayer dynamics_
The movement of these features compounds the problefRrsimages of the ocean showing sea surface temperatures are

associated with the detection of features. For a general probl@fgely used for studies of this type. (Kelly [6] and Vastano
on edge detection of these features, refer to Krishnamuthy13)).

al. [8], Holyer [5], and Stommel [11]. Estimating velocity vectors of features in oceanographic
images remained an open problem for a long time. The high
A. Motivation deformation of these features from image to image compounds

With the present increased interest in climatology and glope Problem. Previous oceanographic work includes inferring
change, many studies are under way at the Naval Resedl$, velocity f_|eld from image sequences of sea surface tem-
Laboratory, Stennis Space Center, MS, involving the ana|y§§rature, which follow features without regard to the actual

of large data sets of IR imagery. Oceanographers desifanPeratures (Vastano [13] and Emeal. [3]) and which
use the heat equation and the measured sea surface temperature
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rithm. The simplicial approximation decomposes an arbitrarign R"*. On R?, (1) is the familiar Euclidean distance derived
shaped two-dimensional (2-D) region into a set of nonoverlaffom the Pythagorean theorem. In this paper, a vect® a
ping triangles. It facilitates a method of interpolating functionsow vector and its transpos€ is a column vector.
over that region. The region must be a simply connected set olectors may be viewed as transformations of the whole
points, and the value of the smooth function must be known gace into itself moving all the points of the whole space in
many locations. We present some new results in the velocitythe same direction by the same magnitude. In other words, a
the image flow on oceanographic images, more specifically, wector may be viewed as a constant vector field on the whole
discuss a new approximation method to estimate the veloc#iyace. Vectors, however, are also viewed as representations
field of the Gulf Stream from a sequence of satellite images. &f position in the space. With a fixed point specified as the
this method, connected components of the region representimiggin, every point in the image can be represented as a
the Gulf Stream are identified and triangulated and the velocippsition vector in the image plane. Regions of interest in
field on the region is estimated by an affine approximation mteanographic images, for example, streams or eddies, are of
each triangle. irregular shape. However, the connected components of the
The simplicial approximation of geometric objects andegions can be closely approximated by more regular shapes,
the mappings between them is a well-established theoryriamely, triangles. To give a general and precise idea of such
pure mathematics (for example, Rotman [10]). However, its1 approximation, we need the following definitions.
implementation for practical applications is not straightforward Definition 1: A subsetA of R™ is called an affine subset
and requires more work to be useful for our purpose. Thie for every pair of distinct points of4, the line determined
idea of simplicial approximation is used in the finite elemerity the points is contained ir.
method, for example, in the computation of numerical solution The only affine subsets of the Euclidean pldtteare either
to partial differential equations. In particular, when dealinthe empty set, single point sets (trivially), lines, or the whole
with irregular shapes, this method is more efficient since tipaneR?. If we require that the line segment joining two points
finite element method allows putting computational elemenisstead of the whole line be included, the set is called convex.

where they are needed. (Babuska [1] and Press [9]). Obviously, the condition of being affine is stronger than the
condition of being convex. A disk or a closed region bounded
[I. MATHEMATICAL PRELIMINARIES by lines, for example, the triangle

An image f is a map defined on a rectangular array, where
f(z,y) is the value at the coordinater,y) in the image. )
’ . ) ’ vy rx+y<1l,z>0,y>0
The array represents a grid of points located on a bounded @y sotys e v }
region inRk2. We introduce some definitions and notatiomin

dimensional Euclidean space as well as affine geometry, whighconvex but not affine. Regions in oceanographic images
is necessary for our application in oceanography. We will Bge not convex in general, however, we can approximate an
concerned with the 2-D case. However, we give definitiofigegular region by convex subregions. The subdivision can
and notation in a general-dimensional affine geometry, whiglé done by the simplicial approximation described in the

is useful for other image analysis studies. following section.
_ _ Definition 2: A set of & + 1 points{po, p1,...,px} In R®
A. Euclidean Spaces and Affine Subsets are said to form an affine independent set if thevectors

Images may be viewed as a map of a domain in the 248 — po,P2 — Po, - - -, Px — po are linearly independent.
plane onto the set {0,1} (if the image is bilevel) or onto the For example, three vertex points of a proper triangle are
closed unit interval [0,1] (if the image is grayscale). Bileve#ffine independent, but any four points on a plane are affine
imagery assigns the values one or zero to each point in m@oendent. The definition of affine independence does not
domain in the plane. The plane is the 2-D Euclidean spaétepend upon specific ordering of these points.

We start with the more general Euclidearspace. The set Remark: The pointspg, pi1,...,px in R" are affine inde-
" pendent if and only if thé x n matrix
R ={(z1,...,2n) 1 3; € R}

with the usual Euclidean inner product

n P1—Po
P2 —Ppo
(@,y) =Y wiys :
1 :
is called the Euclidean-space. The usual Euclidean norm Pr — Po
n 3
x| = <x7x>% - <Z xf) has rankk. Note eachp; — pg is a row vector of dimension.
1 The rank of a matrix is the maximum number of rows (or
induces the metric columns) that are linearly independent, which is easily found
by applying elementary row operations to the matrix. It is
d(z,y) = lly — | obvious that more than + 1 points in B cannot be affine

= (1 — 21>+ + (yn — )22 (1) independent. Pointsy, . .., p, in R™ are affine independent if
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the determinant of the x n matrix Example 2:[0,1] is the unit closed interval, [(0,0), (1,0),
PL— Po (0,1)] is a right-angled isosceles triangle, and [(0,0,0), (1,0,0),
(0,1,0), (0,0,1)] is a rectangular tetrahedron. Note that one-

b2 . ko simplex is a line segment, two-simplex is a triangle, three-
' simplex is a tetrahedron, etc.
Pn = Po We anticipate that the domains of many image segments
is nonzero. Ifpg,...,p,. are affine independent, any pointare in motion, and the effective way to track them is to use
p € R™ can be uniquely represented as the barycentric coordinate®f the pixel points in the image.

The definition of barycentric coordinates and an example are

P = @opo +aipr e+ Anpn given below to illustrate this point. Let; = (0,...,1,...0),

for some real numbers; satisfyingag + a; + --- 4+ a, = 1. Where one appears in thith place.{cy,...,¢c,} is called the
For example, whem = 2, the ¢;’s are found by solving the standard basis aR". Let ¢y be the zero vector. The standard
following system of linear equations: n-simplex [eg, e1,...,e,] as a set is
ag+a;+ay=1 L
0 b 2 (a:l,...,a:n)GR":a:jZO,Za:jgl .
Toaog + X101 + To2a0 =X 1
Yoao + Y101 + Y2a2 =Y Definition 4: Let T = [po, ..., ps]. Then any poinp € T
wherep = (x,y) andp; = (z:,v:)- is uniquely represented as
Example 1: The pointspy = (1,1),p1 = (2,1) andps = n
(1,2) in R? are affine independent since the corresponding p= Zajpj (2
matrix 0
pr—po)_ (1 0 wherea; > 0 for all j and ", a; = 1. Equation (2) is an
P2 — Po 0 1 affine combination oy, .. ., p,. The row vectoray, ..., a,)

has a nonzero determinant equal to one. Thus, an arbitrshFalled the barycentric coordinate pf with respect to the

point on the plane can be uniquely represented by a comBfL Pos -+ s Pn- _ _ _

nation ofpg, p1, andps. In fact, three points irk? are affine Example 3: The barycentric cqordlnatenof a poifity, .. .,

independent if and only if they are not collinear, in which caséz) With respect tag, ey, ..., en, 18 (1 =31 @5, 21, -, ).

the three points are said to be in general position. _The barycentric coordinates of a point, with respect to a
given set of affine independent points, are found by solving

a linear equation as follows. Let, = (29, y0),p1 = (@1,41)

. o o _andpy = (z2,2) be affine independent points iR? and T’
A simply connected region in qceano_graphlc images [SlmpBé the two-simplexpo, p1, pa]. Let

connected means the region is like a disk (topologically), so it

has no holes inside] can be identified by its boundary curve. D = appo + a1p1 + azp2

A ring-shaped region is not simply connected. The boundar

curve can be approximated by a continuous piecewise linegr . .

curve (a concatenation of connected line segments). Therefgﬁel,jo’ p1; andps, representing a point € T Let

a simply connected region is approximated by a polygonal Vo = Po

re_:gior_1,_which is a union_ of triangles. Thi_s is an example of v=p—po=(z—20,y—Y0)

simplicial approximation in one and two dimensions. We state

some of the general definitions necessary for our application v1 = p1=po = (21~ T0, 41~ Yo)

of simplicial approximation. v2 = p2 — po = (T2 — %o, Y2 — Yo)
Let {po,...,pn} be an affine independent subsetsf. The A= (', w?).

convex hull of the set is the smallest convex set containing all ) ) ]

pi's. It is the intersection of all convex sets containing these 1 NeN sToIve the following system of linear equatiarfs =

points. More explicitly, the convex hull dfpo, .. ., p,.} is the “1(@1,a2)" or by substitution

B. Simplex and Simplicial Approximation

ereag, a1, az > 0, ap+ai+az = 1is the affine combination

set of all affine combination of;’s T — o 1 —To T2 —To \[a1
n n Yy=% ) \Y1—% Y2—t J\az /)
D a; i > j=15%. : . .
20:%1’1 a; € Roa; 2 O’EO:GJ 1 The above system of equations always has a unique solution

since the 2x 2 matrix A is nonsingular, which follows from

For example, the convex hull of two distinct points ighe assumption that, andv. are linearly independent. The
the line segment joining them and the convex hull of threﬁ/stem

noncollinear points is the triangle (including its interior) with .

vertices at those points. The more general definition follows. v = Alag, az
_ Definition 3: The n-simplex .generated by the set of aﬁmenas the solution

independent pointgy,...,p, is the convex hull of these

points and is denoted bipy, ... ,p,]. (ay,a0)t = A1 T,

)T
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Oncea; andas are found,aq is computed from the relation y

ap + a1 +ax = 1.
A polygonal regionP with n edges is decomposed as a = 2

union of n — 2 triangles, each of which is either disjoint

from others or intersects at a common edge or vertex. More 11

generally, any connected regidi of a surface can be ap- T

proximated by a simplicial complex, which is a collection of -2 -1

simplices (triangles, in dimension two) such that each simplex 1 2

is either disjoint from others or intersects other simplices 4

with one vertex or common whole edge. This is called a

simplicial approximation of the region. Any smooth surface

can be approximated by two-simplices (triangles). 22—
Suppose a disk-shaped region in an oceanographic image

sequence is moving and the corresponding regions in tp_e

foIIovymg images in the sequence are |de_nt|f|e(_i In_stead ﬁ‘]rlfla{ge domain. In this case;(+. y) — (—y.). The + component of the

tracking every point on the boundary (a circle in this cas@iocity, for all points located on the axis, is zero since, = y = 0.

of the region, it is efficient to approximate the disk by ahikewise_, th_ey component of the velocity is zero for all points located on

inscribed regular polygon and track the vertices in the imadi§ v s sincev, =« = 0.

sequence. The unit disk can be approximated by an inscribed

regularrn-gon, which is the union o isosceles triangles. Thewhere u(z,y) and v(z,y) are real-valued smooth functions

region can be approximated more closely by increasing tHefined onD.

2. Velocity field assigns a vector(x, y) to each point(z. y) in the

value of n. Example 4: Let
C. Smooth Vector Fields F(z,y) = (-y,z) ®3)
The notion of a vector field is useful to describe timefor all (z,y) € R?, that is,u(z,y) = —y andv(z,y) = .

varying features in oceanographic images. A vector fieltlis a smooth vector field associated with the rotationksf
associates a vector to each point in the domain of the imround the origin. (Fig. 2.)

age. The vector associated with a point corresponds to thesuppose each poiptin a domainX is moving so that the
movement of the point in the image sequence. A mapping thgdce of the point is a smooth curve . Then the tangent
translates the whole space by a fixed veetts represented by yector to the trace at each point is called the velocity vector
a constant vector field'(z,y) = v. For example, the vector 4 the point. This leads to the following.

(1,0) can be viewed as the constant vector field representingyafinition 6: The velocity fieldF(p) on X is a vector field

the mapping of the whole plane space onto itself and matchigg v that assigns each poiptin X with the velocity vector
each point(x,y) to (z + 1,%). Most movements (including at the pointp

rigid motions), however, do not move points in this manner. The velocity field can be visualized by considering each

For example, the counterclockwise rotation &F, by 9C° article at the positiont moving with the velocity vector
about the origin moves the point (1,0) to a point on the’ position 9 y
given by the velocity field.

unit circle, but the origin (0,0) into itself. The vector field Y ; ) . .
representing this rotation will assign the vector (0,1) to the Def_lnltlon 7: The solutions of the system of differential
point (1,0) and the vector (0,0) to the point (0,0), as we wiffduations
see in the following examples. dz

In oceanographic images, the regions of interests are those a w(@, y), ar v(@,y)

representing streams or eddies, hence, a doma#¥ irHow- are called the integral curves of the velocity figffz, y) =

ever, we give the definition of a vector field defined on a mor : : .
. : w(zx,y),v(z,y)). The integral curve describes the trajectory
general domain called a smooth manifold. of a particle

Dgflnltlon 5: A vector f'eld. (morg precisely, a tange_nt vee- Example 5: Consider the previous example with field 3. It
tor field) on a smooth manifold{ is a smooth mapping of . .
is easy to check that = ccost andy = csint, for any

X, assigning each p_o"ﬁ of X with a vect_or in the_ tar?ge”‘ constante, is a solution of the differential equation

spacel, X at the pointp. The range of this mapping is the

union of all tangent spaceg, X called the tangent bundle of de dy .

X and is denoted by'X. at - A
Remark If X is a domain ofR?, the tangent bundl&X is The parametrized curve

just X x R2, a product bundle. We use the term “smooth” to

mean continuously differentiable as many times as necessary. C(t) = (ccost, csint)

Vector fields in this paper are assumed to be smooth.
We may represent a smooth vector field on a dom

D c R? by

Jepresents the circle? + y?> = 2. This means that the
d?fferential equation describes a dynamical system on the plane
in which each patrticle rotates counterclockwise around the

F(x,y) = (u(z,v), v(z,v)) origin.
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In the following sections, we establish a computational The value of an affine mapping(z) at « € 7 is the
framework that adapts the affine mappings and approximatimeighted average of (p;)’s, the values off at the vertices

technique for vector fields. of T. If z € T is the midpoint ofp; andp;, the valuef(x)

will be the midpoint of f(p;) and f(p;). More generally, the
D. Affine Mappings and Affine Approximation barycenter of a simple$ is mapped to the barycenter of the
Technique for Characterizing Motion image f(S). The next example describes an ideal (but highly

gprealistic) situation in which the region of interest in the
%ceanographic image sequence varies only in position as a

R onto R2. The estimation by affine mapping is efficient anéranslatlon (a simple rigid motion). In this case, we need only

simple to implement computationally since any affine mappir{ entify one point gf the region _and the correspondlng point
£ from a two-simplex’ = [po, p1, p2] onto B2 is determined In the subsequent images to estlmate the velocnvaef:tor field.
by the valuesf(po), f(p1) and f(ps) only and regions in Example 7: The constant mappmd _of T ontc_>R given
oceanographic images are approximated by a finite numl?é{rf(.x) - (a,b) for all v € r IS an affine mappmgf Is the
of two-simplices. velocity field on_T associated with the translation @fby the
Let {po,...,pm} be affine independent and be the affine vector (a, b), which mapse € " ontox + f(x) =  + (a,b).
set these points span, that is, Now we consider a more general S|tu_at|on in w_hlch the
regions vary both their shapes and locations with time. Ob-
n n viously, this is not a rigid motion. We do not need to
A= {Z a;ip;j - Zaj = 1}- assume that the movement of the region is smooth to apply
0 0 simplicial approximation. We need only piecewise continuity,
Here a; may be negative. If;; > 0 for all j, then A is an which means the movement as a mapping is continuous
n-simplex. on each component covering the domain. This allows some
Definition 8: An affine mappingf of A onto R" is a discontinuities, for example, at certain points or on certain
mapping preserving the affine combination, thatfisatisfies Portions of arcs in the domain.
B B It is reasonable to assume smoothness or at least piece-
. wise smoothness in the study of oceanographic images at
f(%: ajpj) o 20: a;f(pi) mesoscales. Suppose, for simplicity, a triangular redioa
[po,p1,p2] In an oceanographic image has smooth motion.
whenevery_; a; = 1. The restriction off to then-simplex Then there corresponds a smooth velocity figldiefined on
[po,...,pn] is also called an affine mapping. T'. If the (vector) values of the velocity fieltl at the vertices of
For example, the mapping assigning+ vo to v € R? for 1" are known, sayF(po) = uo, F(p1) = w; and F(py) = us,
some fixed vectow, in R? is an affine mapping of2? onto we can interpolate the valug(p) at any pointp in 7" by the
R?. This mapping is called the translation by. affine mapping ofI’, which coincides with/" at the vertices
Remark: Any linear mapping or a translation mapping obf 7T°, that is
R™ onto itself is an affine mapping. Any affine mapping of
R! onto R! is of the formy = az + b, wherea, b are real F(p) = aoF(po) + ar F(p1) + agF'(p2)
constants. Any rotation a®? or a translation oR? is an affine = aglg + a1y + asus 4)
mapping, and the composition of affine mappings is affine. The ) )
image of an affine set (or a simplex) under an affine mappiN§!€rép = aopo + a1p1 + azps. Equation (4) is a natural
is affine (or a simplex). generah_zatlon of the linear mterpolat_lon of_ a functpn with
The following example represents the rotation of the plarfe varlable.. Th_e error bound of a linear interpolation to a
by /2 radian counterclockwise about the origin as an affirnooth function is easily found from the second-order term of

mapping by specifying the movement of the three vertices i€ Taylor series of the function. Similarly, we can estimate
a specific two-simplex (triangle). an error bound of the affine approximation of the vector field

Example 6: Let po = (0,0),p; = (1,0) andp, = (0,1). Fif F_ is §m00th. To estimate the_ error _b(_)ynds for affine
If fis an affine mapping of’ = [po, p1,ps] ONto B2 with ~@PProximations, we qeed the followmg definitions.
f(po) = (0,0), f(p1) = p2 = (0,1) and f(p;) = —p = Definition 9: The'dlame_ter of am-simplexT = [po, ...,
(=1,0), since(as,a2) = aopo + a1p1 + azpa pa], denoted by diantl’, is the max{[jp; — p;|| : 4,7 =
0,...,n}. This coincides with the usual definition of the
diameter of any subsét of Euclidean space, theip{||p—q¢|| :

2
f(a17a2)=f<zaipi> p,q € S}.
0

Definition 10: The norm of am x n matrix A, denoted by

2
Al|, is given b
:Zaif(pi) | 4], is giv y
0 sup{||Az[|/||=|| : € R",x # 0}.

To estimate velocity fields from a sequence of ocean
graphic images, we will use affine mappings of a domain

= aO(Ov 0) + al(ov 1) + a?(_lv 0)
—(_ Now we state, without proof, a proposition giving an error
(—az, a1) . OV .
bound of the affine approximation of the smooth vector field

whereag, a1, a2 > 0 and 23 a; = 1. F on a triangle (Dieudortn [2]).
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simplicial complex triangulating> are known (or measured).

Then we can approximate the value Bfat any pointp € D

by applying the above affine interpolation on each simplex. We

can also estimate an error bound of the interpolation by the

proposition, assuming we have an estimation of the derivatives

of F', which is not available in practice. We may, however, use
. the derivatives of the functions approximatitg

[

2 X

E. Algorithm for the Affine Approximation
of a Smooth Vector Field

2 The algorithm of approximating a smooth vector figlabn
a triangulated regiorD, whose (vector) values are known at
the vertices of simplices in the triangulation bfis given as

Fig. 3. Unit disk is an elementary area centered at (0,0) for infinity noranOHOWS-

distance. 1) Generate as many points as necessary to approximate
the values of f. These points are easily generated
Proposition: Let ' = (Fy,F}) be a smooth vector field by repeatedly applying barycentric subdivision (defined
defined onT" = [po,p1,p2] andp = aopo + a1p1 + azp2 be below) of D . —_ . .
a point in 7. Then 2) For any pointp in D, we first identify the simplex’ to

) ) which p belongs. o
3) Approximate the value of'(p), based on the values of
F<20: a¢p¢> - zozaiF(pi) F at the vertices of the simpleX.

_ If p happens to be a vertex, there is no need to interpolate,
where M = max{||DF(p)| : p € T}, the maximum of the anq if;, belongs to an edge, the interpolation becomes simpler
norms of the Jacobia F" of 7 (the 2 x 2 matrix with theijth  py ysing only the values at the two vertices at the end of the
entry (DF);; = 0F;/0z; onT and||T]| is the diameter of".  eqges. These cases are covered by the general interpolation

Remark: This proposition holds for higher dimension  formuyla and there is no ambiguity even if the poinbelongs
and the vector field needs only be”* (continuously differ- 4 more than one simplex. Any continuous mapping between
entiable, that is, all the first-order partial derivativesfaéxist simplicial complexes can be approximated by simplicial map-

< M||T]|

and are cont?nut_)us). o pings, and the approximation can be made arbitrarily close by
Remark: It is simpler to use an alternate definition of noMyhdividing the simplex into smaller simplices.

on R" given by |[z|| = max{|zy|,...,|zn|}, which induces 14 define barycentric subdivision, we need the following

the distance onik™ definitions.

Definition 11: The barycenter, also called the centroid,

d(z,y) =z —y : . . . . ;
(@) =l | of an n-simplex is the point with barycentric coordinate

= max{fyr =@l lyn = wal} (1/n+1,...,1/n+1).
where z = (z1,...,2,) andy = (y1,...,yn), and the  The barycentric subdivision is defined inductively as fol-
alternate definition of matrix norm lows.

Definition 12: The barycentric subdivision of a zero-
simplex (a point) is the simplex itself. L&t be ann-simplex
n > 1. If fo,...,fn are (n — 1)-dimensional faces of
andb is the barycenter of, the barycentric subdivision &f
This is in fact the infinity-norm of the vectot. Itis equivalent consists of alh-simplexes spanned yand(n—1)-simplexes
to the usual norms defined above, but simpler to compute.irtthe barycentric subdivisions of;’s.
may not be suitable for certain applications since the geometryBarycentric subdivision divides a one-simplex (a line seg-
under this distance is different from the usual Euclideament) into two line segments of half size (by adding the
geometry, as the following example shows. The{set R?: midpoint), a two-simplex (a triangle) into six two-simplexes
d(z, (0,0)) < 1}, the “unit disk” centered at (0,0), with respecby subdividing each edge (one-simplex) into two half line
to this distance omi??, is the square§1,1] x [—-1,1] in R2. segments and joining the original vertices and the barycenters
(Fig. 3.) (midpoints) of the edges with the barycenter (centroid) of the
Let I be a velocity vector field representing the movemefmtangle.
of a region D in the image sequence. We may assufe Example 8: The barycentric subdivision of a one-simplex
is smooth on the regio? and D is connected, otherwise, (an interval) [0,1] consists of the vertices {0}3f, and {1}
we will apply our procedure separately to each connectadd two open intervals (Oé—) and ¢, 1).
componentD on which F' is smooth. Suppos® is given The barycentric subdivision of a two-simplex (triangle)
a triangulation, that isD is approximated by a 2-D simplicial consists of six smaller triangles, twelve one-faces (edges),
complex. Suppose the (vector) valuegoét each vertex of the and seven zero-faces (vertices). For a triangle whose vertices

n
|| A[| = max Z|aij| i=1,2,...,n
j=t
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o.1 Y
- 8
G=(M3, 1/3) mo
-4
0.0) i
(10) L5
Fig. 4. Barycentricsubdivision of a 2-D simplex. The given triangle is made L
of three 2-D points, and the triangle is decomposed into six smaller triangles X
all sharing a common verte& at its centroid. T '2 T '4 T

5_1re located ata, b, and ¢ on a 2-D plane, the seven _Ver'Fig. 5. Piecewise linear approximation of a parabola. The parapetar?
tices are{a, b,c,a+b/2,b+ ¢/2,c+a/2,a+ b+ ¢/3}. ThiS  for —3 < = < 2 is approximated by three line segments.
is illustrated in Fig. 4.

Barycentric subdivision can be applied repeatedly to make . .
the myesh (the supremum of the gi%meters[,) of faé/es of tWi"le the true value off(1/2,1/3) is (5/36, 1/6). The error
simplex) size arbitrarily small. Is"(~1/36, ~1/18).

Example 9:Let f be a mapping from the unit closed
interval [0, 8] to itself given byf(z) = £. The barycentric . A PPLICATION
subdivision of [0, 8] consists of the vertices {0}, {4}, and {8}
and two open intervals (0, 4) and (4, 8). The second barycentﬂc
subdivision of [0, 8] consists of the vertices {0}, {2}, {4}, {6}, "~
and {8} and four open intervals (0, 2), (2, 4), (4, 6), and (6, 8). The boundaries of regions in mesoscale oceanographic
The estimate off (1) using the second barycentric subdivisiofmages can be approximated by piecewise smooth curves

Piecewise Linear Approximation of a Curve

is (cubic splines, for example) or piecewise linear curves. In
1 1 the following, we give detailed computational procedures for
g(f(o) +f(2) = 1 constructing a piecewise linear approximation to the boundary

curve of a region. The simplicial approximation of vector fields

while the true value is 1/8. The estimate A7) is describing the changes of the region will be based on the

1 6 ) = 1736 s} = 20 simplicial approximation of the region, which is based on the
(f(6) + f(8)) = +8) = prudl T
2 2\ 8 8 piecewise linear approximation of the boundary curve of the
while the true value is 49/8. region.
Example 10: Let Let (p1,...,pn) be a sequence of data points representing
D={(z,y) | £>0,y>0,z+y <2} a smooth curve in an image. The idea of piecewise linear ap-

. i . ] proximation is to approximate the portion of the curve between
be the region on which a smooth vector figlds defined by p; andp; by the line segmerip;, p;] if the points in between,
fz,y) = (@2 =2, 2y). namely, p;, pi+1,-..,p; are approximately collinear. Higher

For example, f(2,0) = (4,0), f(0,2) = (—4,0), and order polynomials may be used, a parabola, for example, if

£(0,0) = (0,0). SupposeD is triangulated by the first the physics of underlying motion requires such higher order

barycentric subdivision. The triangulation has vertices (0, dja,rms. Fig. 5 illustrates an instance in which a parabolic curve

(1,0), (2, 0), (1, 1), (0, 2), (0, 1) and (2/3, 2/3). The estimafd More useful than piecewise line segments.
value of f at (1/2, 1/3) is found as follows. First we note the W& consider pointg;, p; and py for « < j < k to be
point (1/2, 1/3) is in the subsimplex [(0, 0), (2/3, 2/3), (1,0)?pprOX|mately collinear if the distance betwggrand the line

and the point (1/2, 1/3) has barycentric coordinates (1/2, 1R#SSING througty; andp,. is less than a given value> 0.
1/3), that is Let d(p, [¢,r]) denote the distance between the pgirand

11\ 122 N 1(1 0 1(0 ) the line segmenfgy, r]. It is computed by
2’3)  2\3’3 67 30

N (p—qr—q,
Hence the affine estimate ¢f(1/2,1/3) is dp;[g.7]) = H(p —9) - r—q,r—q) (r=q)
1.72 2 1
§f<§v g) +5/(1,0)+ £ £(0,0) where(a, b) is the Euclidean inner product of the vectars=
1 4 1 (a1,az) andb = (b1, b2), which is given bya;b; + azbs. ||a]
=3 <0, 5) + 6(1’ 0) is the Euclidean norm of the vectemiven by||a|| = \/{a, a).

This formula follows from the fact that the distance between
— <17 2) p and the line passing throughr is the length of the vector
69 p — ¢ projected onto the direction normal to the lifg].
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Example 11: The distance between the point (1, 2) and theollinear, with respect ta > 0. In other words, the points
line passing through (0, 0) and (3, 4) is Pi,> Pin41s-- -5 Pi,,, are almost collinear but including the
((1,2), (3,4)) pointp;,., +1 (the point aftep;, ) destroys the approximation

1,2) — ———"+2(3,4 of collinearity. The algorithm is implemented as follows:
R sl asouneatt
11 i
= H(1’2) - _(3,4)H if d(p2, g1, ps]) > e, then
5 setgs = po,
_|{=8 6 elseif d(pz, [g1,p4]) > € or d(ps, [q1,p4]) > ¢, then
S I\25725 setgy = ps,

elseif d(ps, [q1,ps]) > e or  d(ps,[q1,ps]) > €
or d(p47 [qlvp{)]) > ¢ then

. setqz = pa,
Let (p;,...,p;, ) be the subsequence of the data pomt@lseif et

(p1,...,py) such that the pointg;,, pi,+1,...,pi,;,, forma o4

maximal chain of points that are almost collinear, with respect,  of algorithm

to a givene for eachj. The points in the subsequence will Example 12:Let p; = (cost;,sint;),t; = 2mi/n,i =
. 2 (3] /v T ? -

bchaIIed brelak .pf)omts. 0,1,...,n be data points from the standard unit circle. If
or exampie, | n =30 ande = % the piecewise linear approximation
d(pa, [p1,p3]) > € is the hexagon with vertices at), z5, 210, ..., Z25.

C.

thenp, is included in the subsequence to form a line segment
[p1,p2] andp, is a break point. If C. Finding Extreme Points

d(p2; [p1,ps]) < € For a region in motion of an oceanographic image sequence,
we assume that the points on the boundary correspond to the
but points on the boundaries of the corresponding regions in the
image sequence. Sethi and Jain [12] showed the importance
d(p2; [p1, pa]) 2 € of detecting the action in images by using the idea of a
or correspondence problem. To estimate the velocity vector field
of the motion, we assume that certain points on the boundaries
d(p3, [p1,pa]) > € can be located through the image sequence. We will locate the
Sprominent points, that is, the points where the boundary curve
changes direction rapidly. In differential geometric terms, these
are the points where the curvature has a maximum absolute
value. Then, the natural choice for feature points required
fo track a polygonal-shaped region would be its vertices, as
shown in Fig. 6.
F6) = g+ t—1t; (gi1 — ) For simplicity, we \_/vrite_q,, = p;., SO _that{ql, ..., QR ) are
ot =t ¢ nodes of the piecewise linear approximation of the cufve
From the construction, it is obvious that the slopes of the line
segments change at thgs. We are interested in locating the
points where the slope of the curve (or the approximating
polygonal curve) changes rapidly (equivalently, the points
where the angle between the intersecting line segments is
20 @15 - ] large). The angle between line segments is unambiguously
o ) defined since the line segments are directed. For example,
B. Finding Break Points if the curve follows a regular hexagon counterclockwise, the
Region boundaries in oceanographic images may be viewatgle at each break point (i.e., vertex)7if8 radians.
as smooth or very irregular, depending on the scale. InWe will call a break poinp an extreme point if the angle at
approximating such boundaries by a piecewise linear curyeexceeds a given valud. Note our use of the term “extreme
we need to decide in advance how fine the approximating lipeint” is not the same as the usual standard use of the term,
segments will be. The following algorithm finds the pointeamely, the point where the curve has local maximum or
in the data where the approximating lines will be broken (buinimum.
connected) to fit the data points within the preset error beund The angled at ¢ between the line segmens ¢] and[g, r|
Let (p1,...,p,) be a sequence of data points representingsa computed by
curveC. Let ¢ > 0 be given. We are interested in finding the
subsequencép;,, ..., p;, ) such thatp;,, = p1, p;, = p, (the
end points), and for every, the points betweep;, andp;, ., 0 — arccos (g—pr—q 0<f< ™.
constitute the maximal chain of data points that are almost llg = pllllr = all’ 2

then py, p2, p3 is @ maximal chain of almost collinear point
and ps is a break point.

Let {go,q1,...,q} be the set of all break points on
the curveC. A parametrized form of the piecewise linea
approximationf(t) of C is given by

for t € (t,tiy1),i¢ = 0,1,...k — 1, wherea = ty <
t1 < -+ <t = bis a partition of the domairia, b] with
f(t;) = ¢ fori =0,1,..., k. We will denote the piecewise
linear approximation o” with break pointsyg, ¢1, ..., g by
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points of the corresponding curve&’. Note that the sequence

R4 {e1,...,en ) of extreme points (respectivelyes, ..., ¢! })is
a subsequence dfqo, 1, -.,qx}, the sequence of all break
2 points of C' (respectively{qy, q1, . . ., q;}, the sequence of all
break points ofC’).
Ly We are assuming the number of extreme points on two

curves are the same. This can be done by adjusting the preset
value A (respectively, A’), which determines the extreme
7 5 3 points onC (respectively(’). Since we assume the flow of the
image is such that the extreme pointon C corresponds te;
on C’, we approximate the velocity vector af, representing
the movement of the curve a by taking the differences
= e, — e;. We can extend this approximation of the velocity
vector to generate a velocity vector field on the polygonal

Fig. 6. Extrem_e pqints on a polygonal curve. At three vertices (0,2), (0,(&ppr0ximati0n [q07 qis- .- 7qk] of C by affine extension, as
and (2,1), the direction of the curve changes more than at (1,2) or (1,0). T#&ﬁlOWS

curvature at the three points is of larger value.

Let p = f(t) be a point on the polygonal curve
 [90,41,---,qx] such thatp is between the extreme points
Example 13:Let C be a closed polygonal curve connecting, — f(s,) and ¢;4; = f(si11). Let the corresponding

(0,0), (1, 0), (2, 1), (1, 2), and (0, 2). The angle measures@lireme points be, = f'(s,) and ¢f,; = f'(si,;). Then
(0, 0), (2,1), and (0, 2) are/2 and at (1, 0) and (1, 2) ard4. e assign the vectof’(#') — f(¢) to the pointp, where
For example, at (2, 1), the angle is computed by

/ /
_ t/ISIi-i-Mt—SZ‘.
arccosw = arccos0 = 7 /2. Sit1 — 31( )
V2v2 This is an obvious extension to the velocity vector field on
If we take A = 7/4, then (0, 0), (2, 1), and (0, 2) are extremé¢he polygonal approximation of the curé@ We will denote
points. the vector field onC by V. If the curve C is closed so

Example 14:Let C be a polygonal curve connecting (0 ,0)that it bounds a region, we can exteldto a velocity field,
(3, 0), (3, 2), (1, 1), and (0O, 0). If the preset valdeis n/2, also denoted by, on the simplicial approximation of the
then (1, 1) is not an extreme point and all the other verticesgion by extending” on each simpleXp;, p;+1, pi+2] in the

are. The angle at (1, 1) measures approximation as
arccost =2 = (=L =1) 3 <7 V(f(p) = tV(f(p:)) + sV(f(pig1) + 7V (f(pis2))
V10 vio - 2 where ¢, s,r are real number®) < s,¢,v < 1 such that
and the angles at (0, 0) measure/8 s+t+r=1and
Example 15:Let C be the standard regular hexagon with P
vertices ate3™ i = 0,1,...,5. If we set the valued < /3, P =i T SPit1 T2

then each vertex is an extreme point because the angle at

vertex is /3 el?.ct&lgorithm for the Construction of the Boundary

Curve and the Velocity Vector Field

D. Estimating Velocity Vectors from the 1) Input: A sequence of digital binary imagég(x, i) for

Approximation of Region Boundaries 0 < z,y < n. Eachimage is afn+1) x (n +1) matrix
with entries zero or one.

Apply the edge detection algorithm to each image
I.(i,7) to identify the boundary of a region we are
interested in. The boundary does not have to be closed,
that is, the region need not be bounded.

a) We assume the boundary is a Jordan curve. That is,
as a discrete imag8(i, j), it satisfies the following
condition. (This condition is that the boundary is a
Jordan curve, with respect to eight-neighbors topol-
ogy.) We will use eight-neighbors topology, though
this can also be done with four-neighbors topology.
If B(i,j) = 1, then B(z,y) = 1 at exactly two
eight-neighborgz, y) of (i, 7).

Suppose a region in the image sequence is identified, it
boundary curves are approximated by piecewise linear curves,
and extreme points on each piecewise linear approximation
of the boundary curves are found. We are assuming that the
features in the oceanographic images are such that the extreme
points of one image move to the extreme points of the next
image in the sequence. Under this assumption, we can track
extreme points and the boundary curve and eventually every
point inside the region by interpolation based on the simplicial
approximation of the region.

Let C be a boundary curve in an image afid be the cor-
responding boundary curve in the next image of the sequence. )

Let [go0, ¢1, .- -, qx] be a piecewise linear approximation ©f . . D
and[g), ., . . ., q,] be a piecewise linear approximation®f. ©) T.hcra]telghtr-]rgelghhbc()jrs ofi,j) are elements of the
Suppose{es,...,en} is the set of all of the extreme points eight-neighborhoo

of the curveC and {e¢,...,e.,} is the set of all extreme {(i+1,4),0E, D), G£1,j-1),(i+1,j+1)}

Ty m



994 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 3, MAY 1998

which equals while the image will have to be
{(a,0) | 0 <d((a,b), (i,5)) < 1} .
whered is the metric given by ( * )
*

d((av b)v (ij)) = max(|a - L|7 |b - J|)
d) The four-neighbors ofi, j) are elements of the four- with respect to eight-neighbors topology. Similarly, we allow
neighborhood{(: £+ 1, 5), (¢, = 1)}, which equals

% %
{(a,0) | 0 < d((a,b), (i,5)) < 1} ( * )
whered is the metric given by o
d((a,b), (,4)) = |a — il + b —j]. or
3) On each image in the sequence, construct a sequence of (* )
points x ok ok
%

A={(i(c),j(e)) | 0<c<C}

where B(i(c), j(c)) = 1 and B(4, j) = 0 elsewhereA ©F

represents a sequence of the posititing) at which B .

has value one, that is, where the boundary curve traces. ( )
%

a) We find the sequencd inductively. Suppose the
points(i(0), j(0)), ..., (i(k), j(k)) have been found.
The‘n(i(kb+ 1),7(k+1)) Isbthe pombt in the eight-nbd 54 50 on, if using four-neighbors topology. Here * represents
of (i(k), (k) such thaB(i(k+1), j(k+1)) = 1and 5 gne and the blank spaces are zeroes in the matrix.

((k+1),j(k+1)) # (i(c), j(c) forany0 <c < k. Example 16:Let the boundary of the region in the first
This is well defined because of the conditions in Steanage be

2). We need to specify first two pointg(0), j(0))

and (i¢(1),4(1)) to start the inductive steps. The »
sequenced is a Jordan curve, with respect to the "
eight-neighbors topology. "

4) Let Ay = {(i(c), j(e)) | 0 < ¢ £ C}, the set of points *
describing the boundary of the region in thtéh image *
in the sequence. *

5) To simplify the notation, let the piecewise linear approx- *
imation of each4; also be denoted byi;. The velocity *
vector field is defined on eachy.

6) To find the velocity vector at the points not on thend the next one in the image sequence would be
boundaries, we can apply the affine interpolation. In
practice, however, it is not necessary if the distance * %
between the boundaries in the image sequence are small. *

Then we will have a fine grid of points on the boundaries *
over the whole region. *

The construction step 3) requires that the boundary we found KoK
must be a Jordan curve [that is, satisfying all the conditions *
in step 2)]. If there is any point where the curve is slightly
thick or has jump-disconnection [violating the conditions in
step 2)], the step cannot proceed. We can still generate a
sequence of data points representing the boundary wherpifice we index the points as entries in a matfix;) corre-
is not a Jordan curve, however, the process will require mo¥gonding to the pointz, ) in the usualzy-plane coordinate
complex algorithms. We may relax the condition of Jordaystem (with its origin at the top left) by = j andy = —i, we
curve by mixing four-neighborhood and eight-neighborhoo@?‘ve the velocity vector at every point on the boundary in the

but the algorithm will be a little more complicated. first image (namely, the diagonal). For example, the velocity
For example, we then allow vector at (2, 2) (the third point from the left top corner) is
(1,2)—(2,2) = (-1,0), which should be interpreted as a unit
*OK vector in the direction of north and at (7, 7) (the last point at the
* right bottom corner) i$5,7) — (7,7) = (—=2,0), which should
* be interpreted as a vector with length two pointing north.
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(b)

Fig. 7. (a) The input images were selected over thex8108 rectangular window shown on the original image of Fig. 1. (b) The images were segmented
using an interactive threshold operator followed by a median filter to smooth out the noise. (c) The edge and boundary map of the detected seggdents obtai
through a morphological operator. The box on the left image indicates a curve segment used later in Fig. 8.

F. Simulation Results our algorithm will work on extracting and tracking the
The method developed in this paper was applied to extreme points drawn from segmented oceanographic images.

sequence of six AVHRR images of the Gulf Stream of thé/e used a subjective approach to try various values of
north Atlantic. These images were acquired by an AVHRR IR @nd to arrive at a number of good break points. For
sensor onboard the NOAA-11 satellite. The image shown fWlly robust and automated identification of break points,
Fig. 1 highlights a region of 81 108 pixels that has beenadvanced segmentation techniques, such as Canny [15], are
considered for our experimental verification procedure. Trvailable.
area is large enough to cover the dynamic features over thd he following break points were obtained after applying the
six image frames. In order to reduce the computation time, tAlgorithm to a cropped image of the Gulf Stream. The value for
images were cropped to a minimal size. Three such croppeWas taken to be 0.86. This was chosen after experimenting
images are shown in Fig. 7(a). Henceforth, we refer to thewéth various values ot. The break points obtained from the
small images as the image data. first image and the second image are plotted in Fig. 8, which
The images were first segmented using a simple thregh€ also highlighted in Fig. 7(c).
olding operation, and the results are shown in Fig. 7(b). A Let A(g) stand for the angle measure at the break pgint
morphological filter was applied to each segmented image hgtween the line segmens q] and g, 7] Choosing the break
extract the boundaries and streaks. The extracted bounda@jnts with angleA(q) > 20 for image 1 and those with
images are shown in 7(c). Each set of points constituting at{g) > 11 for image 2, we get the extreme points for images
area of interest is considered for simplicial decompositiod.and 2. The extreme points are plotted in Fig. 8.
These simplexes are then analyzed to compute the velocityrhe velocity vector a; in image 1 is evaluated by the
field on the connected region as a whole. differenceq} — ¢;, whereg; is the corresponding extreme point
The above segmentation procedure is somewhat simpde. image 2. The velocity vectors at the extreme points in
However, the performance is sufficient to illustrate howmage 1 are plotted in Fig. 9.
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Fig. 8. Two piecewise linear curves extracted from the first two images [Fig. 7(a)]. These curves are drawn identifying the break points in thd segmente
boundary maps and joining the consecutive break points by a straight line. A small portion of the actual boundary is shown on an enlarged scale.
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Fig. 9. Initial velocity field computed from the two piecewise linear curves. The vector values illustrated here emanate from the break pointstof the fir
image and end at the corresponding break point of the second image. This field must then be interpolated using the affine function model of smooth
velocity fields, as developed in our paper.

[\VV. DISCUSSION method. The simplicial approximation of domains (boundary
We have presented a comprehensive method of approsinves and the connected components of the regions) are
mating the boundaries and connected components of regitimsn used to find simplicial approximations of mappings
in oceanographic images using the simplicial approximatidetween the corresponding objects (curves and connected
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components) in the image sequence. The mappings betweemeloped, and the experimental results will be published in
the corresponding objects are then interpreted to estimatduture paper [17].

the velocity field of the features in the image sequence. We

assume the velocity field of features in the oceanographic ACKNOWLEDGMENT

images can be approximated by tracking the boundary curves. . oo\ ke to thank the reviewers of this

9f ponnected pomponents_and_ t_hen mterpolatl_ng the Ve.locngper, whose feedback has helped improve the readability.
inside the region by the simplicial approximation technique,

When tracking the boundary curves, we identify local extre mpl_ementauon of the algorithms in this paper and tespng of
: e implemented program on sample satellite infrared images
points from each boundary curve and assume the local extreme . : -
S : .- were done by K. Simhadri and V. Veeranna at the Robotics
points in one image match to the local extreme points in t

next image in the sequence. The weakness of this assump ioensearch Laboratory, Louisiana State University.

is that the extreme points sometimes merge or disappear and
new extreme points emerge during the whole period of the
image sequence. In these cases, we need to determine fhe!l. Babuska and H. Oh, “Thp-version of the finite element method for

; domains with corners and for infinite domainsjum. Meth. PDESvol.
correspondence between the local extreme points by other 6. pp. 371-392. June 1990,

criteria (varying the threshold, preserving the lengths of thgy) J. Dieudone; Foundations of Modern Analysis New York: Academic,

boundary curves). 1969, p. 160. _
[3] W. Emery, A. Thomas, M. Collins, W. Crawford, and D. Mackas,

“An objective method for computing advective surface velocities from
sequential infrared satellite images,’ Geophys. Resvol. 91, no. 12,
V. CONCLUSION pp. 12865-12878, 1986.
. . . . [4] C. Garcia and |. Robinson, “Sea surface velocities in shallow seas ex-
A well-established mathematical tool of simplicial approx-" ~ tracted from sequential coastal zone scanner satellite dat&eophys.

imation of regions on a plane (or on a surface) and simplicial = Res, vol. 94, no. C9, p. 12681, Sept. 1989.

. . . . . ] R. J. Holyer and S. H. Peckinpaugh, “Edge detection applied to satellite
approximation of continuous mappings between regions we imagery of the oceansJEEE Trans. Geosci. Remote Sensiugl. 27,

applied to locate and approximate connected regions repre- pp. 45-56, Jan. 1989.

senting the Gulf Stream and its associated eddies. Once tifd K. Kelly, “An inverse model for near-surface velocity from infrared
images,”J. Phys. Oceanwvol. 19, pp. 1845-1864, Dec. 1989.

rggions O_f interesf[ were appr(_)xim_ated_by simplices_ (Ca_”e‘{j7] ___ , “Comparison of velocity estimates from advanced very high
triangulation), vertices of the simplices in the approximation resolution radiometer in the coastal transition zonk,Geophys. Res.

; ¥ ; ; vol. 97, no. c6, pp. 9653-9668, 1992.
were identified and used to evaluate the velocity vector fiel | S. Krishnamurthy, S. S. Iyengar. R. Holyer, and M. Lybanon,

of the features in the image sequence. We need to identify thé «histogram-based morphological edge detectidEEE Trans. Geosci.
corresponding points in each image in the image sequence to Remote Sensingol. 32, pp. 759-767, July 1994.

- : . e ] W. Presset al, Numerical Recipes in C Cambridge, U.K.: Cambridge
be able to estimate the velocity vector field. This is done by™ |~ Press, 1990, p. 643.

locating extreme points on the boundary curves of the regipm] J. J. Rotman,An Introduction to Algebraic Topology New York:
in the image sequence by assuming that extreme points on Springer-Verlag, 1988, pp. 31-38 and 136-138. -
. . he followi . %1] H. Stommel,The Gulf Stream: A Physical and Dynamical Description
one Image move to extreme pomts on the fo OW.mg Image 2nd ed. Berkeley, CA: Univ. of California Press, 1965.
the sequence. From these estimates of the velocity vectors, & E. Sethi and R. Jain, “Finding trajectories of feature points in a

; ; : ; ; monocular image sequenceZEE Trans. Pattern Anal. Machine Intell.
interpolate the velocity field on the whole region by an affine vol. PAMLO, pp. 535.552. Jan. 1987

approximation. [13] A. Vastano and S. Borders, “Sea Surface motion over an anticyclonic

The future scope of the present work is as follows. The eddy on the Oyashio frontRemote Sens. Envirgrvol. 16. no. 1, pp.

; ; 87-90, 1984.

method d_escr_lbed he_re assumes the interpolatable naturq1 fA_ Vastano and R. Reid, “Sea surface topography estimation with
the velocity field. This is true for densely sampled ocean ~ infrared satellite imagery,”J. Atmos. Ocean. Technplvol. 2, pp.
image sequences and always true for images sequences of Tlgsid 392—?:00, Se&t. 1985.t ional h 1o edge detectiiEE T

. . . . . P . F. Canny, computational approach to eage detecti rans.
objects. A composite three—dlmgns!onal (3—D) motion of rigi Pattern Anal. Machine Intellvol. PAMI-8, June 1986.
planar patch produces a velocity field that is fully describeldé] G. Seetharaman, “Image sequence analysis for three dimensional per-
by a single affine transform [16]. Then, it is implicit that the ception of dynamic scenes,” iHandbook of Pattern Recognition and
. lated 2-D loci N h pixel i . | . Image Processing: Computer Visiowol. 2, T. Y. Young, Ed. New
mterpo ate 2-D ve ocity of eac pixel in a twg-5|mp €X IS vork: Academic, 1994, ch. 10.
consistent with the actual and perceived velocity. The sarfig] J. Zachary and S. S. lyengar, “An affine approach to motion field esti-
does not hold true when the object being tracked is a composite mation in oceanographic image sequences,” submitted for publication.
of two or more planar patches, even if it undergoes a rigid
motion, or a simple patch undergoing a nonrigid motion.

Errors in the triangulation process could produce a two-
simplex whose three vertices come from different connected
components of velocity fields. Any additional information,
such as coarse segmentation of the images, must be used
tq .aVOId _such_ Instances. Qne gpproach to pvercomlng RIS choreceived the undergraduate degree from Seoul National University,
difficulty is to incorporate intensity-based optical flow comseoul, Korea, and the Ph.D. degree in mathematics from Rutgers University,

putation of the local velocity for the pixels covered by suchew Brunswick, NJ. . _
He is currently an Associate Professor of Mathematics, Kentucky State

tr'angles'. Bett(_er yet, is a comblnatlon of the two-smplgx aqgjr\iversity, Frankfort. His present research interest centers around algorithms
the classic optical flow computation. Such an approach is beifagvision and image processing applications.
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