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This paper presents new heuristic search algorithms for searching combined rectilinear
(L1) and link metric shortest paths in the presence of orthogonal obstacles. The Guided
Minimum Detour (GMD) algorithm for L1 metric combines the best features of maze-
running algorithms and line-search algorithms. The Line-by-Line Guided Minimum
Detour (LGMD) algorithm for L1 metric is a modification of the GMD algorithm that
improves on efficiency using line-by-line extensions. Our GMD and LGMD algorithms
always find a rectilinear shortest path using the guided A* search method without
constructing a connection graph that contains shortest paths. The GMD and the LGMD
algorithms can be implemented in O(m + e log e + Nlog N) and O(e log e + Nlog N) time,
respectively, and O(e + N) space, where m is the total number of searched nodes, e is the
number of boundary sides of obstacles, and N is the total number of searched line
segments. Based on the LGMD algorithm, we consider not only the problems of finding
a link metric shortest path in terms of the number of bends, but also the combined L1
metric and link metric shortest path in terms of the length and the number of bends.

Keywords: L1 and link metric shortest paths, maze-running algorithms, line-search algorithms

1. INTRODUCTION

The problem of finding a shortest path in the
presence of rectilinear obstacles has applications in
robotics, VLSI design, and geographical informa-
tion systems [13]. In VLSI design, there are two
basic classes of sequential algorithms aimed mostly
at finding an obstacle-avoiding path, preferably
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the shortest one, between two given points: maze-

running algorithms and line-search algorithms.
The maze-running algorithms can be characterized
as target-directed grid extension. The first such
algorithm is Lee algorithm [12], which is an
application of the breadth-first shortest path search
algorithm. The major disadvantage of the original
Lee algorithm is that it requires O(n2) memory



92 J.S. LIM et al.

and running time in the worst case for n n grid
graphs. There are a large number of variations
(e.g. [1, 6-8, 10, 13, 14, 18-21,23,24]) of the ori-
ginal Lee algorithm. Hart et al. [8] proposed the
idea of using a lower bound on the Manhattan
distance between a source node and a target node.
Hadlock applied this to the shortest path algo-
rithm, called Minimum Detour (MD) algorithm [7].
For each searched grid node in a grid graph, he
used a new labeling method called detour number
which is the total number of grid nodes moves
away from a target node during the search.
Soukup [24] incorporated the depth-first search
with the breadth-first search to reduce search space
and time. This algorithm guarantees finding a path
if it exists, but not necessarily the shortest one.

Since all partial paths generated by maze-
running algorithms are represented by unit grid
line segments, these algorithms are still considered
memory-and-time inefficient. Line-search algo-
rithms [9, 16] have been proposed to achieve
improved performance. Since such algorithms
search a path as a sequence of line segments, they
save memory and quickly find a simple-shaped
path. The idea behind these algorithms is to reduce
the size of representation for all searched grid
nodes by a set of long line segments. The major
drawback of the line-search algorithms is that they
usually do not guarantee finding a shortest path.
Several recent line-search algorithms (e.g. [4, 13,
17, 22, 25]) are based on powerful computational
geometry techniques. Wu et al. [25] introduced a
rather small connection graph, the track graph,
which may contain all possible paths from a start
point to a target point including the shortest path,
but it is not a strong connection graph. The run
time of their algorithm is O((e + k)log t), where e is
the total number of boundary sides of obstacles,
is the total number of extreme edges of all
obstacles, and k is the number of intersections
among obstacle tracks, which is bounded by O(t2)
Zheng et al. [27] proposed an efficient geometric
algorithm for constructing a connection graph Gc.
They presented a framework for designing a class
of time-and-space efficient rectilinear shortest path

and rectilinear minimum spanning tree algorithms
based on G. De Rezende et al. [22] considered a
special case that all obstacles are rectangles. Their
algorithm constructs a strong connection graph
and finds a shortest path from s to in time
O(nlogn), where n is the number of obstacles.
Clarkson et al. [4] generalized the shortest path
problem to the case of arbitrarily shaped obstacles.
Their algorithm runs in time O(n log2 n). For the
special case where obstacles are just rectilinear line
segments, Berg et al. [2] studied the shortest path
problem in a combined metric that generalizes the

L1 metric and the rectilinear link metric. A good
survey of algorithms for the rectilinear shortest
path problem can be found in [13].

In this paper, we introduce new heuristic
algorithms, the Guided Minimum Detour (GMD)
algorithm and the Line-by-Line Guided Minimum
Detour (LGMD) algorithm. The GMD algorithm
incorporates the best features of maze-running
algorithms and line-search algorithms. The GMD
algorithm uses a heuristic search method called
guided A* that uses the A* search [8] with the
heuristic "don’t change direction". The GMD
algorithm reduces space, compared with the
existing maze-running algorithms without losing
its optimality. On the basis of GMD algorithm, we
present a modified algorithm called the LGMD
algorithm. The LGMD algorithm is a line-search
algorithm, which replaces the extended grid nodes
in the GMD algorithm to line segments. In the
worst case, our LGMD algorithm has the time and
space complexities comparable to those of existing
algorithms.

2. A NEW ALGORITHM: GUIDED
MINIMUM DETOUR ALGORITHM (GMD)

2.1. Definitions and Implementation

Let G be an n x n uniform grid graph that consists
of a set of grid nodes {(x, y)[x and y are integer
coordinates such that _<x <_ n and _< y _< n} (see
Fig. 1). For example, a grid node (3, 4) is located in
the third of x-axis and the fourth of y-axis. The
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FIGURE A path [s 1--, 2--, 3] and obstacles in a grid
graph G.

length between any two adjacent grid nodes in G is
assumed to be 1. A horizontal or a vertical line
segment depicted by a b in which all grid nodes
between a and b make a horizontal or a vertical
line in G. For example, there are three line
segments (s 1, 2, and 2 3) over a path
from s to 3 in the Figure 1. Let B {B1,B2,...,
Bp} be a set of mutually disjoint rectilinear simple
polygons with boundaries on G. Each polygon in
B is an obstacle.
A path P in G is represented by

P [v --4 v2-- ..-- Vk with a set of directed line
segment (vi Vi+lli 1,...,k-1 and vi repre-
sents a grid node and Vi+l are adjacent for
1 <_i<_ k-1}. The length of, denoted by L(P) is
k. The length k can be calculated using the
Manhattan Distance and the detour length by
the following Theorem 1.
For any path P in G, the detour length of P,

denoted by DL(P), is the total number of grid
nodes that proceed away from in P. Let M(s, t)
denote the Manhattan Distance between the start
node s and the target node in G. Clearly,
L(P) M(s,t) + 2 x DL(P) is the length of a
shortest path P from s to if DL(P)<_ DL(P’),
where P’ is any path from s to t. In the following
theorem, we restate the main results of [7].

THEOREM [7]

1. A path P [s---...--- t] has a length
L(P) M(s, t) + 2 DL(P).

2. If P is a shortest path from s to t, then
DL(P) min{DL(P)[e is a set of all pathsfrom
s to t}.

3. The path generated by the minimum detour
algorithm of [7] is a shortest one with the
minimized DL(P).

A path P can be represented as a sequence of
directed line segments such that no two consecu-
tive line segments have the same direction. A
subpath D [r u v w] in P is called a detour
(Figs. 2(a) and (b)), if directions of the three
consecutive line segments r u, u v, and v w
are different exclusively. We say that a detour D is
reducible if

(i) there exists a detour R [p u v q] of a
detour D=[ruvw] where p is on
r-u, q is on vw, and L(pu)=
L(v--, q) > 0, and

(ii) the vertices of p, u, v, and q make the
maximum size of rectangle without intersect-
ing any obstacles on p---, q.

Otherwise, D is a non-reducible. Examples of
reducible detours are shown in the Figure 2(a).
Reducible detours should be reduced prior to the
generation of the path [w ... t] in the Figure
2(a). The modified paths [r p q w] in Figure
2(a) are reduced detours. Examples of non-
reducible detours are shown in Figure 2(b).
The base node is generated when an extending

line segment meets one of the following condi-
tions:

a. Reducible Detours [r--u--+v--w] and Reduced Detours [r---),p----q---w]

FIGURE 2 Detours.
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(i) hits an obstacle or border of the graph G,
(ii) l hits a line segment passing through and s, or
(iii) passes a corner of obstacle.

The Figure 3 shows example of all possible
candidates of base nodes for the given graph.

Algorithm GMD (s, t)
//for brevity, "S=" and "S=" indicate addition to and taking-out from S, respectively//
//u v in COMPLETE consists of a 4-tuple (dir, C, DL, ptr)//
1 if s then stop;
endif;

2 NEW: null; OLD = s s; COMPLETE: null; d: 0;//initializations//
3 while OLD is not empty do//OLD contains line segments to be extended//
4 OLD=u- v;//from OLD, a line segment u v is taken out//
5 SEARCH (u--. v);
endwhile;

6 if NEW is empty then stop;//no path from s to exists//
endif;

7 d d + 1;//increase d, a lower bound of DL, by 1//
8 OLD: NEW; NEW’= null;
//when OLD becomes empty, all line segments in NEWare moved into OLD, then NEWis reset to empty//
9 go to3;
end GMD
procedure SEARCH(u v);

if DL(u + v) > d then NEWt= u v; DL(u V) is a detour length of P [s---. u v]//
2 elseif v is a base node then
3 COMPLETE=u v;//no more extensions for u-v//
4 for each unvisited neighbor node w of v do;
5 create a line segment v w;//since v is a base node, new line segments from v to

four possible directions (north, south, east, and west) are created//
6 if w is then stop;//a path from s to is found//
7 elseif v--w makes a detour [r- u v w] then
8 if w is an unvisited base node then change v- w to v -,w’
9 else extend v w to v w’ until a visited node or an unvisited

base node is reached;//use don’t change direction//
endif;

10 if w’ is an unvisited base node and Iv w’ < Ir u then
11 v w DEL_RD ([r u - v -* w ’]); // detect a reducible detour,

then a new line segment is returned when it is detected by DEL_RD//
12 update DL(v w);
13 SEARCH (v w);
14 else return();//w’ is a visited node//

endif;
15 SEARCH ( v w);

endif;
endif;

endfor;
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16 elseif a neighbor node w of v in direction u v is unvisited then
17 if w then stop;//a path from s to is found//
18 else extend u v to u w;//use don’t change direction//
19 SEARCH (u - w);

endif;
endif;

endif;
endif;

20 return O;
end SEARCH

procedure DEL_RD ([r u -- v w ’]); // deleting reducible detour if exists//
emanate an orthogonal line, U, from w’ toward r- u until r u is hit;

//the line orthogonal U is created from w toward r u until r u is hit//
2 move U toward u v until no obstacles are intersected;
3 return (U)
end DEL RD

2.2. Guided Minimum Detour (GMD) Algorithm

The following procedures are called Guided Mini-
mum Detour (GMD) Algorithm that find an
optimal shortest path using the A* search [8] with
the heuristic "don’t change direction".

In the GMD algorithm, each extended line
segment u ---, v in the datat structure COMPLETE
explained in Section 3 consists of a 4-tuple (dir, C,
DL, ptr), where

(i) dir is the direction of u v,
(ii) C is coordinates of the two end points of

u v such that {(x, Yl), (x2, Y2)},

FIGURE 3 Example of possible candidates of base nodes (.).

(iii) DL(u v) is a detour length of the path
P [s---...---u-- v], i.e., DL(u--- v) DL
(P’), and

(iv) ptr is a pointer that points a predecessor line
segment of u- v in COMPLETE.

The line segments are extended as follows. Line
segments to be extended are always taken one by
one from the quene OLD. When a line segment
u--+ v is taken from OLD, the node v is checked as
to whether it is a base node or not. If it is a base
node, then extensions from v to open directions
(north, south, west, and east) are considered.
Then, u v is stored in COMPLETE and the
line segments from v to the open neighbors
(v w’s) are created. If v is not a base node, the
"don’t change direction" heuristic is enforced by
extending u v to u w, where w is a neighbor of
v in the direction of u- v. Each line segment is
extended to one grid node at a time and controlled
by the value of the global detour length d, the
lower bound of DL. Line extensions from v of
u v keep proceeding until a base node or a
visited node is hit. When a line segment is
extending one node away from the target node t,
the detour length (DL) of the line segment is
increased by 1. Then, if the detour length of the
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line segment is greater than d, the line segment is
added to a queue NEW for the next iteration;
otherwise, the line segment continues its exten-
sions. When OLD becomes empty, all line
segments in NEW are moved into OLD increasing
the lower bound d by 1, then NEW is reset to
empty.
An important operation that reduces the search

space and ensures the shortest path is the
elimination of the reducible detours defined above.
This operation is also applied to the LGMD
algorithm, which will be explained in Chapter 3.
A detour [r u v w] can be easily detected
during the search by tracing two segments back-
ward. To detect and delete a reducible detour, the
procedure DEL_RD in Guided Minimum Detour
Algorithm is called only when the length of v w’
(represented by Ivw’I) is less than Irul,
where w’ is the first unvisited base node from w
in direction of v - w. The reason DEL RD is
called only when Iv w’ < Ir - ul is as follows. If

Ir ul < Iv w’l, then a non-reducible detour can
be generated when the path r-uvw is
constructed. Let w* be an intersected point on
v w’ by a perpendicular line segment from r
toward v w (see Fig. 4). There are two cases
that cause Ir ul <_ Iv- w’l"
(i) No obstacle on r w* (Fig. 4(a)). The path

r w* has been generated before r-- u v-
w* is constructed, since DL(r w*) is smaller
than DL([r u v w*]).

(ii) Obstacle(s) on r w* (Fig. 4b). The path
[r o p - q] has been generated before r
u - v - q]) is constructed, since DL([r o

p q) is smaller than DL([r u- v q]).

a. No Obstacle on r-w* b. Obstacle(s) on r-->w*

FIGURE 4 No calling the procedure DEL_RD for these
Detours [r u v w].

When DEL_RD is called, a reducible detour is
changed to a non-reducible detour. Figure 5 shows
two examples solved by the GMD algorithm, then
the codes for GMD algorithm is presented.

2.3. Analysis of the GMD Algorithm

For the length of a path from s to t, an obvious
lower bound is M(s, t), the Manhattan distance
from s to t. By Theorem 1, if a path from s to
with length M(s, t) + 2d, where d is a lower bound
(positive integer), does not exist, then the length of
shortest path from s to is greater than or equal to

M(s, t)+ 2(d + 1). Our GMD algorithm uses the
similar principle of the MD algorithm [7] so that it
searches essential paths, which implies all paths in
the MD algorithm, of length M(s, t)+ 2d before
searching for paths of length M(s, t)+ 2(d + 1).
By Theorem 1, we have the following claim:

THEOREM 2 The path P [s-...-- t) generated
by the GMD algorithm is an obstacte avoiding
shortest path.

The performance of the GMD algorithm can be
expected much better than the MD algorithm,
which is proved by Theorem 3.

THEOREM 3 The set of searched nodes by the
GMD algorithm is a subset of the set of searched
nodes by the MD algorithm.

Proof Let SMz be the set of the searched space
of the GMD algorithm and SMz be the set of the
searched space of the MD algorithm. Let/ be a set
of base nodes such that/ c_ Sz. Then/ c_ SMz),
since the detour length of the path from the start
node s to a base node in SMz) is minimized. Let g
be a node such that g E SMz, g E SD, and g /.
Assume there is no obstacle around g. Since g is
not a base node, g has only one choice, g’, to be
extended toward a goal node by the "don’t change
direction" heuristic in GMD. However, g has two
choices, g’ and g" toward a goal node by the MD.
Then g Stz and gStz). So, Stz c_ Stz.
Now let us analyse the time complexity of the

GMD algorithm. First, consider the time for node-
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FIGURE 5 Snapshots for the GMD algorithm.

by-node extension operations. We define the
following basic operations related to the GMD
algorithm:

All line segments in G (line segments of
obstacles, boundaries of the graph, and vertical
and horizontal lines through s and t) are stored in
the data structure named CRITICAL. Then, a
base node can be found using CRITICAL. The line
segments extended during the search are stored in
the data structure COMPLETE.

(i) Given grid node p with a direction d, find the
first base node encountered by a line emanat-
ing from p in direction d. We refer to this
operation as finding the first base node.

(ii) For the interval I from the grid node p to the
base node b found in finding the first base
node operation, check whether a segment in
COMPLETE is intersected or not. We refer
to this operation as check intersection in
COMPLETE.

(iii) Given grid node p with a direction d, find the
first line segment encountered by a line
emanating from p in direction d. We refer to
this operation as finding the first obstacle line
segment.

THEOREM 4 [5] Finding the first base node can be
done in O(log e) time, where e is the total number of
line segments in CRITICAL. The data structure of

CRITICAL can be built in O(eloge) time using
O(e) space.

THEOREM 5 [15] Checking intersection in COM-
PLETE can be done in O(log N) time using O(N)
space, where N is the number of extknded line
segments in COMPLETE. Insert operation for
storing an extended line segment in COMPLETE
can be executed in O(log N) time.

THEOREM 6 [5] Finding the first obstacle line
segment can be done in O(log e) time, where e is the
total number of line segments in CRITICAL.

First, consider the time for node-by-node
extension operations. The data structure of CRI-
TICAL is a static data structure, which can be
constructed in O(e log e) time and O(e) space as a
pre-processing by Theorem 4.

Using the data structure in [5], each operation of
finding the first base node in CRITICAL can be
carried out in O(loge) time by Theorem 4. The
searched line segments in the priority search tree
[15], named COMPLETE, are inserted whenever it
is created. Then each operation of checking
intersection in COMPLETE can be carried out in
O(logN) time, where N is the total number of
created line segments. This operation is used for
investigating whether a current line segment hits a
line segment in COMPLETE or not. Let m be the
total number of nodes of G visited by grid
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expansions, i.e., m [S6Mz[. Since there are O(e)
base nodes among m nodes and O(N) line seg-
ments, then the total time for grid expansions is

O(m + e log e / N log N). (1)

The rest of the computations are associated with
the reducible detour detection and deletion opera-
tions. There are two related basic operations (i)
and (iii) defined above. When DEL_RD is called, a
reducible detour has to be changed to a non-
reducible detour. First, the first base node w’ in
Figure 6(a) can be found, which takes O(loge)
time by Theorem 4. Second, the line segment
u’ -v’ of the non-reducible detour in Figure 6(c)
can be found satisfying the following conditions
such that:

(i) u’ --+ v’ is parallel to u-+ v,
(ii) u’ -+ v’ does not intersect any obstacle, and

(iii) the length of w’ -+ v’ should be minimized.

In example of Figure 6, the nine lines (dotted
lines) are generated to find u’ v’. By the dotted
line 1, an end point is obtained from the hit line
segment such that one of its two end points is the
closer to the line segment u v. Then, the dotted
line 2 is emanated from the closest end point l. By
the same way, repeatedly, u’ v’ (dotted line 9)
that does not intersect any obstacle is found. If the
final emanating line segment, u’ v’, overlaps
u- v, the detour is not reducible. Otherwise, the
reducible detour [r-+ u-v w’] is reduced to
[r- u’- v’- w’] as shown in Figure 6(c). Since
O(log e) is required forfinding thefirst obstacle line
segment by Theorem 6, the time required to reduce

a reducible detours is O(ltloge) where It, is the
number of dotted lines in Figure 6. The sum of It
for all the detours constructed by the GMD
algorithm cannot exceed O(e) so that the total
time required for reducing detours is

0 (e log e). (2)

Taking into account all the time required for
grid extensions(l) and reducing reducible de-
tours(2), the time complexity ((1)+ (2)) of the
GMD algorithm is O(m + e log e + Nlog N). The
memory space required is O(e + N). On the basis
of above analysis, we have the following claim.

THEOREM 7 [5] The GMD algorithm can be
implemented in 0 (m + e log e + Nlog N) time

and O(e + N) space, where e is the number of line
segments in CRITICAL, m is the total number of
visited grid nodes, and N is the total number of
searched line segments.

Figure 7 shows how the same example in [24] is
solved using the four variant maze-running algo-
rithms. The size of their expanded nodes is shown
in Figure 8. Figure 8 summarizes some experi-
mental results we have conducted with the
randomized obstacles in a 30 40 grid graph.
Column 2, "shortest path length", shows the length
of the shortest path for each example.
The performances over the GMD algorithm is
shown in the last column "Performance (times)".
For each algorithm, we give the total number of
the expanded nodes and percentage of the
searched portion over the total number of nodes
respectively.

FIGURE 6 Deleting the reducible detour [r u v w’ to [r u’ v’ w’].
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Lee (917) Hadlock (313) Soukup (215) GMD (79)
(# of searched nles are represemed in pareneses)

FIGURE 7 Expanded nodes of the four variants for the example of soukup [24].

. 1%of %of #of %0t’
Lsh Seethed Searohed Sll Searched Scvehcd rhed

Nodes Portion Nodes Portion Nodes Portion

35 917 79% 313 27% 215 19%

36 1060 95% 566 51% 244 21%

48 1079 96% 700 62% 323 29%
53 1093 97% 673 60% 573 51%

54 1067 94% 859 74% 440 39%

59 1101 96% 774 68% 387 3404

942 83% 679 60% 511

921 84% 680 62% 609

1024 93% 531 48% 404

1070 96% 813 73% 812

1126 95% 823 70% 836

1087 97% 966 86% 881

1041 92% 698 62% 1’"520 ,I

67

71

72
74

78

150

66

*using 30x40 grid graph with randomized obstacles

45%

56%

37%

73%

71%

78%

46%,

79 7% 11.3 3.9 2.7
53 5% 20.0 10.7 4.2

169 15% 6.4 4.1 1.9
152 13% 7.5 4.6 3.9

202 18% 5.3 4.2 2.2

193 17% 5.7 4.0 2.0

228 20% 4.2 3.0 2.3

207 19% 4.4 3.3 2.9

225 20% 4.7 2.4 1.9
185 17% 5.6 4.3 4.3

150 13% 7.3 5.4 5.5

265 24% 4.0 3.6 3.3

176 16./.o. 7.2 4.5 3...!

FIGURE 8 Comparisons of the experimental results.

3. A MODIFIED ALGORITHM: LINE-BY-
LINE GUIDED MINIMUM DETOUR
ALGORITHM (LGMD)

Let us now consider a modification of the
GMD algorithm. Now, without losing the general
features of the GMD algorithm, we contemplate
line-by-line extensions rather than node-by-node
extensions to generate line segments. Each line
segment in COMPLETE must be from a base
node to a base node except the line segments
constructed by deleting reducible detour. In other
words, a line segment is extended until a base
node is hit. A 4-tuple (dir, C, DL, p) information
(refer to the definition in chapter 2) is assigned to

each extended line segment uv. The line
segment that has the lowest detour length will
be chosen for the next extensions. To implement
this modification, we use a priority queue, called
OPEN, to select the line segment that has the
lowest detour length instead of the queues OLD
and NEW in the GMD algorithm. By the queue
OPEN, the global variable d, detour length, in
the GMD algorithm is not needed. Such a
modified algorithm is called the Line-by-Line
Guided Minimum Detour (LGMD) algorithm.
The LGMD algorithm not only compromises
the existing GMD algorithm’s drawback-the
running time-but also shares the solution optim-
ality of the GMD algorithm.
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Following are the detailed procedures of the
LGMD algorithm including the above operations.
For the same example in Figure 7, the generated
whole line segments with sequence numbers and
detour lengths (nl/nz) by the LGMD algorithm are
shown in Figure 9.
By an analysis similar to that of the GMD

algorithm, we conclude the performance of the
LGMD algorithm by the following theorem.

THEOREM 8 The LGMD algorithm can be im-
plemented O(e log e + Nlog N) time and O(e + N)
space, where e is the number of line segments in

CRITICAL and N is the total number of searched
line segments.

4. A COMBINED LENGTH AND BENDS
SHORTEST PATH

The objective of this chapter is to develop an
efficient combined length and bends shortest path
problem using the LGMD algorithm shown in
Chapter 3. The number of bends on paths gains
more attention recently [2, 26]. The current short-

Line-by-Line Guided Minimum Detour (LGMD) Algorithm

//for brevity, "S <=" and "S <=" indicate addition to and taking-out from S, respectively//
//u v in COMPLETE consists of a 4-tuple (dir, C, DL, ptr)//
algorithm LGMD(s, t);

if s then stop; endif;
2 OPEN<= s s; COMPLETEnull;
3 while OPEN is not empty do
4 OPEN= u v COMPLETE<= u v;
5 SEARCH (u v);

endwhile;
6 stop;//OPEN is empty; no path from s to exists//
end LGMD
procedure SEARCH_L (u-- v);

//let b be the set of nearest unvisited base nodes from v in all possible directions//
for each base node w’ in b do;

2 if there is no intersections on v w’ then create a line segment v w ’,
3 if w’ is then stop;//a path from s to is found//
4 elseif v w’ makes a detour [r -, u - v - w ] then
5 if L(v w’) < L(r u) then
6 v -- w’:= DEL_RD([r -- u -- v -. w ’]);
7 update DL(v w);
8 OPEN<= v-- w’"

endif;
9 else OPEN<= v - w’"

endif;
endif;

endif;
endfor;

10 return();
end SEARCH L
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Trial Line for Deleting Reducible Detour
Base Node

n1/n2 Sequence Number of Extensions/Detour Length

FIGURE 9 Extended line segments for the LGMD algorithm.

A Minimum-Bend Path (LGMD_MB)
A Shortest Minimum-Bend Path (LGMD_SMB)
A Minimum-Bend Shortest Path (LGMD_MBS)

FIGURE 10 Examples of different shortest paths.

est path algorithms find a shortest path but it
leaves the number of bends in the solution path
uncertain. Yang et al. [26] provide a unified
approach by constructing a path-preserving graph
guaranteed to preserve all these kinds of paths and
give an O(k + e loge) algorithm to find them,
where e is the total number of obstacle edges, and
k is the number of intersections between tracks
from extreme point and other tracks, k is bounded
by O(ne) where n is the number of obstacle. We
will consider, specifically, the problems of finding a
minimum-bend path, a minimum-bend shortest
path, and a shortest minimum-bend path without
constructing any track graph. In the dynamic
environment like with mobile obstacles, the track
graph (path-preserving) has to be reconstructed
whenever any obstacle is moved. However, the
data structure for LGMD without track graph
needs only a few operations of insertion or
deletion for line segments of a moved or changed
obstacle. The problems to be considered in this
chapter for shortest paths are as follows (refer to
Fig. 10)"

(i) LGMD_MB: a path with a minimum number
of bends

(ii) LGMD_MBS: a path with a minimum-bend
path and shortest length

(iii) LGMD_SMB: a shortest path with minimum-
bend path

The procedures for the LGMD_MB and
LGMD_SMB are similar to the LGMD algorithm
in Chapter 3. Let us discuss the LGMD_MB
algorithm. Each line segment in COMPLETE
must be from a base node to a base node. For each
line segment u v in COMPLETE, a 4-tuple (dir,
C, MB, p) information (refer to the definition in
Section 2.1 for dir, C, and p) is assigned to each
extended line segment uv, where MB is a
number bends of a path P [s...u v].
The line segment that has the lowest number of

bends will be chosen for the next extensions. We
use a priority queue, called OPEN, to select the line
segment that has the lowest MB as in the LGMD
algorithm. Such a modified algorithm is called the
LGMD_MB algorithm. The difference from the
LGMD algorithm is that we substitute DL to MB
as a lower bound.

Followings are the detailed procedures of the
LGMD_MB algorithm. For the same example in
Figure 7, the generated whole line segments with
generated sequence numbers and MB by the
LGMD_MB algorithm are shown in Figure 10.

LGMD_MB Algorithm
algorithm LGMD_MB (s, t);
//same to the lines 1-6 in algorithm LGMD (s, t)
described in Section 4//
end LGMD MB



102 J.S. LIM et al.

procedure SEARCH_MB (u v);
//same to the lines 1- 6 and 8-10 in the procedure
SEARCH_L described in Section 4//

7 update MB (v -- w);
end SEARCH MB

By an analysis similar to that of the LGMD
algorithm, we conclude the performance of the
LGMD_MB algorithm by the following theorem.

THEOREM 9 The LGMD_MB algorithm can be
implemented in O(e log e + Nlog N) time and
O(e + N) space, where e is the number of line
segments in CRITICAL and N is the total number
of searched line segments.

The Figure 11 shows an example to find a
shortest path using LGMD_MB algorithm. The
bolded line-segments from s to is the minimum
bend path that has the length 40 and four bends,
represented by nl/n2 40/4.
The procedures for the LGMD_MBS algorithm

are same to the LGMD_MB algorithm except the
lower bound. For each line segment u v in
COMPLETE, a 5-tuple (dir, C, DL, MB, p)
information is assigned to each extended line
segment u v. Among the line segments that have
the lowest MB, a line segment with the lowest DL
will be chosen for the next extensions.

Similarly, the procedures for the LGMD_SMB
algorithm can find a shortest path with minimum

Base Node
nln Sequence Number ofExtensions/MB

FIGURE 11
algorithm.

Extended line segments for the LGMD_MB

number of bends using a 5-tuple (dir, C, DL, MB,
p) information for each line segment u v in
COMPLETE. Among the line segments that have
the lowest DL, a line segment with the lowest MB
will be chosen for the next extensions.
By an analysis similar to that of the LGMD_MB

algorithm, the performance of the LGMD_MBS
algorithm and the LGMD_SMB algorithm are
concluded by the following theorem.

THEOREM 10 The LGMD_MBS (or LGMD_

SMB) algorithm can be implemented in O(e log e
+ Nlog N) time and O(e + N) space, where e is the
number of line segments in CRITICAL and N is the
total number of searched line segments.

5. SUMMARY AND CONCLUSIONS

We introduced a heuristic approach to find recti-
linear (L1) shortest path with presence of ob-
stacles. The GMD algorithm combines the best
features of maze-running algorithms and line-
search algorithms. The LGMD algorithm is a
modification of the GMD algorithm that improves
on its efficiency. A comparison of the new
algorithms with the existing algorithms is pre-
sented in Figure 12.

Let us compare the LGMD algorithm with the
algorithm given by Wu et al. [25]. Before the
search for a shortest path from s to starts, the
algorithm in [25] constructs a track graph Gr. The
space for storing Gr is O(e + k), and the time for
constructing Gr and finding a shortest path from s
to is O((e + k)log t), where e is the total number
of boundary sides of obstacles, k is the number of
nodes in Gr, and is the total number of extreme
edges in the obstacles (for the definition of extreme
edges, refer to [25]). Our LGMD algorithm takes
O(e + N) space and O(e log e + Nlog N) time. In
the worst case, O(e), k O(e2), and the space
and time complexities of the algorithm in [25] are

O(e2) and O(e21oge). The performance of our
LGMD algorithm depends on N, the total number
of searched line segments. Since our LGMD
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Grid Graph

O(eloge+Nlogh
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Guided A*
Optimal

Not Needed

FIGURE 12 Bounds on the algorithms discussed in the previous sections.

algorithm does not have a preprocessing phase for
generating Gr, the total number N of searched line
segments tends to be much smaller than O(e2). The
use of detour length, "don’t change direction"
heuristic, and reducible detour deletion operations
is another factor resulting in a small N. Therefore,
our LGMD algorithm can be expected to outper-
form the algorithm given in [25].

Since the detour length as a lower bound in our
algorithms can be substituted for the number of
bends in the rectilinear link metric [2, 11, 26] or the
channel wiring density [3], our algorithms can be
easily extended to these problems. We described
the problem of finding a shortest path in terms of
the number of bends and combined length and
bends in Section 5.
Our heuristic approach is designed for one-time

query. If, however, the repetitive mode is needed in
some applications, the heuristic search method in
both the GMD and the LGMD algorithm can be
performed on a connection graph for the repeti-
tive-mode queries [27].
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