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A fundamental aspect of content-based image retrieval
(CBIR) is the extraction and the representation of a vi-
sual feature that is an effective discriminant between
pairs of images. Among the many visual features that
have been studied, the distribution of color pixels in an
image is the most common visual feature studied. The
standard representation of color for content-based in-
dexing in image databases is the color histogram. Vec-
tor-based distance functions are used to compute the
similarity between two images as the distance between
points in the color histogram space. This paper pro-
poses an alternative real valued representation of color
based on the information theoretic concept of entropy. A
theoretical presentation of image entropy is accompa-
nied by a practical description of the merits and limita-
tions of image entropy compared to color histograms.
Specifically, the L, norm for color histograms is shown
to provide an upper bound on the difference between
image entropy values. Our initial results suggest that
image entropy is a promising approach to image de-
scription and representation.

1. Introduction

Digital images are an increasingy importart clas of
datg especialy as computes becone more usabé with
greate memol and communicatio capacitiesAs the de-
mard for digital images increasesthe neal to store and

retrieve images in an intuitive ard efficiert manne arises.

Hence the field of content-base image retrievd (CBIR)
focuses on intuitive and efficiert method for retrieving
images from database basel solely on the contert con-
tainad in the images.

The corpus of CBIR researh has focusel on the defini-
tion of new visud featue representatianfor images that
provide ameaningflidiscriminan for conductirg similarity
queries (Carsa et al., 1997 Flickner et al., 1995 Gray,
1995 Jacols et al., 1995 Pas et al., 1996 Pentlaml et al.,
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1996 Smith, 1997 Stricker, 1994 Zachay & lyengar,
1999) Most currert representationof visud features are
base on vecta forms This pape expand existing visual
featue representationbasel on vecta space to improve
retrievd performane ard efficiency.

The representatio of visud features can generaly clas-
sified into severh levels As depictal in Figure 1, a visual
objed has severadifferen levels of representatiobasel on
the complexiy of the representatio and the leve of infor-
mation aggregationOur exampé assums three levels of
representationghe image level, which is the mod general
ard complex the vecta level, which aggregats informa-
tion into a vecta representatignand the numbe level,
which represert the highes levd of aggregatia and the
leag amourt of complexity. As one aggregatginformation
from the image levd to the numbe level, the information
containel in agiven representatiolevels is not guaranteed
to be unique to the representatio at highe levels Thus it
iswith care tha one mug depenl on the information content
of a given level. Optimally, an automatd methal will
incorporaé multiple representatio levels into computirg a
value or decision This pape will presen suc a method.

Digital images are usel throughou scienceengineering,
businessard personhcomputing There are severareasons
for the proliferation of images throughot generbcomputer
usage The demilitarization of imaging and satellie tech-
nology has mack it possibé to captue dat in high-resolu-
tion formats and from almog ary region of the world. The
emergene and explosive use of the World Wide Web
(WWW) as aglobd netwok allows peopk to gathe and
shae images en masse Indeed sone estimats hawe con-
servativey put the numbe of images availabe on the
WWW at betwea 10 ard 30 million (Sclarof et al., 1997).
The impetws to merge television entertainmentand com-
puting technoloy into a cohesie platform is a forcing
function for the miniaturization low-cog fabrication and
increasd capaciy of memoy and seconday storag de-
vices.
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A cesses are irreversible, CBIR may be employed to provide
Wu faster monitoring of the environment.
‘Image
A fundamental distinction between textual and visual
_ ) V1,V 2yen V> information is the nature of the retrieval process. The re-
Increasing Complexity Vector Increasing Agregation  yriey/g| of textual information is based on discoverigg-
mantic and/orsyntactic similaritybetween textual entities.
Visual information retrieval, on the other hand, is concerned
neR with discoveringperceptual similarity.The concept of per-
Number ceptual similarity is made clear by examining the kinds of
v queries that users are likely to expect to use when retrieving

images from an image database. Although there is a marked
lack of research on understanding the needs of users of
CBIR systems, an analysis of the image features and at-

) ] ... tributes that can be used to construct effective CBIR queries
Information theory has been an important application Nmight include the following items:

image compression and coding. The initial work of (Shan-

non, 1948) formulated the foundation of information theory

in terms of the information Ca_pac_ity of cc_)mmunication or combination of these features (e.g., 30% Aubergine and

channels. The fundamental notion ioformation entropy Sunburst pixels)

describes a theoretical lower bound on the number of bit§ {he presence, absence, or arrangement of specific types of

necessary to encode information. This concept has beengpjects (e.g., Royal Bengal Tiger)

useful in the development of image compression algorithms the depiction of a particular type of event (e.g., Football

(Gonzalez & Woods, 1992; Pianykh, 1998). The use of game)

information theory concepts to developed methods in image the presence of named persons, places, or events (e.g., Nick

interpretation has received little attention. In Jagersland Saban at a press conference)

(1995), the entropy of an image was used to derive & the_z description of_g_subjective emotion or a personally sig-

description of scale in an image. The effort focused on the nificant characterisitic (e.g., LSU fans at a conference bowl

fact that in an image, the information content of a scene is game)

typically confined to a small range of scales. In this paper,

we describe an approach to the application of the informa- This list of image features and attributes is presented in

tion entropy of an image in computing a similarity value increasing levels of subjectiveness and abstraction. A clas-

between pairs of images. We present experimental results agification of query types based on a similar analysis of

our approach given general unconstrained digital imageryimage features and attributes was developed by (Eakins &
Graham, 1999). They aggregated queries founded on image
content into three levels of increasing complexity:

2. Background Level 1 Queries.Queries of type level 1 are comprised

As the popularity of digital images grows, so does theOf Primitive features, such as color, shape, and texture. This
need to organize, store, and retrieve images from collection&/Pe Of query is objective and composed of features directly

or databases. The professional usage of digital image cofiérived from images using image-processing algorithms.
lections spans several fields. There is no need to consult external data sources for clas-

sification guidance. Examples of this type of query include

FIG. 1. Representation levels of visual objects.

o the presence or absence of a particular color, texture, shape,

e The health care field is increasingly adopting the digital
storage of imaging technology (e.g., CT scan and MRI) over
hard-copy film. As such, the need to retrieve information
based on content plays a critical role in automated diagnostic
and on-line educational systems.

e Law enforcement use digital imagery to store facial and
fingerprint information on victims and suspects as well as
historical records of crime scenes. The ability to retrieve
“mug shots” from image databases based on the similarity
analysis of content enables law enforcement to capture crim-
inals in a more timely manner.

e Remote sensing technology from orbiting satellites and air-
planes is used to monitor environmental conditions such as
the erosion of coastal land. In addition, multi-spectral and
hyper-spectral imaging modalities are used to monitor many
environmental phenomena. Since many environmental pro-
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“retrieve all images with red blobs in the middle of the
image”, “retrieve images that contain blue squares, rectan-
gles, and diamonds”, and “retrieve images that look similar
to this image”. This latter type of query is callegdiery by
exampleand is a major focus of CBIR research, including
this paper. Level 1 queries correspond to the first item in the
list above. Examples of the types of Level 1 queries are
given in Figure 2.

Level 2 Queries.Queries of this type are comprised of
logical features that require some level of inference about
the identity of things in the image. An outside knowledge
base is required for this type of query. The field of computer
vision, particularly the subfield concerned with model-
based vision operations, falls into this category. Level 2
queries can be further classified as queries of objects of a
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FIG. 2. Examples of Level 1 Queries for Lena Image.

given type (item two in the list above) and queries ofthe construction of an image database. The images to be
individual objects or persons, as is depicted in Figure 3. added to the database are processed by a feature extraction
Level 3 Queries.Queries of this type of composed of algorithm. The output of this algorithm is a feature repre-
abstract notions and attributes and require a significantsentation, which is the data structure actually stored in the
amount of higher level reasoning about meaning and puredatabase and used to compute similarity.
pose. Typically, it is very difficult to automate this type of = The same feature extraction algorithm is used to process
reasoning. Because the link between image content anithe query image and the images contained in the database.
abstract concepts requires complex reasoning and subjecti¥ence, the same feature representation is computed for the
judgment, systems based on this type of visual processinguery image as was for each image in the database. The
will incorporate a “human in the loop” to guide the com- similarity measure then compares the query feature repre-
puter to a correct solution. A query of this type is given in sentation with each of the feature representations in the
Figure 4. database. Those feature representations deemed “similar”
Level 1 queries are generally considered to be the focuare returned to the user as a result set. It is not strictly
of CBIR research and systems development. Levels 2 and Becessary that an image be specified as part of the query.
are considerably harder to implement, as exemplified byQueries can be specified by sketches or by graphical user
several decades of computer vision research. They can beterface tools (Flickner et al., 1995; Gray, 1995). However,
consideredsemantic image retrievala subcategory of the ultimate result of the query specification must be the
CBIR. The distinction between Level 1 and Level 2 is notsame feature representation that is used by the database to
artificial; there exists a significant gap between them instore and index images. The specification of the query can
terms of what computer science and cognitive modeling cabe with an example image, a user drawn sketch, or explicit
currently deliver. This knowledge representation and modinformation from the user about the primitive features of
eling gap (or chasm, depending on who you ask) is cominterest.
monly referred to as theemantic gap.

2.1. General System Structure 2.2 Visual Features

The basic problem addressed in this paper is the speci- The extraction of visual features from an image is one of
fication of unconstrained query images by a user to a CBIRhe fundamental operations of CBIR. Visual features are
system to search and retrieve a set of result images that apgoperties of an image that are extracted using image pro-
similar to the images initially specified. The search andcessing, pattern recognition, and computer vision methods
retrieval process is based on the visual features contained (Puda & Hart, 1973; Gonzalez & Woods, 1992). Most
the images that comprise both the query set and the imag®ethods of feature extraction focus on color, texture, shape,
database. The general computational framework of a CBIRind spectral properties of images and, thus, are considered
system is depicted in Figure 5. The entire process starts wittequired elements at the primitive level.

Find a picture of a
posing fashion model.

| Find a picture of a woman.

FIG. 3. Example of a Level 2 Query for the Lena Image. FIG. 4. Example of a Level 3 Query for the Lena Image.
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FIG. 5. Computational Framework of CBIR Systems.

Color is by far the most common visual feature used incomponent of the primitive level. A number of features of
CBIR, primarily because of the simplicity of extracting an object’'s shape in an image are computed for each object
color information from images (Flickner et al., 1995; Gray, in an image and stored. Like color histogram intersection, a
1995; J. Huang, 1998; Pass & Zabih, 1996; Smith, 1997query image is analyzed in terms of the same object char-
Stricker, 1994; Swain & Ballard, 1991). (Stricker & Swain, acteristics and the computer features of the query image are
1994) present a thorough analysis of effectiveness of colocompared to the features of the stored images. Those stored
histograms intersection for CBIR. Color histograms de-features that best match the query image features are used as
scribe the distribution of pixels of each color in the color the result set. Shape features take on many geometric and
space of the image. The algorithms developed in (Graynon-geometric forms, such as aspect ratio, circularity, mo-
1995; J. Huang, 1998; Pass & Zabih, 1996; Smith, 1997)nent invariants (Flickner et al., 1995). An example image
augment color histograms with other derivative visual fea{QBE) or user sketch is commonly used to construct the
tures, such as spatial coherence or edge information. (Cashape-based query.
son et al., 1997) develop a region based color query method. Spectral methods, such as Fourier and wavelet trans-
These methods show impressive results for particulaforms (Prasas & lyengar, 1997), are used independent of
classes of image. texture analysis to extract features from images. In (Jacobs

Texture is a pervasive yet ill-defined property of images;et al., 1995), wavelet coefficients of images are used to
it can be difficult to define, but we know it when we see it. search an image database from a low-resolution example
The analysis of texture in digital images has received muclimage or user-drawn sketch. Their approach created image
attention in the areas of machine vision, pattern recognitionsignatures of the query and stored images from the Haar
and image processing (Gonzalez & Woods, 1993; Haralickvavelet decomposition method. Each signature is a trun-
et al., 1973; Picard & Minka, 1995). In (Picard, 1996), cated and quantized version of the coefficients computed
texture is described as lacking a specific complexity, confrom the images. A similarity comparison is made by de-
taining high frequency information, and having a finite termining the number of significant coefficients in common
range of scalability. A statistical approach developed inbetween the example signature and the stored signatures in
(Haralick et al., 1973) is the gray level co-occurrence mathe database. The Fourier-Mellin transform is compared to
trix. This method characterizes texture by generating statishe Haar wavelet decomposition method in (Cherbuliez,
tics of the distribution of intensity values as well as position1997).
and orientation of similar valued pixels. Recent approaches
compute texture present in images by employing spectr
methods, namely Fourier and wavelet transforms (Chang
Kuo, 1993; Prasad & lyengar, 1997). Virtually all CBIR systems allow searching capability

The recognition of shapes is a fundamental perceptudbased on color, an approach pioneered in (Chang & Fu,
activity, and it is natural that shape-based queries are 4981). Most research and commercial CBIR systems that

é. Color as a Visual Feature
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have been developed, such as QBIC (Flickner et al., 1996), Green
Virage, Excalibur, and Photobook (Pentland et al., 1996) A (0,1,0)
employ color together with other visual features as a search
and retrieval mechanism. The results presented in (Stricker (1,1,1)
& Swain, 1994) placed color histograms on a firm theoret-

ical foundation. In his doctoral research, (Smith, 1997) Red

developed binary representations of color histograms. How- (1,0,0)
ever, most previous work in color feature extraction and, to

a large degree, feature extraction in general, focuses on an Blue 0,0,0)
approach restricted to a single vector-based representation (0,0,1)
of features. In particular, representation of color in image

has not been investigated much beyond color histograms.

The extraction of color features from digital images FIG. 6. RGB color cube. The red, green, and blue ordinates are labeled
depends on an understanding of the theory of color and thas unit vectors. The line defined by (0,0,0) and (1,1,1) represents the set of
representation of color in digital images. Color spaces are agfayscale levels.
important component of relating color to its representation
in digital form. The transformations between different color
spaces and the quantization of color information are primary’, and Z may all be equal to 1, the trichromatic coefficients
determinants of a given feature extraction method. are subject to the relationty+z=1. The primary colors

The human eye, through the receptors present in thénd tristimulus color theory is the mechanism that allows
retina calledrods andcones perceives color as linear com- televisions to display the colors we see. Cathode ray tubes
binations of thre@rimary colors These primary colors, red (CRTs) have three channels of red, green, and blue. By
(R), green (G), and blue (B), have specific wavelengthvarying the voltage of each channel and combing their
values of 700nm, 546.1nm, and 435.8nm, respectively. outputs, each pixel on a television screen can output a large

Chromatic light is colored light.The basic terms used to array of colors. Secondary colors are specified in terms of
describe chromatic light ateue saturation andbrightness ~ the primary colors. Magenta is formed from equal amounts
Hue is used to describe the dominant wavelength or perof red and blue light. Yellow is formed from equal
ceived color of an objelt is the “redness” of an apple or amounts of red and green light. Cyan is formed from equal
the “yellowness” of a banana. Saturation refers to purity oftmounts of green and blue light. For pigments used for
a hue or the distance a color is from a gray of equalPrint, the primary and secondary color designations are
intensity. Red is highly saturated while pink is not. Bright- reversed (Gonzalez & Woods, 1992).
ness is the chromatic analogue of intensity for achromatic
light. Hue and satu_ra_tlon are sometimes combined and '€ 1 Color Spaces
ferred to aschromaticity.

Given the response functiongX), f,(A), and f(a) for A color space (or color model) is used to specify a
each of the primary colors, the following equation of the three-dimensional color coordinate system and a subspace
electromagnetic response for a wavelengtis defined as  of the system in which colors are represented as points. The

most common color space for digital images and computer
F(A) = Xf(A) + Yi(A) + Zf,(A) graphics is the RGB color space (Figure 6) in which colors
are represented as linear combinations of red, green, and
The values (X,Y,Z) are called theistimulus valuesfor  blue color channels. The primary reason for the ubiquity of
color F(\) and denote the respective amounts or red, greerthe RGB color space is due to the use of CRT monitors and
and blue necessary to form a color. Commonly, the triscolor raster graphics devices. Additionally, most digital
timulus values are used to specify a color in terms of itsSimage formats store pixel values from the RGB color space.

trichromatic coefficients Thus, it would seem reasonable to based color feature
extraction methods on the RGB color space. However, there

X Y z are sufficient drawbacks to the RGB color space to warrant
X=xivY+z2 Y X¥Y+72 2 °X+Y+2z the use of transformations and quantizations (Smith, 1997)

to other color spaces.
Tristimulus values are, in general, normalized. Thus, the The RGB color space is not perceptually uniform. The
trichromatic coefficients are likewise normalized. While X, distance between two points in the color space does not
suggest that the two colors are similar or dissimilar. Addi-
N - . _ tionally, the three color channels of the RGB color space do
Achromatic light is void of any color. It is characterized by the not vary consistently with one another with respect to

perception of intensities, such as the gray levels one may see on a black and. . . . .
white television. %rlghtness. Therefore, the pixels of the images in the image

2 Some colors do not have a dominant wavelength. Purple is an-exandatabase and query examples must be transformed into an
ple. alternative color space that satisfies the properties of uni-
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White in the transformation formulas from the RGB color space to
A the CIELAB color space.

The axis defined by L* defines thlerightnessof the
color, that is blackness to whiteness. The L* axis is quan-
tized to five equidistant bins corresponding to E* {[O,

20), [20, 40), [40, 60), [60, 80), [80, 100]}. The a* and b*
Blue p Yellow axes are defined by aopponent color theoryBerger-
Shunn, 1994) in which the a* ordinate describes the redness
(+80) to greenness (-80) of a color, and the b* ordinate
shows the yellownessH80) to blueness (-80) of a color. If
Red both the a* and b* axes is partitioned into eight bins, i.e.,
{[-80, -60), [-60, -40), [-40, -20), [-20, 0), [0, 20), [20, 40),
[40, 60), [60, 80]}, then the quantization of the CIELAB
FIG. 7. CIELAB Color Space. color space results in M= 5*8*8 = 320 distinct colors.
Many other color spaces exist, each with advantages and
disadvantages. As mentioned, the RGB color space is an
formity, completeness, and uniqueness. One common alteadditive color space made popular by the ubiquity of CRTs
native color space that satisfies these conditions is the Clk display digital images. While easy to implement, it is not
family of color spaces. linear with respect to human visual perception. Addition-

The CIELUV and CIELAB color spaces were created in ally, the RGB color space dependent on the device display-
1976 as alternatives to color spaces that assumed luminang®y the colors. The CMY (Cyan, Magenta, Yellow) color
was constant for all colors. An equal amount of emphasis i$pace is used mostly for printing output and is not percep-
placed on chromaticity and luminance. As a result, the threeually uniform The HSL (hue, saturation, lightness) color
properties desirable of a color space in perceptually sensgpace has several co-spaces it shares characteristics with
tive application, uniformity, completeness, and uniqueness{HSV (hue, saturation, value) and HSI (hue, saturation, in-
are satisfied. This paper proposes the use the CIELAB colaensity). This family of color spaces, too, is not perceptually
space as a foundation for feature representation and simimiform. The main attraction of these color spaces is the
larity measurement. This choice is motivated primarily be-separation of chromaticity (hue & saturation) from lumi-
cause of the almost perceptual uniformity of the space, aance (intensity, brightness, and value). The YIQ, YUV,
characteristic that is a departure from most other CBIRand YCrCb color spaces are used for NTSC, PAL, and
approaches. A detailed description of the transformation o§PEG standards, respectively. They are highly device de-
a point in RGB color space to CIELAB color space is givenpendent and also perceptually non-uniform. A summary of
in (Zachary, 2000). the comparisons between the different color spaces is given

The domain of values for L*, a*, and b* is from R and, in Table 1.
hence, necessitates that a quantization be applied to partition
the CIELAB color space into non-overlapping partitions 3 2 color Representations
which completely cover the original continuous space. Our

quantization of the CIELAB color space strikes a balance 1N€ transformation of points in the RGB color space to
between fidelity and the dimensionality of the resultingth® quantized CIELAB color space requires an appropriate

quantization (Figure 7). The axis defined by L* defines the'e€presentation that captures the distribution of the colors in

brightnessof the color, that is blackness to whiteness. The2" image. The most common representation is dbler

a* and b* axes are defined by apponent color theory hlstogrgm The color hlstqgram captures the dllstr|but|on of
(Berger-Shunn, 1994) in which the a* ordinate describes th&€0!0rs in an image or region of an image, and its unnormal-
redness £80) to greenness (-80) of a color, and the b*i2&d definition is the following formula

ordinate shows the yellowness 80) to blueness (-80) of a

color. Since a* and b* define the most significant charac- R A

teristic of a color, namely its chroma, the quantization of hy = Py ulm] = 22 A jm

these values will be higher than for L*. This is justified by eyt

another argument. The human visual system diSCErnsaBLE 1. Summary of color space comparisons.

changes in brightness by much larger gaps than changes n
color. Especially as L* increase, the human eye cannot
detect changes in brightness for small changes in the value

Green

Black

Device
Uniform  Complete  Unique independent

of L*. Thus, the brightness values do npt require as fine &gp No Yes No No
resolution as the chroma colors. Additionally, L* can be cmy No Yes No No
quantized into equidistant bins as opposed to bins fit tdiSL, HSV, HSI No Yes Yes No
logarithmic distances from zero because the logarithmi¢/!Q: YUV, YCrCb — No Yes No No

. FIELUV, CIELAB Yes Yes Yes Yes
response of the human visual system has been accounted tor
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where M is the number of quantized colors, X and Y are the The second item describes tk@earest neighbor form of
width and height, respectively, of an image |, ahis the  similarity while the third item describes the range-based
Kronecker delta function. An analysis of the metrical prop-form for similarity.

erties of the color histogram space is given in (Stricker & Once the abstract notion of similarity is defined in terms
Swain, 1992). Normalization of the color histograms is aof distance, several mathematical formulas for the distance
necessary computation to ensure a unit variance betweduanction can be defined. The terndéstance functiorand
elements of a histogram, i.e., to eliminate the dependencgimilarity functionare used interchangeably in this paper.
on the number of pixels that comprise the histogram. Nor- The distance between two points can be classified as
malized histograms are computed by dividing each elemenrgither metric or non-metric.

of the histogram by the length of the histogram. The defi- Definition 2.3: A setX with elements called points is

nition of a normalized color histogram space is called a metric space if for any two poingsand g in X
there is a numbeD(p,q)EMN called thedistancefrom p to
" g such that
= .= L=
H =y e b= 0, ,:El =1 D(p, q) > 0if p# q (non-negativity;
D(p,q) =0 (identity);
D(p, ) = D(q, p) (symmetry;

The color histogram spade is a subset of an M-dimen- ., o) — b 1) + D(r, o) V r € X (triangle inequality
sional vector space and forms the face of an M-dimensional

simplex (thus, it is an M-1-dimensional simplex). In order ) L .
for two distinct histograms;hand h to be distinguishable Any functionD(p,q) satisfying these three properties is
from one another, they must be separated by a non-zefeflled adistance functioror metric (Rudin, 1976). _
distancet. This property is called-differenceand describes A 9eneral class of distance metrics is the Minkowski
H as a Hausdorf space. The value toflepends on the MEtrics orL,-norms
composition of the image data set. However, Stricker &

Swain discovered a bimodal shape to distance distributions

for two large image data collection (one of which was D/(p, q) =
randomly generated). The bimodal behavior of the distance

distribution suggests that reasonable values of the variable

are found in the first interval of the distance distribution The most commonly used Minkowski distances corre-
with a large slope. More importantly, this also suggests tha%pond to r-values of one, two, and infinity. The(®e)

the distances between color histograms of images Withjisiance function is called thBammingdistance, and it
similar colors or images containing all the colors of thecorresponds to the £norm.

color space are small.

3.3 Similarity Measures Di(p, a) = X [p; — g
i=1

Once the feature representation space has been defined as

an M-dimensional color histogram space, the problem of = The D,(e,e) distance function is the well-knowuclid-
defining the similarity between two images is described agandistance, well known by school children in the earliest

the distance between two pOintS in the color hiStOgranh|gebra courses. The Corresponding norm is ﬂé}ad_rm
space, denoted as B¢) for points p and g. We now

provide a formal definition of similarity.
Definition 2.2: An imagev is more similar tou than

another imagew is to u if D(u,v)<D(u,w). Da(p, q) =
In (White & Jain, 1996b), similarity measurements are

defined in terms of the following parameters:

2 (pi — a)?

The D,(e,9) distance reduces to

e A query objectu and similarity measurement function
D(e,®) such that references are ordered in increasing value D.(p, q) = ma>§\pj — qj‘
with respect to D§,v), V v € A.

e A parameterk € Z* is used as an upper bound for the L . . .
cardinality of the set of nearest-neighbor references as com- which is the maximum coordinate @hebysheuistance.

puted by D. The histogram cosine distance function is closely related

e T € R* places an upper bound on the distance that database 0 the L-norm and is commor_1|y used to compute similarity
vectors can be from in order to be included in the result set ~ between text documents (Smith, 1997). The inner product of
R,i.e, R={veE A |D(u,v) =T} two vectorsp andq is given by
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A 4. Image Entropy and Color

Color histograms have been shown to be a promising
method for indexing into image databases. However, for

qQ, ./ very large image databases and histogram spaces with large
R dimensions, the computational cost of performing distance
/ calculations can be prohibitive. This section suggests an
,/ - alternative viewpoint of color histograms based on informa-
K 0 7 tion theory that offers the potential for a substantial increase
" > in retrieval performance.

The motivation for this section is the desire to reduce the
FIG. 8. Comparison of Histogram Cosine Distance to the L2-Norm. dimensionality of the color histogram space in order to
provide a substantial improvement in retrieval performance.

Several dimension reduction techniques have been devel-

p-gq=p'q=|p||g/cose oped, such as principle component analysis (Gerbrands,

1981; Gonzalez & Woods, 1992) and column-wise cluster-

Thus, solving for, we have ing (Duda & Hart, 1973). Generally, these techniques re-
duce the dimensionality of the histogram space firoto k
p'q > 1. -

Dy(p,q) =e= cos‘lm We develop the theory necessary to reduce the dimen-

sionality of the color histogram space to one. Emgropyof

an image is a measure of the information content of the

The histogram cosine distance function measures thﬁnage. As will be seen, the Shannon entropy function maps

difference in direction between two vectors irrespective of, \_qimensional vector to the set of real numbers, and.,

the magnitude. The relationship between the histogram cqsence it can be regarded as a dimension reduction to the set
sine distance and the,inorm is depicted in Figure 8Ve ¢ .oa valued numbers.

see that the histogram cosine distance between p and gl is

equal to the histogram cosine distance between p and g2.

However, Dy(p,q;) and Dy(p,q,), are clearly not equal. 4.1. Color Histograms as Probability Density Function
Therefore, the histogram cosine distance is not a true dis- _ _ ) _ _

tance function in the strictest sense since it fails to satisfy 1hiS Section expands the discussion of color histograms

the triangle inequality. Researchers have discovered thgly describing a color histogram as an estimation of the
satisfying the triangle inequality is not necessary in order tdirst-order joint probability density function of an image.
define a similarity measure that models human perception! NiS description is important in allowing us to use methods

The general quadratic form for the distance between twdrom information theory to expand the characterization of
vectors is images on the basis of their color contents.

A discrete image #F(N,,N,) of size NxN, can be
statistically characterized as the joint probability density

Do(p, @) = (p— A)"A(p — ) function

whereA is typically a symmetric square matrix. The form
for A varies for different distance calculations. In (Niblack p() =piF(1, 1), F(1,2), ... ,F(Ny, Np);
et al., 1993), the matriXA is defined as a color similarity
matrix with If each pixel value is statistically independent from all other
pixels values, then the joint probability density function is
ds(c;, ¢) factored into the following form

aij dmax

p(h) = p{F(1, Dip{F(1, 2)}- - p{F(Ny, No)}
The vectorsc; and ¢ are the {" and " colors in the
histogram space. The function(d,c) is the Euclidean which is the product of its first-order (one-dimensional)
distance between colocsandc;, and d,.is the maximum  marginal densities. For a discrete set of values, the inter-
distance between any two colors in the color space. Theretation ofp{F(i,j)} is developed on the basis of the finite
effect of computing [3(®,®) is the magnitude of the dis range of possible values for F(ij). For a digital image
tance betweep andq weighted by the distance between the source, these values are the possible colors at each pixel, or
colors in the color space. The difference between coloreconstruction levelslt is generally assumed that the dis-
amounts and similar colors is accounted for in this formulatribution of colors across an image follows a uniform dis-
Other quadratic forms include the Mahalanobis form (Dudétribution, i.e., each color has a 1/M probability to be as-
& Hart, 1973). signed to a pixel.
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FIG. 9. Mona Lisa and the Histograms of the Tristimulus Channels.

For digital images, the probability density function is a grams demonstrates a pattern in which the response for each
joint probability density function because the pixels, asof the tristimulus values at the darker end of the histogram
discrete random variables, are not functions of one anotheis greater than the response at the brighter end. The Mona
Additionally, pixels are assumed to be statistically indepen-disa is a good example of the color distribution typical of
dent because thealue of a pixel is not a function of other most natural images.
pixel values. Furthermore, the digital image source is as- The approximation of the second-order joint probability
sumed to beergodicin the sense that successive samplingsdensity function plays a significantly less role than the
of a certain pixel do not determine or affect the outcome ofapproximation of the first-order probability density function
future values at that pixel. Another way to regard thisin image analysis. For completeness, the second-order joint
property is that image sources aremoryless probability density function of an image is estimated by the

The Laplacian and Rayleigh joint probability density second-order spatial histogram of an image. The latter is a
models are used as statistical descriptions in analog analysiseasurement of the occurrence of pairs of pixels at given
of image systems (Pratt, 1978). However, for quantizectolor values separated by a specific distance. The interested
discrete random variables, i.e., digital images, histograms afeader is referred to (Gonzales & Woods, 1992; Pratt, 1978)
the color distribution in an image provide an adequatefor details of the second-order spatial histogram formula.
estimation of first- and second-order joint probability den-
sity functions for the image.

For an ergodic image source, the first-order joint proba—4'2' Information Theory and the Entropy Function

bility density function is estimated by the first-order spatial  Given a vectow of numbers from a set %o, ..., X}
histogram for an image where the probability that»e v is p; = P(x;), the entropy
of v is given by the formula
> N(c)
h(i) = N, N,

n
H(v) = — X plog,(p)
where N(i) is the number of pixels in the image that are of i=1
color g. Despite a change in notation, this formula is iden
tical to the formula of color histograms given previously. The mathematics describing ¥(in the context of commu-
Figure 9 displays the histograms for the red, green, andications theory was developed in (Shannon, 1948) and is
blue responses of the Mona Lisa. The shape of the histadhe most common definition of entropy in the literature. It
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12 - HW) = H(o) — ) S (a0

The term associated with the first derivative becomes zero
based on the assumption th&\v; = 0. Therefore, we
conclude from this sum that if represents a small change
in the probability distributionv, then the corresponding
difference |HQ) — H(V)| is likewise small.

H{p)

4.3. Image Entropy as a Visual Feature

‘ S I I S D The definition of color histograms as first-order joint

p probability density functions suggests that the entropy of an
image can be calculated. In fact, this is exactly the case. The
definition of v is derived from the interpretation of first-
order spatial histograms as a joint probability density func-
tion. An element; is the percentage of pixels in the image
that belong to the quantized coldrand is also a close

should be clear that K is a function of the probability 55 yimation to the value of the joint probability density
distribution of some random variable and not a function Offunction value pati. The correlation of each histogram bin

the actua}l values 'the variable.r'nay assume. As seen in Figugia to a probability function value pyields the function
10, H{) is a continuous, positive, and concave function of
[0,1]" € N" that maps to [0,1E . The function HY) = 0
when y = 1 and y = 0 for all j#i. v
Before pursuing a quantitative description of similarity H(v) = - E ulog(w)
between images represented as entropy values, we investi- =t
gate the sensitivity of the entropy function to small pertur- )
bations in the probability distribution function. Given a Figure 11 gives the entropy values calculated by the formula

uniform probability distributionv ={p,=1/M, p,=1/M, for some recognizable digital images. Images such as
., pu=1/M} associated with the maximum entropy -as Clown, Lena, and Mandril have complex color distributions

sume that a new vectar assumes the form and, hence, have higher entropy values. An image with a
simple color distribution, such as Pleides, has a smaller
entropy value.

For a digital image source, there are many interpretations

of H(v), including
The Taylor polynomial expansion to the second derivative

FIG. 10. Entropy function in two dimensions.

ui=vi+Avi, 2Av,=0

of H(u) is e The average uncertainty of
e The theoretically least number of bits necessary to engode
oH . 1 92H o A measure of the randomness of the color distribution.in
H(W) = H(o) + X 7 A + 57 2 5 (Aw)?
| * I

An increase in image entropy corresponds to more un-
certainty and more information contained in an image.
Thus, the use of image entropy as a discriminant between
two images is based on the idea that a meaningful difference
aH(u) 13 In(l n Av) between two image entropy values corresponds to a mean-

dv; M ' ingful difference between the two source images. For ex-
ample, in Figure 11, a meaningful difference between the

The second partial derivative with respect taiHévaluates entropy values for the Pleides and Venice images corre-
to sponds to a meaningful difference between the images

themselves.

92H(u) 1 _ Our_ interest will f_ocus on the third interpretation of\ji( o

= — since it seems to hint that entropy captures a characteristic

9 £+Av of an image meaningful in making a determination of

M ' whether images are similar. The Shannon definition af)H(
assigns information based on “sharpness” of the distribution

If these partial derivatives are evaluated\aj=0, then the that an event, or a group of pixels will have a given color
Taylor polynomial for H(1) becomes value, will occur. Based on the mathematical properties

The first partial derivative with respect to tj(evaluates to
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Clown Lena Mandril
Entropy = 4.61455 Entropy = 4.92325 Entropy = 6.13507

Mona Lisa Pleides Venice
Entropy = 3.63569 Entropy = 2.13897 Entropy = 4.29557

FIG. 11. Entropy values for some recognizable digital images.

above, HY) = 0 implies a digital image has all pixel values property, the identity axiom, the symmetry axiom, and the
set to the same value. Additionally, ¥(is maximized triangle inequality property.
when all possible colors in the color space of the image are This rather simple formulation has some interesting im-
equally represented. Intuitively, this means we can expresglications and properties. It is obvious that since this defi-
more information in an image that has more colors than imition is simply subtraction over values in the interval [0,1],
an image with fewer colors. then the space isdifferent for some value dfgreater than

A fundamental element of comparing images that are ireero.
a certain representation is the definition of similarity. The The color histogram spackl forms the faces of an
definition of the similarity function depends on the metrical M-dimensional simplex. Recall that a set of points
properties of the space in which the representations are,vs, ...y, in ™ spans a hyperplane defined by the
defined. For color histogram spaces, the definition of simidinear combinationsia,v;+AV,+. ..+ AyVy, Such that
larity in terms ofnormsis natural given the theory of finite A;+A,+. ..+ A, = 1. Figure 12shows a 2-simplex defined
dimensional vector spaces. The definition of similarity be-by three unit vectorg,, e,, ande;. Any linear combination
tween points in entropy space must be based on an under=A,e;+Ae,+Aze; Where A, +A,+A;=1 translates to a
standing of the metrical properties of the space regardless goint on the face of the triangle. If the entropies of the points
whether a metric or non-metric similarity function is de- on the face of the 2-simplex are plotted as a contour, then
fined. the distribution is such that the minima are found at the
vertices of the 2-simplex. The maximum entropy corre-
. sponds to the point at the center of the 2-simplex corre-
4.4. Entropy Difference sponding to 1/3, + 1/3 e, + 1/3 e,.

The definition of similarity between color images is
based on the [-norm between two points in the color
histogram space. In the entropy space, this definition degen-
erates to the absolute value of the difference between two
entropy values. The formula is given by

H(e)) =0

H(emi ) = H =0
DLLEntrop)(pv Q) = |H(p) - H(q)| maximdu (e2)

which is a straightforward application of the definition of a
Minkowski metric given above. As such, the similarity

metric D ; gniopy POSSESSES the four properties of any dis Fig. 12, A color histogram space of dimension 3 represents a 2-simplex,
tance function on a metric space, namely the non-negativityr a triangle.
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black73

H(black50) = 0.69147 H(black753) = 0.562335 H(red30) = 0.69147

FIG. 13. Entropy values for three random images.

Geometrically, the entropy minima correspond to pointsblack50andblack75respectively. The other bicolor image,
in the color histogram space that are a maximal distancaamedred5Q has a random distribution of red pixels over
from one another. The interpretation in terms of the conten60% of the image. The entropy differences areb|bi¢k50Q
of digital binary images is a completely white image and a— H(red50| = 0.0 and |H6lack79 - H(red50| =
completely black image which are more similar to one|H(black79 — H(black5Q| = 0.130812. Even to the most
another (with entropies equal to zero) than to any othetasual of observerdlack50and black75are much more
image. This includes a white image with a single back pixel.perceptually similar thaiblack50andred5Q
This will have a serious implication for using the use of From an information theoretic point of view, however,
entropy values in an indexing algorithm for color images. this is not true. The reason is thialack50and blackwhite

An interesting relationship exists as a quantitative de-have identical distributions of black and white pixels,
scription of the bounds on the entropy function by thenamely there is a 50% allocation to the black pixel bin, a
L,-norm of two probability density functions andq. This  50% allocation to the white pixel bin, and a 0% allocation
bounds is expressed in the following theorem from (Coveto all other colors. The imagelack75 on the other hand,

& Thomas, 1991). has a 75% allocation to the black pixel bin, a 25% allocation
to the white pixel bin, and a 0% allocation to all other color
Theorem 3.3L, Bound on Entropy) bins. Thus, from the information theoretic perspective, there

Let p and g be two probability density functions over a

is no difference in the information necessary to code
spaceH such that

black50andred5Q However, there is a difference between
the information necessary to codéack50 and black75
IH(p) — H(a)| = —|p — qll.,log Ip = qH. Hence, the entropy values are different folack50 and
IHI black75but not forblack50andred5Q
Then From this discussion, we can conclude that the use of
’ [Hp) — H(q)| as the sole measure of similarity may be
1 inappropriate. Color histogram comparisons using the L
lp=dl,= 2 Ip—al=5. norm can distinguish the difference betwersd50 and
black75 Therefore, we do not assert that ppE& H(Q)| is
This upper bound on |} — H(q)| provides an important capable of providing a meaningful similarity measure based
insight into the expected results of using entropy as arPh entropy values alone. This should not be very surprising
indexing key for image in an image database. We would0 the reader since such an assertion would suggest that a
expect that fewer results be retrieved for the entropic L single real number contains more information than a vector
norm than for the color histogram,inorm. for distinguishing between two images. The vector always
It was shown that a meaningful difference between im-contains more information than the single real number,
age entropy values for two images implies a meaningfuparticularly since the single number is an aggregation of the
difference between the images themselves. This is primarilyector via the entropy function.
a function of the entropy definition as a measure of the This paper asserts that the main benefit of using)H(
information for a given source. However, from a perceptualH(g)| as a similarity measure is that it suggests an extremely
perspective, the converse is not necessarily true. That is, fficient method for retrieving images from a database. We
gross perceptual difference in images does not imply dnighlight a basic entropy indexing method that is present in
difference in entropy values. The value & H(g)] can  more detail in this issue (Zachary & lyengar, 2000). The
approach zero for two very dissimilar images and, yet, bestrategy is to use the entropy number as a filter to generate
greater than zero for two very similar images. For examplean interim result set of images. This interim image result set
in Figure 13, three images are shown. Two of these imageis then indexed based on the standard retrieval method using
display randomly distributed black pixels on a white back-the L;-norm between points in the color histogram space. It
ground in proportions of 50% and 75%. They are namedshould be clear that for all but the most pathological of
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image databases, the interim result set will be much smalle@erbrands, J. (1981). On the relationship between SVD, KLT, and PCA,

in size than the entire image database. Pattern Recognition, 14. N _
Gonzalez, R. & Woods, R. (1992). Digital Image Processing, New York:

Addison Wesley.
Gray, R. (1995). Content-based image retrieval: Color and edges, Dart-
5. Summary mouth College Department of Computer Science Tech Report TR 92-
252.

The focus of this paper is on an information theoreticGupta, A. (1996), The virage image search engine: An open framework for
description of the color contained in a set of images. The image management, Proceedings of the SPIE Storage and Retrieval for
goal was to derive a more compact yet expressive descrip- Image and Video Libraries, IV, 2670. o
tion of images that can be used as discriminant in CBleuang, J. (1998). Color spatial image indexing and applications, Cornell

. . L e University Ph.D. Dissertation.
systems. Th(.% interpretation of dIgIt?.l Images as prObab”ItYJacobs, C., Finkelstein, A., & Salesin, D. (1995). Fast multiresolution
density functions enabled us to define the concept of image image querying, SIGGRAPH'95 Conference Proceedings.
entropy. Image entropy was described in terms of the randagersand, M. (1995). Saliency maps and attention selection in scale and
domness in the distribution of colors in an image. spatiil coordin_ates: An information theoretic ap_pljoach, Proceedings of
We believe that information theory and entropy have not_ the 5" International Conference on Computer Vision.

ived d f h . in th iblack, W. et al (1993). The QBIC project: Querying images by content
received an adequate amount of research attention in t eusing color, texture, and shape, SPIE Vol. 1908.

image interpretation and pattern recognition fields. Areagass, G., zabih, R., & Miller, J. (1996). Comparing images using color

for future work include information theoretic descriptions of  coherence vectors, ACM Conference on Mulitmedia.

the other visual features of images, including spatial andentland, A., Picard, R., 7 Sclaroff, S. (1994). Photobook: Tools for

geometric features. We are also interested in expanding thecontent-based me}nlpulatlon of image dgtabases, Proceedings of the SPIE
fi . b d Storage and Retrieval for Image and Video Databases Il, February.

_gamUt 0 '_mag_e representatlons ) eyon V.ec’?tor_s' A COrm:)""rb'ianykh, 0. (1998). Lossless set compression of correlated information,

ion paper in this issue explores different similarity measures Louisiana State University Ph.D. Dissertation.

based on the image entropy concept; we suspect that otheoynton, C. (1999). Frequently Asked Questions about Color, [ONLINE]

similarity measures are possible and likely to be defined in available at http://www.inforamp.netpoyton. o o
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