
Discovery of Web Frequent Patterns and User Characteristics from Web Access
Logs: A Framework for Dynamic Web Personalization

 Sumeet Dua,
Louisiana State University,

sumeetd@bit.csc.lsu.edu

Eungchun Cho
Kentucky State University,
eccho@gwmail.kysu.edu

 S.S. Iyengar
Louisiana State University,

iyengar@bit.csc.lsu.edu

Abstract
An automatic discovery method that discovers frequent
access routines for unique clients from web access log
files is presented. Proposed algorithm develops novel
techniques to extract the sets of all predictive access
sequences from semi-structured web access logs.
Important user access patterns are manifested through
the frequent traversal paths, thus helping understand
user surfing behaviors. The predictive access routines
discovered by AllFreSeq are also useful for
understanding and improving web-site domain tree.

1. Introduction:

 Data Mining, commonly known as Knowledge
discovery in databases has opened new avenues in the
areas of database research. The purpose of data mining
is to facilitate understanding large amounts of data by
discovering interesting regularities and rules. The
World–Wide-Web offers tremendous opportunities for
marketers to reach a vast variety of audiences at a less
cost than any other medium. Recent studies have shown
that Web consumes more Internet bandwidth than any
other application [11]. With huge amount of capital
invested in these sites, it has become necessary to
understand the effectiveness and realize the potential
opportunities offered by these services.

Access log files provides a wealth of information about
visitors to the web site. Popular web sites have their web
logs growing at a tremendous speed adding hundreds of
megabytes per day. Condensing these colossal files of
raw web log data in order to retrieve significant and
useful information is a non-trivial task. Current web log
analysis programs are unable to accurately determine
unique visits, users, and user demographics, or even
access totals for each page after caching are taken into
account. This research is a step closer to perform
dynamic analysis on such huge amounts of data and
help institutions make effective use of the web access
history for server performance enhancement, system
design improvement, customer targeting in Marketing

industry and means to cross-tabulate data to see which
web-items are been selected by certain audience
segments. The primary important task is to uniquely
identify the number of distinct users visiting your site.
We call these distinct sessions as “unique threads”.
After identifying these unique sessions from the access
log we present techniques to determine for each of such
unique users:
 Number of accesses to the Web Server Number of times
a Intermediate index pages are accesses from the home
page Order of the page accesses by each of the unique
users.  This helps to evaluate the train of thought of the
users Frequent access patterns for each of these Unique
users Cyclic links within the Client/Web Server domain
 This knowledge of common and popular patterns can
help us in the design of static hypertext organization
that requires user intervention. More interestingly, we
present a framework to customize the web site on the fly
and dynamically link hypertext pages for individual
users. The objective is to match an active user’s access
pattern with most of the categories discovered from our
algorithm.  Beside by using dynamic web server
suggestion, we may put user category information to
improve server performance. The server may pre-fetch
pages that a user is likely to visit soon, based on what he
has accesses and what category he falls into.  Needles to
mention combination of these two frameworks can be
used to design a Dynamic Web server with high
performance index and efficient information retrieval.

1.1 Web Access log model:

 Web server access log files contains valuable
information about the user access behavior. A web
server access file entry contains the following entries:
• Host client Internet Protocol (IP) address
• Time stamp
• Method employed
• URL (Uniform Resource Locator) address of the

accesses document
• HTTP (Hyper Text Transfer Protocol) version
• Return code (status of the request)

0-7695-0559-7/00 $10.00 � 2000 IEEE 



• Bytes transferred
• Referrer page URL
• Browser used
• Client Operating System

205.188.209.71 [26/Nov/1999:19:35:34 -0600]
"GET/home.html HTTP/1.0" 20 0 401
“http://www.lsu.edu” “Mozilla/4.0”
205.188.209.71 [26/Nov/1999:19:35:37 -0600]
"GET/research/research.html HTTP/1.0" 20 0 401
“/index.html” “Mozilla/4.0” 205.188.209.71
[26/Nov/1999:19:35:49 -0600]
"GET/research/lab/index.html HTTP/1.0" 20 0 401
“/research/research.html” “Mozilla/4.0”

Figure 1: Sample Web Access Log in Extended Log
Format

 A sample set of entries in a web access log is shown is
figure 1. Unique user identifier is usually not available
in the log file. The closet estimate is the number of
“unique sessions” which is determined by the number of
different IP addresses in the log file. However this
method of estimating these unique sessions is less than
accurate. This is because:
1. Dial-up users are usually assigned a different IP

address each time they connect to the ISP
2. Users of commercial online services (e.g. AOL,

MSN) access the internet through a number of
Internet “gateways” each of which has their IP
address logged in the Access log

3. Users from the organization intranet connect
through proxy computers each with a IP address
(that is logged)

4. Public terminals, e.g. in libraries, allow many users
to use the same computer.

 This implies that we need a Profile tracking system to
uniquely identify a unique session. Next section
describes a technique to uniquely identify a user session.

1.2 Organization of the paper:

 The rest of the paper is organized as follows. Section 2
describes the Discovery process of Unique Client access
routines. Section 3 simulates the proposed approach
with experimental data. Section 4 proposes some
applications of the approach. We conclude with a
summary in section 5. Some future work is proposed in
section 6 and section 7 lists the references.

2. Discovery of Unique Client’s Access
Routines

 We cast a problem of identification of users unique
access sequences. These sequences are used as a input to
our algorithms to discover frequent access routines for
each client that satisfy the condition of minimum
support.

2.1 Log Thread

 Before we proceed further, let us define a parameter
called log thread. A log thread is a non-empty unordered
collection of items (and without loss of generality, we
assume that all access pairs of a log thread are sorted in
increasing order). For each log record, we use a referral
page and the accessed page to form a hyper linked log
thread. In addition to this also we also associate
accessed URLs of the neighboring log entries. More
formally,
 If (Ri, Ui) represents a access pair , then a log thread of
a session S can be expressed as:
TLS = {(R1, Y1), (R2, Y2), …, (Rn, Yn)}
 Where, Ri+1 = Yi, 1≤ i < n.
 A new pair (Rj, Yj) can be appended to the thread if Rj
= Yk , 1≤ k ≤ n, or R1= Yj

 Now, the local clients or various proxy servers generally
cache some web pages, or both, to reduce network
traffic. So the entries for such accesses to the logged
pages, result in an inconsistency. These break points in
the threads can be accounted for by building the
backward paths using the domain knowledge of the Web
site. A sample domain knowledge tree of a web site is
shown in Appendix 1.
 So the rules for appending a new access pair (Rj, Yj) to
the web log demand the following heuristics:

1. A new pair (Rj, Yj) can be appended to the thread if
Rj = Yk , 1≤ k ≤ n, or R1= Yj

2. If Rj ≠ Yn , a backward access path , derived the
web domain knowledge tree,  must be first added
before the access pair is appended. This ensures that
there is a legitimate flow of data paths of accesses
URLs in the identification of Log thread. There can
be multiple candidate threads to which the access
pair can be appended. For simplicity, we use a rule
that the access pair must be appended to the log
thread if and only if the number of access logs
required for building the breakpoints is least among
candidate threads. This ensures that same sub-
threads do not appear in different threads.

 After we have appended sufficient access pairs to the
log thread table, the log thread can be presented as the

0-7695-0559-7/00 $10.00 � 2000 IEEE 



sequence of accesses URLs. Thus a log thread can now
be represented as:

TLS = {R1, R2, …, Rn}
TLS=(/home.html,
/research/research.html, /research/lab/index.html,
/research/lab/cclms/cclms.html,
/research/lab/cclms/projects/index.html,
/research/lab/cclms/projects/parallel/index.html)

Figure 2: Log Thread

2.2 Identification of unique session:

 We use the following attributes of the access log file
entry to uniquely identify a user session:
Cidi = IP address of the Client 
Ti = Timestamp of access 
Ui = URL accessed by the client
Ri = Referral page
 Different Cid indicates different user sessions. If Cidi (
Cidj then the access belong to different user sessions. If
the condition Cidi = Cidj is satisfied and Tj – Ti <
Tthreshold , where Tthreshold  is the predetermined time
width of access, then the access are for unique user
sessions If this conditions is not satisfied then the
accesses are for different user sessions.

2.3 Identification of Passage Sequence:

 Once we have identified unique sessions and the
corresponding log entries, we build a log thread
structure for each of these sessions. If the above
criterions for unique sessions are satisfied, then a log
thread is identified for the entries that have same Cid
and Tj – Ti ( Tthreshold .
 The Log thread, TL, has a unique identifier and
contains a set of access pairs. A Client, C, has a unique
identifier and has a associated list of Passage sequence P
which is a triplet of   ( Tstart , Tend , TL) where:
 Tstart is the starting time of the Passage sequence and
Tend is the ending time of the Passage sequence. TL is
an ordered log thread of the unique client

P205.188.209.71={26/Nov/1998:19:35:34 –
0600,11/Dec/1998:14:21:35–0600,
[(/home.html,/research/research.html,
/research/lab/index.html, /research/lab/rrl/index.html,
/research/lab/rrl/mission.html),
(/home.html,/research/research.html,
/research/lab/index.html,
/research/lab/cclms/cclms.html,

/research/lab/cclms/projects/index.html,
/research/lab/cclms/projects/parallel/index.html,/researc
h/lab/cclms/projects /parallel/index.html),

Figure 3: Passage Sequence for Client
205.188.209.71(26/Nov/1998:19:35:34 –0600,
11/Dec/1998:14:21:35 –0600)

 Without loss of generality we assume that, no Client
has more than one Passage Sequence with the same time
stamp, so that we can use (Tstart, Tend) as the Sequence
identifier. We also assume, as indicated earlier, that the
list of Client’s Passage Sequences are sorted in time.
Thus the list of Client’s Passage sequence is itself a
sequence (P1, P2… Pn). A sample passage sequence is
shown in figure 3.
 A Client –sequence, C, is said to contain a sequence ( (
C, that is, ( is a subsequence of the Client-sequence C.
The support or frequency of a sequence ( is the fraction
of the total Passage Sequences that contain the query
sequence (, i.e.
Given a application defined threshold called the
minimum support (denoted minimum_sup), we say that
a sequence is frequent if fr((, D) ( minimum_sup.
 Now the problem of mining web access patterns can be
formulated as follows:
 Given a Passage Sequence P of Client Log threads, the
problem of mining access patterns is to find all frequent
Log sub-threads in the Passage Sequence.

2.4 Access Tree:

 After we have identified unique passage sequences for
each of the unique clients we mark the occurrences of
access routine in a sparse access graph G (V, E), where
|V| is the number of vertices and |E| is the number of
edges. Since in such a graph there is one and only one
path between every pair of vertices, such graph is an
access tree from the following theorem:
Theorem 1: If in a graph there is one and only one path
between every pair of vertices, G is a tree.
Proof: Existence of a path between every pair of vertices
assures that G is a connect graph. A circular link
(circuit) in a graph with more than two vertices implies
that there is at least one pair of vertices a, b such that
there is two distinct path between a and b. Since G has
only one path between every pair of vertices, G can have
no circuits. Therefore G is a tree.
 Each leaf of Access tree is a data structure of the type
Node that is a tuple of Parent Node(s), Weight of the
node, Child Node(s). The exact data structure is
described in figure 4:

0-7695-0559-7/00 $10.00 � 2000 IEEE 



Type node
{
Parent [I], I ( [1..N]
Weight
Child [J], J ( [1..M]
}

Figure 4: Node data structure

 node.parent[I] contains the name of the parent node of
whose current node is a child. This attribute is empty
when the node is first formed.  node.weight attribute
contains the number of times the node appears in the
sequence of a client access. The value is initialized to
one when the node is first formed and is incremented as
the node appears again.  node.child[j] contains the name
of the child node for which the current node is a parent.
This attribute is empty for the last node in the sequence.
 To describe the running time of traversing such a tree
we represent it in the form of G=(V, E) where input is in
terms of number of vertices |V| and number of edges |E|
of the graph.

2.5 Knowledge Discovery Process:

 The next step is to discover frequent branches that have
a minimum support of minimum_supp. For
experimental purposes we assume a minimum support =
25%. This means that the given branch appears at least
in 25% of the client’s log threads. We present an
algorithm that discovers all sequences and their absolute
support value. As the next step we identify the sequences
that satisfy the minimum support criterion. The
algorithm AllFreqSeq has two main steps. As the first
step we identify the end node using Depth first search
technique and then as a second step we backtrack to the
root node and calculate the absolute support value. The
algorithm is formally described in figure 6:
 Let G be the given Client’s access tree. Let R be the
root vertex from where the search begins. Let FREQ and
FREQPASS be the subset into which G has to partition
 Algorithm AllFreqSeq:
Input: Clients Access Tree G(V, E), minimum_supp
Output: FREQPASS -> Frequent sequences with support
value
Main algorithm Start
Step 1: Set v=R, I=0, FREQ = NULL, FREQPASS =
NULL
Step 2: Set I=I+1, support(FREQ) = 0

Step 3: Look for a un-transversed edge incident on v If
there is no such edge (i.e., every edge incident on v has
already been transversed) go to step 5. Otherwise:
Pick the first untraversed edge at v, say (v, w) and
traverse this edge. Orient the edge (v, w) from v to w.
Now you are at vertex w.
Step 4: Add edge (v, w) to the set FREQ. Set v=w and
go to step 2.
Step 5: If w.weight in FREQ < minimum_supp then
Delete edge (v, w) from FREQ
If no then Support(FREQ) = w.weight
Delete edge (v, w) from G
Step 6: Check if there exists some traversed edge (u, v)
in set FREQ oriented towards v
If there is such an edge move back to vertex u (Note that
u is the vertex from which v was visited for the first
time).
Weight(v) = weight(v) – support(FREQ)
If weight(v) = 0 then delete (u, v) from G
Set v=u
Goto Step 5
If there is no such edge (u, v), stop (we are back at root
x, having traversed one FREQ sequence). Check if there
is an untraversed edge on u:
If  yes then
If FREQ <> NULL, Add FREQ to FREQPASS and set
FREQ = NULL
Set v=u and goto step 3
Else goto step 7
Step 7: Exit 
Main algorithm End

Figure 6: Algorithm AllFreqSeq:

3. Experimental results:

 Let us consider the log entries shown in figure 7 of the
access log file. The Access log file is in Extended log
format structure.

205.188.209.71 [26/Nov/1998:19:35:34 -0600]
"GET/home.html HTTP/1.0" 20 0 401
“http://www.lsu.edu” “Mozilla/4.0” 205.188.209.71
[26/Nov/1998:19:35:37 -
0600]"GET/research/research.html
HTTP/1.0"200401“/home.html” “Mozilla/4.0”
205.188.209.71 [26/Nov/1998:19:35:49 -
0600]"GET/research/lab/index.html HTTP/1.0"200401
“/research/research.html” “Mozilla/4.0”

 Figure 7: Access log entries in extended log format

0-7695-0559-7/00 $10.00 � 2000 IEEE 



 Log threads are formed from the entries in figure 7
using the techniques described in section 2.1 The list of
log threads extracted from the above log entries is given
in figure 8.

TL1=(/home.html, /research/research.html,
/research/lab/index.html, research/lab/rrl/index.html,
/research/lab/rrl/mission.html)
TL2=(/home.html, /research/research.html,
/research/lab/index.html,
/research/lab/cclms/cclms.html,
/research/lab/cclms/projects/index.html,
/research/lab/cclms/projects/parallel/index.html,/researc
h/lab/cclms/projects /parallel/index.html)
TL3=(/home.html,/research/research.html,
/research/groups/groups.html)
TL4 = (/home.html, /faculty/faculty.html)

Figure 8: Log threads for Access log entries

 The corresponding Passage Sequence for the above log
threads is shown in figure 3. Using the techniques
described in section 2.4 we form the access tree for the
Passage sequence.

FrequentPassageSequence SupportVal W1 -> W2 -> W6
3

W1 -> W2 -> W7 3

Figure 9: Frequent Client Sequences

 This graph now serves as an input to the algorithm
AllFreqSeq described in figure 6. The result is the
frequent episodes listed in figure 9 with their
corresponding support values.

4. Applications:

 Number of approaches has been developed dealing with
specific aspects of Web usage mining for the purpose of
automatically discovering user profiles. For example,
Perkowitz and Etzioni [PE98] proposed the idea of
optimizing the structure of Web sites based co-
occurrence patterns of pages within usage data for the
site. Schechter et al [SKS98] have developed techniques
for using path profiles of users to predict future HTTP
requests, which can be used for network and proxy
caching. Spiliopoulou et al [SF99], Cooley et al
[CMS99], and Buchner and Mulvenna [BM99] have
applied data mining techniques to extract usage patterns
from Web logs, for the purpose of deriving marketing
intelligence. Shahabi et al [SZA97], Yan et al

[YJGD96], and Nasraoui et al [NFJK99] have proposed
clustering of user sessions to predict future user
behavior.
 Since our results show the access routines of a user over
a desired period of time and with recommended support,
the applications can be multi-fold. We propose the
following architecture for the Dynamic web server and
updating the web pages on-the fly as the client leads to
surf the site further. The proposed architecture is shown
in figure 10. This architecture is an approach to usage-
based web personalization taking into account the full
spectrum of our web access routine techniques. Updating
web pages on the fly has promising avenues in e-
commerce and web medical services sector.
 The overall process of usage-based web personalization
can be divided into two basic components. The offline
component, involves accessing the web server log and
predicting user access pattern. Once this task is
successfully accomplished, the online component is now
capable of providing positive recommendations to the
clients. However this process can improve the system
performance by almost a factor of 10. The mine engine
can prefetch the pages, which the user is most likely to
visit and even cache suitable pages.

5. Conclusion:

 We have presented an automatic discovery method that
discovers frequent access routines for unique clients.
Proposed algorithm AllFreqSeq develops novel
techniques to extract the sets of all predictive access
sequences from semi-structured web access logs.
Important user access patterns are manifested through
the frequent traversal paths, thus helping understand
user surfing behavior. The predictive access routines
discovered by AllFreSeq were also extremely useful for
understanding and improving web-site domain tree.

6. Future Work

 This work opens several research opportunities, which
we plan to address in the future. These include but are
not limited to:
1. Real time application of AllFreqSeq on top a

RDBMS containing dynamically updated web log
entries.

2. Discovering general behavior patterns for all users.
3. Imposing a taxonomy on the behavioral pattern

within a sliding window of time

0-7695-0559-7/00 $10.00 � 2000 IEEE 



7.  References

[AGAR93] R. Agrawal, T. Imielinski, and A. Swami, "Mining
Association Rules Between Sets of Items in Large Databases,
" Proc. ACM SIGMOD Conf. Management of Data, pp. 207-
216, Washington, D.C., May1993.
[BM99] Buchner, A. and Mulvenna, M. D., Discovering
internet marketing intelligence through online analytical Web
usage mining. SIGMOD Record, (4) 27, 1999.
[NARS95] Narsingh Deo, Graph theory with applications to
engineering and Computer Science, Prentice Hall, 1995
[NFJK99] Nasraoui, O., Frigui, H., Joshi, A., Krishnapuram,
R., Mining Web access logs using relational competitive fuzzy
clustering. To appear in the Proceedings of the Eight
International Fuzzy Systems Association World Congress,
August 1999.
[PE98] Perkowitz, M. and Etzioni, O., Adaptive Web sites:
automaticlly synthesizing Web pages. In Proceedings of
Fifteenth National Conference on Artificial Intelligence,
Madison, WI, 1998.

[SF99] Spiliopoulou, M. and Faulstich, L. C., WUM: A Web
Utilization Miner. In Proceedings of EDBT Workshop
WebDB98, Valencia, Spain, LNCS 1590, Springer Verlag,
1999.
[SKS98] Schechter, S., Krishnan, M., and Smith, M. D.,
Using path profiles to predict HTTP requests. In Proceedings
of 7th International World Wide Web Conference, Brisbane,
Australia, 1998.
[SZAS97] Shahabi, C., Zarkesh, A. M., Adibi, J., and Shah,
V., Knowledge discovery from users Web-page navigation. In
Proceedings of Workshop on Research Issues in Data
Engineering, Birmingham, England, 1997.
[ZAKI1998] Zaki, Lesh, Ogihara, “PlanMine: Sequence
Mining for Plan failures”

0-7695-0559-7/00 $10.00 � 2000 IEEE 


