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Abstract—Features in satellite images of the oceans often have
weak edges. These images also have a significant amount of
noise, which is either due to the clouds or atmospheric humidity.
The presence of noise compounds the problems associated with
the detection of features, as the use of any traditional noise
removal technique will also result in the removal of weak edges.
Recently, there have been rapid advances in image processing
as a result of the development of the mathematical theory of
wavelet transforms. This theory led to multifrequency channel
decomposition of images, which further led to the evolution
of important algorithms for the reconstruction of images at
various resolutions from the decompositions. The possibility of
analyzing images at various resolutions can be useful not only
in the suppression of noise, but also in the detection of fine
features and their classification. This paper presents a new
computational scheme based on multiresolution decomposition
for extracting the features of interest from the oceanographic
images by suppressing the noise. The multiresolution analysis
from the median presented by Starck–Murtagh–Bijaoui [4], [5]
is used for the noise suppression.

Index Terms—Edge detection, feature extraction, image pro-
cessing, multiresolution, noise suppression, wavelet transform.

I. INTRODUCTION

OCEANOGRAPHERS desire accurate methods of track-
ing features in satellite images of the ocean to observe

and quantify surface-layer dynamics. Infrared (IR) images of
the ocean showing sea surface temperatures are widely used
for the studies of this type. The satellite image in Fig. 1,
which is typical of images used in these studies, is an infrared
image of the northeast United States coastline, obtained from
the Advanced Very High Resolution Radiometer (AVHRR)
onboard the NOAA-7 satellite.

Automatic feature tracking from time series of satellite
IR images is problematic in two respects. First, the features
of interest have low contrast (weak edges) and constantly
evolving shapes from image to image. We define weak edges
to be edges between adjacent regions with a small difference
in grayscale intensity. Features merge, split, grow, shrink,

Manuscript received October 5, 1995; revised December 3, 1996. This work
was supported in part by ONR Grant N000014-92-J6003.

K. K. Simhadri, S. S. Iyengar, and J. M. Zachary, Jr. are with the Robotics
Research Laboratory, Department of Computer Science, Louisiana State
University, Baton Rouge, LA 70803 USA (e-mail: iyengar@bit.csc.lsu.edu).

R. J. Holyer and M. Lybanon are with the Naval Research Laboratory,
Remote Sensing Division, Stennis Space Center, MS 39529 USA.

Publisher Item Identifier S 0196-2892(98)01145-0.

Fig. 1. Infrared satellite image of the northeast United States coastline.

disappear, or are created on time scales that are comparable to
the sampling interval of the satellite imager (typically, 12 h).
In other words, the phenomenology under investigation is
turbulent fluid flow, not rigid body motion. Therefore, tracking
of ocean features is very difficult. The second problem, which
results from the first, is that feature “motion” cannot be defined
by a single set of values defining translation, rotation, and
scaling. Different motions occur at different spatial scales, so
that motion must be defined by parameters that are functions of
scale as well as space and time. A simple example of different
motions associated with different scales is seen in the ocean
“front.” Most ocean fronts exhibit shear across the frontal
boundary. Shear results in small lobes (shear instabilities) on
the front that move along the frontal boundary. Concurrently,
the entire frontal feature may be moving perpendicular to the
boundary direction. This scenario results in small-scale and
large-scale motions that are orthogonal. A feature tracking
algorithm borrowed from rigid body problems will give a
result that represents some unknown mixture of these two
orthogonal motions. This combined motion has no physical
meaning. Clearly, for the case of oceanographic images, an
algorithm that resolves both motions is required. This paper
deals with the wavelet-based feature extraction problem, which
is the first step in a feature tracking problem, rather than
directly addressing the feature tracking problem. Wavelets
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Fig. 2. (a) Discrete wavelet transform. (b) Reconstructed image after suppressing noise.

have proven to be a useful technique for studying dynamic
images [16], [17]. The wavelet transform, because it is able
to localize the signal in both space and frequency [2], may
be useful for addressing the problem of feature tracking in
turbulent flow. For a broader treatment on this, see [1], [6],
[13], and [15].

A. Motivation for Using Wavelets

The Fourier transform of a function yields a mea-
sure of the irregularities of the function in term of its high
frequencies. However, this measure is not spatially localized,
and hence, it is not possible to locate the position of the
irregularity in the function. To get the information about the
signal in time as well as frequency domains simultaneously,
a windowed Fourier transform can be used. This transform
obtains the irregularities of a function in a spatial region of
a fixed size, and the function’s irregularities at various points
are measured by translating the window back and forth on the
spatial domain of the image.

The main drawback of windowed Fourier transforms is that
the spatial and frequency resolutions of the transform are fixed.
A local feature such as edge cannot be located with a precision
higher than the width of the window function . This
limitation is inconvenient since a signal in general has features
at arbitrary scales. In order to avoid this shortcoming, Mallat
[2] defined the wavelet transform by decomposing the signal
into a family of functions resulting from the translations and
dilations of a single function called a wavelet.

The wavelet transform can be generalized to any number of
dimensions, but for the purpose of image processing, the two-
dimensional (2-D) case suffices. Wavelet transforms capture
the features of images at all scales.

Multiresolution decomposition involves decomposition of
an image in frequency channels of constant bandwidth on
a logarithmic scale. Wavelets and multiresolution transforms

Fig. 3. Computational architecture for proposed algorithm at one absolution
level.

have been the focus of extensive study after the work on
multiscale edge detection by Rosenfeld and Thurston [3].

Wavelets and multiresolution appear in the literature on im-
age processing for a variety of applications, such as singularity
detection [7], image coding using multiscale edges [8], [9], and
feature detection [10]–[12], [15].

II. DISCRETE WAVELET TRANSFORM

A. Mallat’s Wavelet Transform

A discrete wavelet transform approach can be obtained
from multiresolution analysis [2]. We reproduce the following
development of Mallet [2]. A multiresolution analysis is a
set of closed, nested subspaces generated by interpolations at
different scales. A function is projected at each step
onto the subset . This projection is defined by the scalar
product of with the scaling function , which
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Fig. 4. Results of applying the new wavelet-based scheme proposed in this paper on northeast United States coastline image obtained on May 10 (a.m.).
(a) Original image. (b) Edge imageEj at T = 3. (c) Edge imageEj+1 at T = 2. (d) Complementary imageWj+1.

is dilated and translated

(1)

is a scaling function that has the property

(2)

where is a discrete low-pass filter associated with the
scaling function . Equation (2) permits the set
to be computed directly from . If we start from the set

, we compute all sets with without directly
computing any other scalar product

(3)

At each step, the number of scalar products is divided by
two. Step-by-step the signal is smoothed and information is

lost. The remaining information can be restored using the
complementary subspace of in . The subspace
can be generated by a suitable wavelet function with
translation and dilation

(4)

where . We compute the scalar products
with

(5)

In order to restore the original data, Mallat uses the properties
of orthogonal wavelets, but the theory has been generalized
to a large class of filters [18]. Two other filter and , the
conjugates of and , have been introduced [19], and the
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Fig. 5. Results of applying the new wavelet-based scheme proposed in this paper on northeast United States coastline image obtained on May 10 (p.m.).
(a) Original image. (b) Edge imageEj at T = 3. (c) Edge imageEj+1 at T = 2. (d) Complementary imageWj+1.

restoration is performed with

(6)

This analysis can be easily extended to two dimensions.
However, the 2-D algorithm is based on separate values
leading to and directions being prioritized. This will lead to
a nonisotropic analysis of the images, which is not an efficient
way to extract fine features in the oceanographic images.

B. Difficulties with Discrete Wavelet Transform

The 2-D extension of Mallat’s algorithm leads to a wavelet
transform with three wavelet functions [three wavelet coef-
ficient subimages at each scale: Fig. 2(a)], which does not
simplify the analysis and the interpretation of the wavelet coef-
ficients for the reasons explained below. As the oceanographic
images have fine features in all directions, an isotropic wavelet
analysis seems more appropriate.

At a given scale, we derive a decimated number of wavelet
coefficients. We cannot restore the intermediate values without
using the approximation at this scale and the wavelet coef-
ficients at smaller scales. Since the multiresolution analysis
is based on scaling functions without a cutoff frequency,
the application of the Shannon interpolation theorem is not
possible. The interpolation of the wavelet coefficients can only
be done after reconstruction and shift. This has no importance
for signal coding, but the situation is not the same in a strategy
in which we want to analyze or restore the image.

By definition, the wavelet coefficient mean is null. Every
time we have a positive structure at a scale, we have negative
values surrounding it. These negative values often create
artifacts during the restoration process or complicate the
analysis. For instance, if we threshold small values (noise,
nonsignificant structures, etc.) in the wavelet transform and
reconstruct the image at the full resolution, the image becomes
blurred [Fig. 2(b)].
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Fig. 6. Results of applying the new wavelet-based scheme proposed in this paper on northeast United States coastline image obtained on May 11. (a)
Original image. (b) Edge imageEj at T = 3. (c) Edge imageEj+1 at T = 2. (d) Complementary imageWj+1.

C. Starck–Murtagh–Bijaoui Wavelet Transform

The problems mentioned above led to the development
of other multiresolution tools. Starck–Murtagh–Bijaoui [4],
[5] modified the “a trous algorithm” and developed a new
multiresolution approach using a morphological median filter.
The algorithm is as follows.
begin {

1) Define a mask with a size pixels.
2) Initialize to , and start from data .
3) med being the filtering median function, calculate

med and median coefficients at scale
by

4) If is less than the number of scales we want, return
to 3).

} end

The reconstruction is carried out by a simple addition of
all scales

(7)

We use the above algorithm to suppress the noise in the image
at various scales.

III. SIMPLE EDGE DETECTION ALGORITHM

Edge detection is an operation of locating the transition
between two regions of distinct gray-level properties. Based on
this observation, we present the following simple local edge-
detection algorithm.
begin {

1) Scan the image with a 3 3 empty window.
2) On each move of the window, calculate the , the

maximum value in the window, and , the minimum
value in the window.
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Fig. 7. Results of applying the new wavelet-based scheme proposed in this paper on northeast United States coastline image obtained on May 11. (a)
Original image. (b) Edge imageEj at T = 4. (c) Edge imageEj+1 at T = 3. (d) Complementary imageWj+1.

3) If is less than the threshold, replace the
central pixel with zero. Else move the window

4) The set of all nonzero points is the edge-detected
image

} end
The specification of the threshold in the third step is the most

sensitive part of this algorithm. The choice of the threshold
(usually a number between zero and 255) depends on the
image. Since the intensity changes occur at different scales in
an image, their optimal detection requires the use of operators
of different thresholds.

We can define a multiresolution approach for edge detection
at different scales. A multiresolution analysis is defined as a
closed nested set of subspaces. Letbe the set of edges in
an image at the resolution, such that

edge (8)

(a) (b)

Fig. 8. Sobel edge-finding operators. (a)Sh. (b) Sv .

where is the original image, is the threshold, andedge
is the set of edges obtained using the above algorithm.

As we increase the resolution (to a finer resolution) to
and , where is the small number,

the number of edges detected will increase as more and more
fine edges can be detected. As we decrease the resolution, the
number of edges detected will reduce. The information that is
lost as we move to a coarser resolution can be restored using
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Fig. 9. Results of various edge-detecting methods on northeast United States coastline image obtained on May 10 (a.m.). (a) Sobel gradient operator.
(b) Morphological gradient operator. (c) Result of our method.

the complementary subspace of in by

(9)

This implies that the set of edges forms a sequence of nested
subspaces satisfying the following conditions:

The reconstruction of the edges is then carried out by simple
addition of all the scales

(10)

where is the set of edges at the “finest” scale and is
the set of edges at the “coarsest” scale.

IV. COMPUTATIONAL SCHEME FORFEATURE EXTRACTION

As mentioned earlier, feature extraction is the first step in
a feature tracking algorithm, hence, it is important that the
features have well-defined edges with the contour information
well preserved. We present the following scheme to extract
edge features from oceanographic images (Fig. 3).

Step 1) Apply Starck–Murtagh–Bijaoui wavelet transform
to the input image, and generate a wavelet plane.

Step 2) Make all insignificant wavelet coefficients, i.e., all
coefficients below a user-specified (often depends
on the application) value, zero.

Step 3) Reconstruct the image with the remaining coeffi-
cients.

Step 4) Choose a threshold, and apply the edge-detection
algorithm described in Section III.

Step 5) If the edges are not satisfactory ,
decrement the threshold and go to Step 4).
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Fig. 10. Results of thresholding on three different methods. Grayscale threshold value= 64. (a) Sobel gradient. (b) Morphological gradient. (c) Our method.
Grayscale threshold value= 128. (d) Sobel gradient. (e) Morphological gradient. (f) Our method.

Such a scheme has several advantages over the discrete
wavelet transform, as shown below.

1) Transform can be carried out using integer values lead-
ing to exact reconstructions at various scales as there
will not be any errors due to roundoff.

2) Structure contours are preserved while the noise is
suppressed.

3) The algorithm can be easily modified to work on inter-
mediate scales (other than dyadic).

V. EXPERIMENTAL RESULTS

The test data consist of a set of six oceanographic images.
We present results from four of them. Part (a) of Figs. 4–7
show the NOAA-7 images of the United States east coast, 12
h apart over a two-day period. In these images, bright areas
represent warmer temperatures and dark areas represent the
thermal colder temperatures. The Gulf Stream, warm eddies
and cold eddies are important features, useful in understanding
dynamic properties of oceanic systems.

Fig. 4(b) shows the result of applying our method to obtain
an edge image at a threshold . Even though
the features of interest are visible in this image, the contour
information is not fully preserved. The edges at the places
where the contour information is missing are the edges that
could not be detected at this resolution. We now go to a finer
resolution by decreasing the threshold to . The
contour information is fully preserved at this resolution, as can
be seen from Fig. 4(c), which is the edge image at a “finer”
resolution. The compromise that we make by obtaining finer
detail in this image is more noise or extraneous features that
are unimportant.

Since our ultimate goal is to track these features, it is
difficult to distinguish features of importance from the other
detail in the image. Fig. 4(d) shows the complementary image
of , which . This complementary
image in conjunction with the image at a coarser resolution

can be used to estimate important parameters that can
be used for feature tracking. For example, instead of working
on image , image , which has less noise, can be used
and, when at any point finer detail is required, the information
can be obtained from the complementary image.

Figs. 4–7 show the results of applying the proposed scheme
to our sequence of four images. Parts (a)–(d) of each of the
figures show the original image, edge image at a course resolu-
tion, edge image at a finer resolution, and the complementary
image at the corresponding level, respectively.

A. Comparison with Conventional Detectors

In this section, we compare our method for detecting edges
with two of the most frequently used conventional edge
detectors: the Sobel edge operator and the morphological
gradient edge detector.

1) Sobel Operator:The Sobel edge operator is a gradient-
based method for edge detection that consists of two con-
volution kernels, as shown in Fig. 8. The kernel shown in
Fig. 8(a) is sensitive to horizontal edges, while (b) is sensitive
to vertical edges. Using these kernels, the gradient at a pixel

can be approximated by .
The output of the Sobel edge operator to one of our images

is shown in Fig. 9(a). Notice how weakly the Sobel operator
responds to the Gulf Stream and eddy edges. This weak
response is a result of the smoothing effect of Sobel operators.
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(a) (b)

(c) (d)

Fig. 11. Differences between images. (a) Sobel gradient image (threshold 64). (b) Sobel gradient image (threshold 128). (c) Morphological gradientimage
(threshold 64). (d) Morphological gradient image (threshold 128).

Since the weak edges are similar to image noise, with respect
to intensity, the Sobel gradient technique tends to smooth the
weak edges along with the noise.

2) Morphological Operator: Another approach to edge de-
tection involves a nonlinear method based on morphological
filtering [14]. The dilation of a binary image by a structuring
element is defined as

(11)

The erosionof a binary image by is defined as

(12)

The dilation of a grayscale imageby a structuring element
is defined as

MAX (13)

where and are the coordinates of a cell in whose center
cell is the origin and is in the domain of .

Similarly, erosion of a grayscale image by a structuring
element is defined as

MIN (14)

The morphological gradient, on an image, is determined
from the dilation and erosion operators and is given by

(15)

For details, see [13].
Fig. 9(b) shows the result of the morphological gradient

operation with a 3 3 flat structuring element. As can
be seen, only the main coastline features are extracted as
strong edges in this operation. The reason for this can be
attributed to the morphological operations used to perform
the edge detection: erosion and dilation. Erosion removes
small features, relative to the size of the structuring element,
and dilation fills in gaps that meet the same criteria. The



776 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 3, MAY 1998

(a) (b)

(c)

Fig. 12. Quantitative comparisons: (a) represents the fraction of pixels for different Sobel gradient thresholds in common with the images produced
by our method, (b) is similarly defined for the morphological gradient method, and (c) is a graph showing the number of edge pixels for the three
methods at different threshold values.

weak edges that form much of the structure in the currents
and eddies happen to meet this criteria.

Threshold images indicate the signal strength of the weak
edges for the three methods being compared. Fig. 10 presents
two sets of images for two different grayscale threshold
values (64 and 128). Each threshold image is determined from
Fig. 9(a)–(c). Fig. 10 highlights the advantage our method has
in extracting weak edges from images. The Sobel gradient
method in Fig. 10(a) does not preserve the smaller structure
associated with eddies and currents ancillary to the main
current stream to the east of the coastline. The morphological
gradient method in Fig. 10(b) is even worse in this respect.
However, the results of our method in Fig. 10(c) for the same
grayscale threshold value show that, in addition to the more
prominent oceanographic structure, finer structure associated
with smaller currents and eddies are preserved. The same effect
is demonstrated in Fig. 10(d)–(f) for a larger threshold value of
128 , although as the threshold value is increased, structure
is removed from the image in all cases. We have observed the
retention of fine oceanographic detail by our wavelet-based

method for threshold values across the entire intensity interval
.

Using the threshold images computed from the three dif-
ferent methods, difference images are presented in Fig. 11(a)
and (d). The light grayscale values isolated along the edges
representing the coastline are pixels that are in either the
Sobel gradient images or morphological gradient images and
not in the image produced by our wavelet-based method.
The darker grayscale values, which can determine much of
the finer oceanographic detail when compared to Fig. 9(a)
and (c), represent edge pixels that are in images produced
by our method and not in the images produced by either
the Sobel gradient operator or the morphological gradient
operator (again, depending on the image under observation).
As mentioned, these so-called difference images clearly show
the smaller oceanographic detail captured by our method,
which correspond to weak edges in the original satellite image
but not captured by the other two methods.

The graphs in Fig. 12(a)–(c) show quantitative relation-
ships between our wavelet-based method, the Sobel gradient
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Fig. 13. Qualitative comparison.

method, and the morphological gradient method. Fig. 12(a)
shows the behavior of the fraction of pixels in the image
produced by the Sobel gradient method, which are in common
with our method across the possible threshold values. For low
threshold values (125), a high percentage of the pixels in
the image produced by the Sobel operator are in common
with the image produced by our method. However, as the
threshold increases, this percentage decreases markedly. The
interpretation is that weak edges are not filtered out at low
threshold values in the Sobel gradient images, but since they
are weakly represented, they are removed as the threshold
value increases. On the other hand, our method preserved
the weak edges across a wide interval of threshold values.
This is advantageous if the weak edges represent interesting
structures, and they do in these oceanographic images. Hence,
there appears to exist an element of stability across threshold
values for weak edges in our method.

Except for sharp discontinuities at threshold values 32 and
225, the percentage of pixels, with respect to the morpholog-
ical gradient images, in common with the images produced
by our method remains relatively constant around 43% [as
shown in Fig. 12(b)]. Tests show that this number depends
on the nature of the structuring element used in the dilation
and erosion operators of the morphological gradient method
as well as in the wavelet coefficients of our method.

Fig. 12(c) presents the number of edge pixels in threshold
images for each of the three methods. The number of edge pix-
els in the Sobel gradient and morphological gradient methods
drops suddenly for low threshold values, which implies and is
supported by viewing the loss of weak edges. The decrease in
edge pixel count is not as sudden for our method, and the count
remains relatively stable and greater than the other methods
until the threshold value becomes quite large (150 for the
Sobel gradient method.) Also, note that for a threshold value
of one, the Sobel and morphological gradient methods have
an extremely high number of edge pixels (perhaps this is a
result of capturing noise in the images). However, as seen from
the graph, our method captures the same level of detail for
threshold values from one to around 70, further substantiating
our claim of edge-detection stability.

A qualitative comparison of the Sobel gradient and mor-
phological gradient methods with our wavelet-based method
is summarized in Fig. 13.

VI. CONCLUSION

We have described a new computational scheme for
extracting fine edges from the oceanographic images. The
scheme was based on multiresolution decomposition of
images. This scheme yields defined edge features and
exhibits stable edge-preserving behavior across threshold

values compared to the Sobel gradient and morphological
gradient edge-detection techniques. The same concept of
multiresolution decomposition can be extended to address
dynamic tracking of these features from time series images,
but then the decomposition has to be not only in the spatial
domain, but also in the time domain.
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Paris, France: Hermann, 1990 (English translation of the first volume is
published by Cambridge, U.K.: Cambridge Univ. Press).

[17] Y. Meyer, “Ondelettes sur l’intervalle,”Rev. Mat. Iberoamericana,vol.
7, pp. 115–133, 1992.

[18] A. Cohen, I. Daubechies, and J. Feauveau, “Bi-orthogonal bases of
compactly supported wavelets,”Commun. Pure Appl. Math.,vol. 45,
pp. 485–560, 1992.

[19] I Daubechies, “Ten lectures on wavelets,”CBMS-NSF Region. Conf.
Series Appl. Math., SIAM, Philadelphia, PA, 1992, vol. 61.

Kiran K. Simhadri received the M.S. degree in system science from
Louisiana State University, Baton Rouge, in 1995.

He is a Software Engineer for a company related to General Electric
Company, WI. His research areas of interest image processing, computer
vision and pattern recognitions.



778 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 3, MAY 1998

S. S. Iyengar (M’88–SM’89–F’95) received the
Ph.D. degree in 1974.

He is Chairman and Professor of the Computer
Science Department, Louisiana State University
(LSU), Baton Rouge. He has been actively involved
in research in high-performance algorithms. He
has served as a Principal Investigator on research
projects supported by the Office of Naval Research,
National Science Foundation, NASA, The United
States Army Research Office, DOE, Naval Research
Laboratory, Jet Propulsion Laboratory (JPL),

and various state agencies and has served as a Consultant to many
government agencies as well as in private industry. He has been a Visiting
Professor/Scientist at JPL, ORNL, and the Indian Institute of Science. He has
made significant contributions and published in the areas of high-performance
algorithms in image processing, sensor fusion, parallel models of computation
for a variety of applications, computational aspects of motion planning, and
vision problems. He has published over 220 papers and has authored or
coauthored several textbooks for Prentice-Hall, CRC Press, and others. His
edited books have appeared in publications of the IEEE Computer Society
Press and Ablex. He has supervised over 29 Ph.D. dissertations and 60 M.S.
projects and theses at LSU. Many of his former students presently hold
positions at national research labs, including JPL, ORNL, and Los Alamos,
as well as university teaching positions.

Dr. Iyengar is a Distinguished Visitor of the IEEE, a member of the New
York Academy of Sciences, and was an ACM National Lecturer from 1985 to
1995. He was selected to be on the prestigious NIH-NLM review committee in
the area of medical informatics in 1993 for a four-year term. He is a winner of
the 1997 IEEE Technical Achievement Award for Outstanding Contributions
to Image Data Structures and Sensor/Signal Fusion. In 1996, he was awarded
the LSU Distinguished Faculty Award for excellence in research and the
Tiger Athletic Foundation Teaching Award. He has been a Guest Editor for
the IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON DATA AND

KNOWLEDGEENGINEERING, IEEE TRANSACTIONS ONSYSTEMS MANUFACTURING,
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Journal of Theoretical
Computer Science, Journal of Computers and Electrical Engineering, and the
Journal of the Franklin Institute, and he is a Series Editor forNeurocomputing
of Complex Systems.

Ronald J. Holyer received the B.A. degree in
physics and mathematics from Augustana College,
Sioux Falls, SD, in 1964, the M.S. degree in
physics from the South Dakota School of Mines
and Technology, Rapid City, in 1966, and the Ph.D.
degree in geology from the University of South
Carolina, Columbia, in 1989.

He is Head of the Computer Sciences and Physics
Section, Remote Sensing Applications Branch,
Naval Research Laboratory, Stennis Space Center,
MS. His interests are image processing, pattern

recognition, and automated image interpretation.

Matthew Lybanon received the B.S. and M.S.
degrees in physics from the Georgia Institute of
Technology, Atlanta, in 1960 and 1962, respec-
tively.

He is currently with the Remote Sensing Appli-
cations Branch of the Naval Research Laboratory,
Stennis Space Center, MS. His current research
interests include expert systems, generalized non-
linear least squares methods, genetic algorithms,
image processing, mathematical morphology, and
applications of those topics to the extraction of

information on ocean dynamics and sea ice from satellite observations.
Mr. Lybanon is a member of the American Geophysical Union, American

Physical Society, and American Association of Physics Teachers.

John M. Zachary, Jr. (S’97) received the B.S. degree in computer science
from Louisiana State University (LSU), Baton Rouge, in 1994. He is presently
pursuing the Ph.D. degree at LSU.

He was a Visiting Research Associate at the NASA Jet Propulsion Lab-
oratory, Pasadena, CA, and spent a year at the University of Alabama at
Birmingham. His research interests include content-based image retrieval,
computer vision, neural networks, and global optimization.

Mr. Zachary is a student member of ACM, AAAI, and SPIE.


