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Velocity Vectors for Features of
Sequential Oceanographic Images

E. C. Cho, S. S. Iyengar,Fellow, IEEE, Guna Seetharaman,Member, IEEE, Ronald J. Holyer, and Matthew Lybanon

Abstract—This paper investigates a fundamental problem of
determining the position, orientation, and velocity field of the
Gulf Stream in time-varying imagery. We propose an approxi-
mation method to characterize the deformation of these image
motions for the purpose of estimating the velocity field of these
images. The technique is focused on the interpretation of the
change in the extracted features of the Gulf Stream. The un-
derlying technique employs a triangulation of the region by a
simplicial approximation of the velocity field on each triangle. A
generalized computational framework, an outline of the mathe-
matical foundation, and an implementation are presented in this
paper.

Index Terms—Features, oceanographic images, simplicial ap-
proximations, triangulation, velocity vectors.

I. INTRODUCTION

I NFRARED (IR) images of the ocean obtained from satellite
sensors are widely used for the study of ocean dynamics

(Garcia [4], Kelly [6], [7], and Vastano [13], [14]). One
oceanographic application of satellite IR imagery that is espe-
cially fruitful is the study of mesoscale features. Streams, cold
eddies, and warm eddies are examples of mesoscale ocean
features with dimensions on the order of 50–300 km. An
example of a north Atlantic image is shown in Fig. 1. The Gulf
Stream and its associated eddies are examples of mesoscale
features. The Gulf Stream is warmer than the Surgasso Sea
to its south and much warmer than the waters to its north.
The movement of these features compounds the problems
associated with the detection of features. For a general problem
on edge detection of these features, refer to Krishnamurthyet
al. [8], Holyer [5], and Stommel [11].

A. Motivation

With the present increased interest in climatology and global
change, many studies are under way at the Naval Research
Laboratory, Stennis Space Center, MS, involving the analysis
of large data sets of IR imagery. Oceanographers desire
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Fig. 1. Advanced Very High Resolution Radiometer (AVHRR) image of the
Gulf Stream region of the north Atlantic acquired on April 17 and 18, 1989.
This is a warmest-pixel composite of images acquired by an AVHRR aboard
the NOAA-11 satellite. The rectangular area highlights the location of the
dynamic feature that is being tracked (refer to Section III-F and Fig. 7).

accurate methods of tracking features in satellite images of
the ocean to observe and quantify surface layer dynamics.
IR images of the ocean showing sea surface temperatures are
widely used for studies of this type. (Kelly [6] and Vastano
[13]).

Estimating velocity vectors of features in oceanographic
images remained an open problem for a long time. The high
deformation of these features from image to image compounds
the problem. Previous oceanographic work includes inferring
the velocity field from image sequences of sea surface tem-
perature, which follow features without regard to the actual
temperatures (Vastano [13] and Emeryet al. [3]) and which
use the heat equation and the measured sea surface temperature
(Kelly [6]). The maximum cross-correlation (MCC) method
of Emery et al. [3] is a computational method for deriving
sea surface advective velocities that consist of identifying the
MCC in a lagged matrix between two subareas of a pair of
sequential images. The MCC method, however, is insensitive
to rotation motion. For a comparison of velocity estimates
from different methods, refer to Kelly [7].

This paper describes a comprehensive methodology for
estimating the velocity vectors of the features usingsimplicial
approximationand discusses the implementation of the algo-
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rithm. The simplicial approximation decomposes an arbitrarily
shaped two-dimensional (2-D) region into a set of nonoverlap-
ping triangles. It facilitates a method of interpolating functions
over that region. The region must be a simply connected set of
points, and the value of the smooth function must be known at
many locations. We present some new results in the velocity of
the image flow on oceanographic images, more specifically, we
discuss a new approximation method to estimate the velocity
field of the Gulf Stream from a sequence of satellite images. In
this method, connected components of the region representing
the Gulf Stream are identified and triangulated and the velocity
field on the region is estimated by an affine approximation on
each triangle.

The simplicial approximation of geometric objects and
the mappings between them is a well-established theory in
pure mathematics (for example, Rotman [10]). However, its
implementation for practical applications is not straightforward
and requires more work to be useful for our purpose. The
idea of simplicial approximation is used in the finite element
method, for example, in the computation of numerical solution
to partial differential equations. In particular, when dealing
with irregular shapes, this method is more efficient since the
finite element method allows putting computational elements
where they are needed. (Babuska [1] and Press [9]).

II. M ATHEMATICAL PRELIMINARIES

An image is a map defined on a rectangular array, where
is the value at the coordinate in the image.

The array represents a grid of points located on a bounded
region in . We introduce some definitions and notation in-
dimensional Euclidean space as well as affine geometry, which
is necessary for our application in oceanography. We will be
concerned with the 2-D case. However, we give definitions
and notation in a general-dimensional affine geometry, which
is useful for other image analysis studies.

A. Euclidean Spaces and Affine Subsets

Images may be viewed as a map of a domain in the 2-D
plane onto the set {0,1} (if the image is bilevel) or onto the
closed unit interval [0,1] (if the image is grayscale). Bilevel
imagery assigns the values one or zero to each point in the
domain in the plane. The plane is the 2-D Euclidean space.
We start with the more general Euclidean-space. The set

with the usual Euclidean inner product

is called the Euclidean-space. The usual Euclidean norm

induces the metric

(1)

on . On , (1) is the familiar Euclidean distance derived
from the Pythagorean theorem. In this paper, a vectoris a
row vector and its transpose is a column vector.

Vectors may be viewed as transformations of the whole
space into itself moving all the points of the whole space in
the same direction by the same magnitude. In other words, a
vector may be viewed as a constant vector field on the whole
space. Vectors, however, are also viewed as representations
of position in the space. With a fixed point specified as the
origin, every point in the image can be represented as a
position vector in the image plane. Regions of interest in
oceanographic images, for example, streams or eddies, are of
irregular shape. However, the connected components of the
regions can be closely approximated by more regular shapes,
namely, triangles. To give a general and precise idea of such
an approximation, we need the following definitions.

Definition 1: A subset of is called an affine subset
if, for every pair of distinct points of , the line determined
by the points is contained in .

The only affine subsets of the Euclidean planeare either
the empty set, single point sets (trivially), lines, or the whole
plane . If we require that the line segment joining two points
instead of the whole line be included, the set is called convex.
Obviously, the condition of being affine is stronger than the
condition of being convex. A disk or a closed region bounded
by lines, for example, the triangle

is convex but not affine. Regions in oceanographic images
are not convex in general, however, we can approximate an
irregular region by convex subregions. The subdivision can
be done by the simplicial approximation described in the
following section.

Definition 2: A set of points in
are said to form an affine independent set if thevectors

are linearly independent.
For example, three vertex points of a proper triangle are

affine independent, but any four points on a plane are affine
dependent. The definition of affine independence does not
depend upon specific ordering of these points.

Remark: The points in are affine inde-
pendent if and only if the matrix

...

has rank . Note each is a row vector of dimension.
The rank of a matrix is the maximum number of rows (or

columns) that are linearly independent, which is easily found
by applying elementary row operations to the matrix. It is
obvious that more than points in cannot be affine
independent. Points in are affine independent if
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the determinant of the matrix

...

is nonzero. If are affine independent, any point
can be uniquely represented as

for some real numbers satisfying .
For example, when the ’s are found by solving the
following system of linear equations:

where and .
Example 1: The points and

in are affine independent since the corresponding
matrix

has a nonzero determinant equal to one. Thus, an arbitrary
point on the plane can be uniquely represented by a combi-
nation of and . In fact, three points in are affine
independent if and only if they are not collinear, in which case,
the three points are said to be in general position.

B. Simplex and Simplicial Approximation

A simply connected region in oceanographic images [simply
connected means the region is like a disk (topologically), so it
has no holes inside] can be identified by its boundary curve.
A ring-shaped region is not simply connected. The boundary
curve can be approximated by a continuous piecewise linear
curve (a concatenation of connected line segments). Therefore,
a simply connected region is approximated by a polygonal
region, which is a union of triangles. This is an example of
simplicial approximation in one and two dimensions. We state
some of the general definitions necessary for our application
of simplicial approximation.

Let be an affine independent subset of. The
convex hull of the set is the smallest convex set containing all

’s. It is the intersection of all convex sets containing these
points. More explicitly, the convex hull of is the
set of all affine combination of ’s

For example, the convex hull of two distinct points is
the line segment joining them and the convex hull of three
noncollinear points is the triangle (including its interior) with
vertices at those points. The more general definition follows.

Definition 3: The -simplex generated by the set of affine
independent points is the convex hull of these
points and is denoted by .

Example 2: [0,1] is the unit closed interval, [(0,0), (1,0),
(0,1)] is a right-angled isosceles triangle, and [(0,0,0), (1,0,0),
(0,1,0), (0,0,1)] is a rectangular tetrahedron. Note that one-
simplex is a line segment, two-simplex is a triangle, three-
simplex is a tetrahedron, etc.

We anticipate that the domains of many image segments
are in motion, and the effective way to track them is to use
the barycentric coordinatesof the pixel points in the image.
The definition of barycentric coordinates and an example are
given below to illustrate this point. Let ,
where one appears in theth place. is called the
standard basis of . Let be the zero vector. The standard

-simplex as a set is

Definition 4: Let . Then any point
is uniquely represented as

(2)

where for all and . Equation (2) is an
affine combination of . The row vector
is called the barycentric coordinate of, with respect to the
set: .

Example 3: The barycentric coordinate of a point
,with respect to , is .

The barycentric coordinates of a point, with respect to a
given set of affine independent points, are found by solving
a linear equation as follows. Let
and be affine independent points in and
be the two-simplex . Let

where is the affine combination
of and , representing a point . Let

Then solve the following system of linear equations
or by substitution

The above system of equations always has a unique solution
since the 2 2 matrix is nonsingular, which follows from
the assumption that and are linearly independent. The
system

has the solution
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Once and are found, is computed from the relation
.

A polygonal region with edges is decomposed as a
union of triangles, each of which is either disjoint
from others or intersects at a common edge or vertex. More
generally, any connected region of a surface can be ap-
proximated by a simplicial complex, which is a collection of
simplices (triangles, in dimension two) such that each simplex
is either disjoint from others or intersects other simplices
with one vertex or common whole edge. This is called a
simplicial approximation of the region. Any smooth surface
can be approximated by two-simplices (triangles).

Suppose a disk-shaped region in an oceanographic image
sequence is moving and the corresponding regions in the
following images in the sequence are identified. Instead of
tracking every point on the boundary (a circle in this case)
of the region, it is efficient to approximate the disk by an
inscribed regular polygon and track the vertices in the image
sequence. The unit disk can be approximated by an inscribed
regular -gon, which is the union of isosceles triangles. The
region can be approximated more closely by increasing the
value of .

C. Smooth Vector Fields

The notion of a vector field is useful to describe time-
varying features in oceanographic images. A vector field
associates a vector to each point in the domain of the im-
age. The vector associated with a point corresponds to the
movement of the point in the image sequence. A mapping that
translates the whole space by a fixed vectoris represented by
a constant vector field . For example, the vector
(1,0) can be viewed as the constant vector field representing
the mapping of the whole plane space onto itself and matching
each point to . Most movements (including
rigid motions), however, do not move points in this manner.
For example, the counterclockwise rotation of by 90
about the origin moves the point (1,0) to a point on the
unit circle, but the origin (0,0) into itself. The vector field
representing this rotation will assign the vector (0,1) to the
point (1,0) and the vector (0,0) to the point (0,0), as we will
see in the following examples.

In oceanographic images, the regions of interests are those
representing streams or eddies, hence, a domain in. How-
ever, we give the definition of a vector field defined on a more
general domain called a smooth manifold.

Definition 5: A vector field (more precisely, a tangent vec-
tor field) on a smooth manifold is a smooth mapping of

, assigning each point of with a vector in the tangent
space at the point . The range of this mapping is the
union of all tangent spaces called the tangent bundle of

and is denoted by .
Remark If is a domain of , the tangent bundle is

just , a product bundle. We use the term “smooth” to
mean continuously differentiable as many times as necessary.
Vector fields in this paper are assumed to be smooth.

We may represent a smooth vector field on a domain
by

Fig. 2. Velocity field assigns a vectorv(x; y) to each point(x; y) in the
image domain. In this case,v(x; y) = (�y; x). The x component of the
velocity, for all points located on thex axis, is zero sincevx = y = 0.
Likewise, they component of the velocity is zero for all points located on
the y axis sincevy = x = 0.

where and are real-valued smooth functions
defined on .

Example 4: Let

(3)

for all , that is, and .
It is a smooth vector field associated with the rotation of
around the origin. (Fig. 2.)

Suppose each point in a domain is moving so that the
trace of the point is a smooth curve in. Then the tangent
vector to the trace at each point is called the velocity vector
at the point. This leads to the following.

Definition 6: The velocity field on is a vector field
on that assigns each pointin with the velocity vector
at the point .

The velocity field can be visualized by considering each
particle at the position moving with the velocity vector
given by the velocity field.

Definition 7: The solutions of the system of differential
equations

are called the integral curves of the velocity field
. The integral curve describes the trajectory

of a particle.
Example 5: Consider the previous example with field 3. It

is easy to check that and , for any
constant , is a solution of the differential equation

The parametrized curve

represents the circle . This means that the
differential equation describes a dynamical system on the plane
in which each particle rotates counterclockwise around the
origin.
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In the following sections, we establish a computational
framework that adapts the affine mappings and approximation
technique for vector fields.

D. Affine Mappings and Affine Approximation
Technique for Characterizing Motion

To estimate velocity fields from a sequence of oceano-
graphic images, we will use affine mappings of a domain in

onto . The estimation by affine mapping is efficient and
simple to implement computationally since any affine mapping

from a two-simplex onto is determined
by the values and only and regions in
oceanographic images are approximated by a finite number
of two-simplices.

Let be affine independent and be the affine
set these points span, that is,

Here may be negative. If for all , then is an
-simplex.
Definition 8: An affine mapping of onto is a

mapping preserving the affine combination, that is,satisfies

whenever . The restriction of to the -simplex
is also called an affine mapping.

For example, the mapping assigning to for
some fixed vector in is an affine mapping of onto

. This mapping is called the translation by.
Remark: Any linear mapping or a translation mapping of

onto itself is an affine mapping. Any affine mapping of
onto is of the form , where are real

constants. Any rotation of or a translation of is an affine
mapping, and the composition of affine mappings is affine. The
image of an affine set (or a simplex) under an affine mapping
is affine (or a simplex).

The following example represents the rotation of the plane
by radian counterclockwise about the origin as an affine
mapping by specifying the movement of the three vertices of
a specific two-simplex (triangle).

Example 6: Let and .
If is an affine mapping of onto with

and
, since

where and .

The value of an affine mapping at is the
weighted average of ’s, the values of at the vertices
of . If is the midpoint of and , the value
will be the midpoint of and . More generally, the
barycenter of a simplex is mapped to the barycenter of the
image . The next example describes an ideal (but highly
unrealistic) situation in which the region of interest in the
oceanographic image sequence varies only in position as a
translation (a simple rigid motion). In this case, we need only
identify one point of the region and the corresponding point
in the subsequent images to estimate the velocity vector field.

Example 7: The constant mapping of onto given
by for all is an affine mapping. is the
velocity field on associated with the translation ofby the
vector , which maps onto .

Now we consider a more general situation in which the
regions vary both their shapes and locations with time. Ob-
viously, this is not a rigid motion. We do not need to
assume that the movement of the region is smooth to apply
simplicial approximation. We need only piecewise continuity,
which means the movement as a mapping is continuous
on each component covering the domain. This allows some
discontinuities, for example, at certain points or on certain
portions of arcs in the domain.

It is reasonable to assume smoothness or at least piece-
wise smoothness in the study of oceanographic images at
mesoscales. Suppose, for simplicity, a triangular region

in an oceanographic image has smooth motion.
Then there corresponds a smooth velocity fielddefined on

. If the (vector) values of the velocity field at the vertices of
are known, say, and ,

we can interpolate the value at any point in by the
affine mapping of , which coincides with at the vertices
of , that is

(4)

where . Equation (4) is a natural
generalization of the linear interpolation of a function with
one variable. The error bound of a linear interpolation to a
smooth function is easily found from the second-order term of
the Taylor series of the function. Similarly, we can estimate
an error bound of the affine approximation of the vector field

if is smooth. To estimate the error bounds for affine
approximations, we need the following definitions.

Definition 9: The diameter of an -simplex
, denoted by diam , is the

. This coincides with the usual definition of the
diameter of any subset of Euclidean space, the

.
Definition 10: The norm of an matrix , denoted by

, is given by

Now we state, without proof, a proposition giving an error
bound of the affine approximation of the smooth vector field

on a triangle (Dieudonńe [2]).
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Fig. 3. Unit disk is an elementary area centered at (0,0) for infinity norm
distance.

Proposition: Let be a smooth vector field
defined on and be
a point in . Then

where , the maximum of the
norms of the Jacobian of (the matrix with the th
entry on and is the diameter of .

Remark: This proposition holds for higher dimension,
and the vector field needs only be (continuously differ-
entiable, that is, all the first-order partial derivatives ofexist
and are continuous).

Remark: It is simpler to use an alternate definition of norm
on given by , which induces
the distance on

where and , and the
alternate definition of matrix norm

This is in fact the infinity-norm of the vector. It is equivalent
to the usual norms defined above, but simpler to compute. It
may not be suitable for certain applications since the geometry
under this distance is different from the usual Euclidean
geometry, as the following example shows. The set

, the “unit disk” centered at (0,0), with respect
to this distance on , is the square [ 1,1] [ 1,1] in .
(Fig. 3.)

Let be a velocity vector field representing the movement
of a region in the image sequence. We may assume
is smooth on the region and is connected, otherwise,
we will apply our procedure separately to each connected
component on which is smooth. Suppose is given
a triangulation, that is, is approximated by a 2-D simplicial
complex. Suppose the (vector) values ofat each vertex of the

simplicial complex triangulating are known (or measured).
Then we can approximate the value ofat any point
by applying the above affine interpolation on each simplex. We
can also estimate an error bound of the interpolation by the
proposition, assuming we have an estimation of the derivatives
of , which is not available in practice. We may, however, use
the derivatives of the functions approximating.

E. Algorithm for the Affine Approximation
of a Smooth Vector Field

The algorithm of approximating a smooth vector fieldon
a triangulated region , whose (vector) values are known at
the vertices of simplices in the triangulation of is given as
follows.

1) Generate as many points as necessary to approximate
the values of . These points are easily generated
by repeatedly applying barycentric subdivision (defined
below) of .

2) For any point in , we first identify the simplex to
which belongs.

3) Approximate the value of , based on the values of
at the vertices of the simplex.

If happens to be a vertex, there is no need to interpolate,
and if belongs to an edge, the interpolation becomes simpler
by using only the values at the two vertices at the end of the
edges. These cases are covered by the general interpolation
formula and there is no ambiguity even if the pointbelongs
to more than one simplex. Any continuous mapping between
simplicial complexes can be approximated by simplicial map-
pings, and the approximation can be made arbitrarily close by
subdividing the simplex into smaller simplices.

To define barycentric subdivision, we need the following
definitions.

Definition 11: The barycenter, also called the centroid,
of an -simplex is the point with barycentric coordinate

.
The barycentric subdivision is defined inductively as fol-

lows.
Definition 12: The barycentric subdivision of a zero-

simplex (a point) is the simplex itself. Let be an -simplex
. If are –dimensional faces of

and is the barycenter of , the barycentric subdivision of
consists of all -simplexes spanned byand -simplexes
in the barycentric subdivisions of ’s.

Barycentric subdivision divides a one-simplex (a line seg-
ment) into two line segments of half size (by adding the
midpoint), a two-simplex (a triangle) into six two-simplexes
by subdividing each edge (one-simplex) into two half line
segments and joining the original vertices and the barycenters
(midpoints) of the edges with the barycenter (centroid) of the
triangle.

Example 8: The barycentric subdivision of a one-simplex
(an interval) [0,1] consists of the vertices {0}, {}, and {1}
and two open intervals (0,) and ( , 1).

The barycentric subdivision of a two-simplex (triangle)
consists of six smaller triangles, twelve one-faces (edges),
and seven zero-faces (vertices). For a triangle whose vertices
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Fig. 4. Barycentricsubdivision of a 2-D simplex. The given triangle is made
of three 2-D points, and the triangle is decomposed into six smaller triangles
all sharing a common vertexG at its centroid.

are located at, and on a 2-D plane, the seven ver-
tices are . This
is illustrated in Fig. 4.

Barycentric subdivision can be applied repeatedly to make
the mesh (the supremum of the diameters of faces of the
simplex) size arbitrarily small.

Example 9: Let be a mapping from the unit closed
interval [0, 8] to itself given by . The barycentric
subdivision of [0, 8] consists of the vertices {0}, {4}, and {8}
and two open intervals (0, 4) and (4, 8). The second barycentric
subdivision of [0, 8] consists of the vertices {0}, {2}, {4}, {6},
and {8} and four open intervals (0, 2), (2, 4), (4, 6), and (6, 8).
The estimate of using the second barycentric subdivision
is

while the true value is 1/8. The estimate of is

while the true value is 49/8.
Example 10: Let

be the region on which a smooth vector fieldis defined by

For example, and
. Suppose is triangulated by the first

barycentric subdivision. The triangulation has vertices (0, 0),
(1, 0), (2, 0), (1, 1), (0, 2), (0, 1) and (2/3, 2/3). The estimate
value of at (1/2, 1/3) is found as follows. First we note the
point (1/2, 1/3) is in the subsimplex [(0, 0), (2/3, 2/3), (1,0)]
and the point (1/2, 1/3) has barycentric coordinates (1/2, 1/6,
1/3), that is

Hence the affine estimate of is

Fig. 5. Piecewise linear approximation of a parabola. The parabolay = x2

for �3 � x � 2 is approximated by three line segments.

while the true value of is (5/36, 1/6). The error
is ( 1/36, 1/18).

III. A PPLICATION

A. Piecewise Linear Approximation of a Curve

The boundaries of regions in mesoscale oceanographic
images can be approximated by piecewise smooth curves
(cubic splines, for example) or piecewise linear curves. In
the following, we give detailed computational procedures for
constructing a piecewise linear approximation to the boundary
curve of a region. The simplicial approximation of vector fields
describing the changes of the region will be based on the
simplicial approximation of the region, which is based on the
piecewise linear approximation of the boundary curve of the
region.

Let be a sequence of data points representing
a smooth curve in an image. The idea of piecewise linear ap-
proximation is to approximate the portion of the curve between

and by the line segment if the points in between,
namely, are approximately collinear. Higher
order polynomials may be used, a parabola, for example, if
the physics of underlying motion requires such higher order
terms. Fig. 5 illustrates an instance in which a parabolic curve
is more useful than piecewise line segments.

We consider points and for to be
approximately collinear if the distance betweenand the line
passing through and is less than a given value .

Let denote the distance between the pointand
the line segment . It is computed by

where is the Euclidean inner product of the vectors
and , which is given by .

is the Euclidean norm of the vectorgiven by .
This formula follows from the fact that the distance between

and the line passing through is the length of the vector
projected onto the direction normal to the line .
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Example 11: The distance between the point (1, 2) and the
line passing through (0, 0) and (3, 4) is

Let be the subsequence of the data points
such that the points form a

maximal chain of points that are almost collinear, with respect
to a given for each . The points in the subsequence will
be called break points.

For example, if

then is included in the subsequence to form a line segment
and is a break point. If

but

or

then is a maximal chain of almost collinear points
and is a break point.

Let be the set of all break points on
the curve . A parametrized form of the piecewise linear
approximation of is given by

for where
is a partition of the domain with

for . We will denote the piecewise
linear approximation of with break points by

.

B. Finding Break Points

Region boundaries in oceanographic images may be viewed
as smooth or very irregular, depending on the scale. In
approximating such boundaries by a piecewise linear curve,
we need to decide in advance how fine the approximating line
segments will be. The following algorithm finds the points
in the data where the approximating lines will be broken (but
connected) to fit the data points within the preset error bound.

Let be a sequence of data points representing a
curve . Let be given. We are interested in finding the
subsequence such that , (the
end points), and for every, the points between and
constitute the maximal chain of data points that are almost

collinear, with respect to . In other words, the points
are almost collinear but including the

point (the point after ) destroys the approximation
of collinearity. The algorithm is implemented as follows:
Set .
if , then

set ,
elseif or , then
set ,
elseif or
or then
set ,
elseif , etc.
endif.
end of algorithm.

Example 12: Let
be data points from the standard unit circle. If

and , the piecewise linear approximation
is the hexagon with vertices at .

C. Finding Extreme Points

For a region in motion of an oceanographic image sequence,
we assume that the points on the boundary correspond to the
points on the boundaries of the corresponding regions in the
image sequence. Sethi and Jain [12] showed the importance
of detecting the action in images by using the idea of a
correspondence problem. To estimate the velocity vector field
of the motion, we assume that certain points on the boundaries
can be located through the image sequence. We will locate the
prominent points, that is, the points where the boundary curve
changes direction rapidly. In differential geometric terms, these
are the points where the curvature has a maximum absolute
value. Then, the natural choice for feature points required
to track a polygonal-shaped region would be its vertices, as
shown in Fig. 6.

For simplicity, we write , so that are
nodes of the piecewise linear approximation of the curve.
From the construction, it is obvious that the slopes of the line
segments change at the’s. We are interested in locating the
points where the slope of the curve (or the approximating
polygonal curve) changes rapidly (equivalently, the points
where the angle between the intersecting line segments is
large). The angle between line segments is unambiguously
defined since the line segments are directed. For example,
if the curve follows a regular hexagon counterclockwise, the
angle at each break point (i.e., vertex) is/3 radians.

We will call a break point an extreme point if the angle at
exceeds a given value. Note our use of the term “extreme

point” is not the same as the usual standard use of the term,
namely, the point where the curve has local maximum or
minimum.

The angle at between the line segments and
is computed by
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Fig. 6. Extreme points on a polygonal curve. At three vertices (0,2), (0,0),
and (2,1), the direction of the curve changes more than at (1,2) or (1,0). The
curvature at the three points is of larger value.

Example 13: Let be a closed polygonal curve connecting
(0, 0), (1, 0), (2, 1), (1, 2), and (0, 2). The angle measures at
(0, 0), (2,1), and (0, 2) are/2 and at (1, 0) and (1, 2) are/4.
For example, at (2, 1), the angle is computed by

If we take /4, then (0, 0), (2, 1), and (0, 2) are extreme
points.

Example 14: Let be a polygonal curve connecting (0 ,0),
(3, 0), (3, 2), (1, 1), and (0, 0). If the preset valueis /2,
then (1, 1) is not an extreme point and all the other vertices
are. The angle at (1, 1) measures

and the angles at (0, 0) measure 3/4.
Example 15: Let be the standard regular hexagon with

vertices at . If we set the value ,
then each vertex is an extreme point because the angle at each
vertex is .

D. Estimating Velocity Vectors from the
Approximation of Region Boundaries

Suppose a region in the image sequence is identified, its
boundary curves are approximated by piecewise linear curves,
and extreme points on each piecewise linear approximation
of the boundary curves are found. We are assuming that the
features in the oceanographic images are such that the extreme
points of one image move to the extreme points of the next
image in the sequence. Under this assumption, we can track
extreme points and the boundary curve and eventually every
point inside the region by interpolation based on the simplicial
approximation of the region.

Let be a boundary curve in an image and be the cor-
responding boundary curve in the next image of the sequence.
Let be a piecewise linear approximation of
and be a piecewise linear approximation of.
Suppose is the set of all of the extreme points
of the curve and is the set of all extreme

points of the corresponding curve . Note that the sequence
of extreme points (respectively, ) is

a subsequence of , the sequence of all break
points of (respectively, , the sequence of all
break points of ).

We are assuming the number of extreme points on two
curves are the same. This can be done by adjusting the preset
value (respectively, ), which determines the extreme
points on (respectively, ). Since we assume the flow of the
image is such that the extreme pointon corresponds to
on , we approximate the velocity vector at, representing
the movement of the curve at by taking the differences

. We can extend this approximation of the velocity
vector to generate a velocity vector field on the polygonal
approximation of by affine extension, as
follows.

Let be a point on the polygonal curve
such that is between the extreme points

and . Let the corresponding
extreme points be and . Then
we assign the vector to the point , where

This is an obvious extension to the velocity vector field on
the polygonal approximation of the curve. We will denote
the vector field on by . If the curve is closed so
that it bounds a region, we can extendto a velocity field,
also denoted by , on the simplicial approximation of the
region by extending on each simplex in the
approximation as

where are real numbers such that
and

E. Algorithm for the Construction of the Boundary
Curve and the Velocity Vector Field

1) Input: A sequence of digital binary images for
. Each image is an matrix

with entries zero or one.
2) Apply the edge detection algorithm to each image

to identify the boundary of a region we are
interested in. The boundary does not have to be closed,
that is, the region need not be bounded.

a) We assume the boundary is a Jordan curve. That is,
as a discrete image , it satisfies the following
condition. (This condition is that the boundary is a
Jordan curve, with respect to eight-neighbors topol-
ogy.) We will use eight-neighbors topology, though
this can also be done with four-neighbors topology.

b) If , then at exactly two
eight-neighbors of .

c) The eight-neighbors of are elements of the
eight-neighborhood
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which equals

where is the metric given by

d) The four-neighbors of are elements of the four-
neighborhood, which equals

where is the metric given by

3) On each image in the sequence, construct a sequence of
points

where and elsewhere.
represents a sequence of the positions at which
has value one, that is, where the boundary curve traces.

a) We find the sequence inductively. Suppose the
points have been found.
Then is the point in the eight-nbd
of such that and

for any .
This is well defined because of the conditions in step
2). We need to specify first two points
and to start the inductive steps. The
sequence is a Jordan curve, with respect to the
eight-neighbors topology.

4) Let , the set of points
describing the boundary of the region in theth image
in the sequence.

5) To simplify the notation, let the piecewise linear approx-
imation of each also be denoted by . The velocity
vector field is defined on each .

6) To find the velocity vector at the points not on the
boundaries, we can apply the affine interpolation. In
practice, however, it is not necessary if the distance
between the boundaries in the image sequence are small.
Then we will have a fine grid of points on the boundaries
over the whole region.

The construction step 3) requires that the boundary we found
must be a Jordan curve [that is, satisfying all the conditions
in step 2)]. If there is any point where the curve is slightly
thick or has jump-disconnection [violating the conditions in
step 2)], the step cannot proceed. We can still generate a
sequence of data points representing the boundary when it
is not a Jordan curve, however, the process will require more
complex algorithms. We may relax the condition of Jordan
curve by mixing four-neighborhood and eight-neighborhood,
but the algorithm will be a little more complicated.

For example, we then allow

while the image will have to be

with respect to eight-neighbors topology. Similarly, we allow

or

or

and so on, if using four-neighbors topology. Here * represents
a one and the blank spaces are zeroes in the matrix.

Example 16: Let the boundary of the region in the first
image be

and the next one in the image sequence would be

Since we index the points as entries in a matrix, corre-
sponding to the point in the usual -plane coordinate
system (with its origin at the top left) by and , we
have the velocity vector at every point on the boundary in the
first image (namely, the diagonal). For example, the velocity
vector at (2, 2) (the third point from the left top corner) is

, which should be interpreted as a unit
vector in the direction of north and at (7, 7) (the last point at the
right bottom corner) is , which should
be interpreted as a vector with length two pointing north.
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(a)

(b)

(c)

Fig. 7. (a) The input images were selected over the 81� 108 rectangular window shown on the original image of Fig. 1. (b) The images were segmented
using an interactive threshold operator followed by a median filter to smooth out the noise. (c) The edge and boundary map of the detected segments obtained
through a morphological operator. The box on the left image indicates a curve segment used later in Fig. 8.

F. Simulation Results

The method developed in this paper was applied to a
sequence of six AVHRR images of the Gulf Stream of the
north Atlantic. These images were acquired by an AVHRR IR
sensor onboard the NOAA-11 satellite. The image shown in
Fig. 1 highlights a region of 81 108 pixels that has been
considered for our experimental verification procedure. The
area is large enough to cover the dynamic features over the
six image frames. In order to reduce the computation time, the
images were cropped to a minimal size. Three such cropped
images are shown in Fig. 7(a). Henceforth, we refer to these
small images as the image data.

The images were first segmented using a simple thresh-
olding operation, and the results are shown in Fig. 7(b). A
morphological filter was applied to each segmented image to
extract the boundaries and streaks. The extracted boundary
images are shown in 7(c). Each set of points constituting an
area of interest is considered for simplicial decomposition.
These simplexes are then analyzed to compute the velocity
field on the connected region as a whole.

The above segmentation procedure is somewhat simple.
However, the performance is sufficient to illustrate how

our algorithm will work on extracting and tracking the
extreme points drawn from segmented oceanographic images.
We used a subjective approach to try various values of

and to arrive at a number of good break points. For
fully robust and automated identification of break points,
advanced segmentation techniques, such as Canny [15], are
available.

The following break points were obtained after applying the
algorithm to a cropped image of the Gulf Stream. The value for

was taken to be 0.86. This was chosen after experimenting
with various values of . The break points obtained from the
first image and the second image are plotted in Fig. 8, which
are also highlighted in Fig. 7(c).

Let stand for the angle measure at the break point
between the line segments and Choosing the break
points with angle for image 1 and those with

for image 2, we get the extreme points for images
1 and 2. The extreme points are plotted in Fig. 8.

The velocity vector at in image 1 is evaluated by the
difference , where is the corresponding extreme point
on image 2. The velocity vectors at the extreme points in
image 1 are plotted in Fig. 9.



996 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 3, MAY 1998

Fig. 8. Two piecewise linear curves extracted from the first two images [Fig. 7(a)]. These curves are drawn identifying the break points in the segmented
boundary maps and joining the consecutive break points by a straight line. A small portion of the actual boundary is shown on an enlarged scale.

Fig. 9. Initial velocity field computed from the two piecewise linear curves. The vector values illustrated here emanate from the break points of the first
image and end at the corresponding break point of the second image. This field must then be interpolated using the affine function model of smooth
velocity fields, as developed in our paper.

IV. DISCUSSION

We have presented a comprehensive method of approxi-
mating the boundaries and connected components of regions
in oceanographic images using the simplicial approximation

method. The simplicial approximation of domains (boundary
curves and the connected components of the regions) are
then used to find simplicial approximations of mappings
between the corresponding objects (curves and connected
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components) in the image sequence. The mappings between
the corresponding objects are then interpreted to estimate
the velocity field of the features in the image sequence. We
assume the velocity field of features in the oceanographic
images can be approximated by tracking the boundary curves
of connected components and then interpolating the velocity
inside the region by the simplicial approximation technique.
When tracking the boundary curves, we identify local extreme
points from each boundary curve and assume the local extreme
points in one image match to the local extreme points in the
next image in the sequence. The weakness of this assumption
is that the extreme points sometimes merge or disappear and
new extreme points emerge during the whole period of the
image sequence. In these cases, we need to determine the
correspondence between the local extreme points by other
criteria (varying the threshold, preserving the lengths of the
boundary curves).

V. CONCLUSION

A well-established mathematical tool of simplicial approx-
imation of regions on a plane (or on a surface) and simplicial
approximation of continuous mappings between regions were
applied to locate and approximate connected regions repre-
senting the Gulf Stream and its associated eddies. Once the
regions of interest were approximated by simplices (called
triangulation), vertices of the simplices in the approximation
were identified and used to evaluate the velocity vector field
of the features in the image sequence. We need to identify the
corresponding points in each image in the image sequence to
be able to estimate the velocity vector field. This is done by
locating extreme points on the boundary curves of the region
in the image sequence by assuming that extreme points on
one image move to extreme points on the following image in
the sequence. From these estimates of the velocity vectors, we
interpolate the velocity field on the whole region by an affine
approximation.

The future scope of the present work is as follows. The
method described here assumes the interpolatable nature of
the velocity field. This is true for densely sampled ocean
image sequences and always true for images sequences of rigid
objects. A composite three-dimensional (3-D) motion of rigid
planar patch produces a velocity field that is fully described
by a single affine transform [16]. Then, it is implicit that the
interpolated 2-D velocity of each pixel in a two-simplex is
consistent with the actual and perceived velocity. The same
does not hold true when the object being tracked is a composite
of two or more planar patches, even if it undergoes a rigid
motion, or a simple patch undergoing a nonrigid motion.

Errors in the triangulation process could produce a two-
simplex whose three vertices come from different connected
components of velocity fields. Any additional information,
such as coarse segmentation of the images, must be used
to avoid such instances. One approach to overcoming this
difficulty is to incorporate intensity-based optical flow com-
putation of the local velocity for the pixels covered by such
triangles. Better yet, is a combination of the two-simplex and
the classic optical flow computation. Such an approach is being

developed, and the experimental results will be published in
a future paper [17].
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