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A fundamental aspect of content-based image retrieval
(CBIR) is the extraction and the representation of a vi-
sual feature that is an effective discriminant between
pairs of images. Among the many visual features that
have been studied, the distribution of color pixels in an
image is the most common visual feature studied. The
standard representation of color for content-based in-
dexing in image databases is the color histogram. Vec-
tor-based distance functions are used to compute the
similarity between two images as the distance between
points in the color histogram space. This paper pro-
poses an alternative real valued representation of color
based on the information theoretic concept of entropy. A
theoretical presentation of image entropy is accompa-
nied by a practical description of the merits and limita-
tions of image entropy compared to color histograms.
Specifically, the L1 norm for color histograms is shown
to provide an upper bound on the difference between
image entropy values. Our initial results suggest that
image entropy is a promising approach to image de-
scription and representation.

1. Introduction

Digital images are an increasingly important class of
data, especially as computers become more usable with
greater memory and communication capacities. As the de-
mand for digital images increases, the need to store and
retrieve images in an intuitive and efficient manner arises.
Hence, the field of content-based image retrieval (CBIR)
focuses on intuitive and efficient methods for retrieving
images from databases based solely on the content con-
tained in the images.

The corpus of CBIR research has focused on the defini-
tion of new visual feature representations for images that
provide ameaningful discriminant for conducting similarity
queries (Carson et al., 1997; Flickner et al., 1995; Gray,
1995; Jacobs et al., 1995; Pass et al., 1996; Pentland et al.,

1996; Smith, 1997; Stricker, 1994; Zachary & Iyengar,
1999). Most current representations of visual features are
based on vector forms. This paper expands existing visual
feature representations based on vector spaces to improve
retrieval performance and efficiency.

The representation of visual features can generally clas-
sified into several levels. As depicted in Figure 1, a visual
object hasseveral different levelsof representation based on
the complexity of the representation and the level of infor-
mation aggregation. Our example assumes three levels of
representations: the image level, which is the most general
and complex; the vector level, which aggregates informa-
tion into a vector representation; and the number level,
which represents the highest level of aggregation and the
least amount of complexity. As one aggregates information
from the image level to the number level, the information
contained in agiven representation levels is not guaranteed
to be unique to the representation at higher levels. Thus, it
iswith carethat onemust depend on theinformation content
of a given level. Optimally, an automated method will
incorporate multiple representation levels into computing a
value or decision. This paper wil l present such a method.

Digital images are used throughout science, engineering,
business, and personal computing. Thereareseveral reasons
for the proliferation of images throughout general computer
usage. The demilitarization of imaging and satellite tech-
nology has made it possible to capture data in high-resolu-
tion formats and from almost any region of the world. The
emergence and explosive use of the World Wide Web
(WWW) as a global network allows people to gather and
share images en masse. Indeed, some estimates have con-
servatively put the number of images available on the
WWW at between 10 and 30 million (Sclaroff et al., 1997).
The impetus to merge television, entertainment, and com-
puting technology into a cohesive platform is a forcing
function for the miniaturization, low-cost fabrication, and
increased capacity of memory and secondary storage de-
vices.© 2001 John Wiley & Sons, Inc. ● 
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Information theory has been an important application in
image compression and coding. The initial work of (Shan-
non, 1948) formulated the foundation of information theory
in terms of the information capacity of communication
channels. The fundamental notion ofinformation entropy
describes a theoretical lower bound on the number of bits
necessary to encode information. This concept has been
useful in the development of image compression algorithms
(Gonzalez & Woods, 1992; Pianykh, 1998). The use of
information theory concepts to developed methods in image
interpretation has received little attention. In Jagersland
(1995), the entropy of an image was used to derive a
description of scale in an image. The effort focused on the
fact that in an image, the information content of a scene is
typically confined to a small range of scales. In this paper,
we describe an approach to the application of the informa-
tion entropy of an image in computing a similarity value
between pairs of images. We present experimental results of
our approach given general unconstrained digital imagery.

2. Background

As the popularity of digital images grows, so does the
need to organize, store, and retrieve images from collections
or databases. The professional usage of digital image col-
lections spans several fields.

● The health care field is increasingly adopting the digital
storage of imaging technology (e.g., CT scan and MRI) over
hard-copy film. As such, the need to retrieve information
based on content plays a critical role in automated diagnostic
and on-line educational systems.

● Law enforcement use digital imagery to store facial and
fingerprint information on victims and suspects as well as
historical records of crime scenes. The ability to retrieve
“mug shots” from image databases based on the similarity
analysis of content enables law enforcement to capture crim-
inals in a more timely manner.

● Remote sensing technology from orbiting satellites and air-
planes is used to monitor environmental conditions such as
the erosion of coastal land. In addition, multi-spectral and
hyper-spectral imaging modalities are used to monitor many
environmental phenomena. Since many environmental pro-

cesses are irreversible, CBIR may be employed to provide
faster monitoring of the environment.

A fundamental distinction between textual and visual
information is the nature of the retrieval process. The re-
trieval of textual information is based on discoveringse-
manticand/orsyntactic similaritybetween textual entities.
Visual information retrieval, on the other hand, is concerned
with discoveringperceptual similarity.The concept of per-
ceptual similarity is made clear by examining the kinds of
queries that users are likely to expect to use when retrieving
images from an image database. Although there is a marked
lack of research on understanding the needs of users of
CBIR systems, an analysis of the image features and at-
tributes that can be used to construct effective CBIR queries
might include the following items:

● the presence or absence of a particular color, texture, shape,
or combination of these features (e.g., 30% Aubergine and
Sunburst pixels)

● the presence, absence, or arrangement of specific types of
objects (e.g., Royal Bengal Tiger)

● the depiction of a particular type of event (e.g., Football
game)

● the presence of named persons, places, or events (e.g., Nick
Saban at a press conference)

● the description of a subjective emotion or a personally sig-
nificant characterisitic (e.g., LSU fans at a conference bowl
game)

This list of image features and attributes is presented in
increasing levels of subjectiveness and abstraction. A clas-
sification of query types based on a similar analysis of
image features and attributes was developed by (Eakins &
Graham, 1999). They aggregated queries founded on image
content into three levels of increasing complexity:

Level 1 Queries.Queries of type level 1 are comprised
of primitive features, such as color, shape, and texture. This
type of query is objective and composed of features directly
derived from images using image-processing algorithms.
There is no need to consult external data sources for clas-
sification guidance. Examples of this type of query include
“retrieve all images with red blobs in the middle of the
image”, “retrieve images that contain blue squares, rectan-
gles, and diamonds”, and “retrieve images that look similar
to this image”. This latter type of query is calledquery by
exampleand is a major focus of CBIR research, including
this paper. Level 1 queries correspond to the first item in the
list above. Examples of the types of Level 1 queries are
given in Figure 2.

Level 2 Queries.Queries of this type are comprised of
logical features that require some level of inference about
the identity of things in the image. An outside knowledge
base is required for this type of query. The field of computer
vision, particularly the subfield concerned with model-
based vision operations, falls into this category. Level 2
queries can be further classified as queries of objects of a

FIG. 1. Representation levels of visual objects.
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given type (item two in the list above) and queries of
individual objects or persons, as is depicted in Figure 3.

Level 3 Queries.Queries of this type of composed of
abstract notions and attributes and require a significant
amount of higher level reasoning about meaning and pur-
pose. Typically, it is very difficult to automate this type of
reasoning. Because the link between image content and
abstract concepts requires complex reasoning and subjective
judgment, systems based on this type of visual processing
will incorporate a “human in the loop” to guide the com-
puter to a correct solution. A query of this type is given in
Figure 4.

Level 1 queries are generally considered to be the focus
of CBIR research and systems development. Levels 2 and 3
are considerably harder to implement, as exemplified by
several decades of computer vision research. They can be
consideredsemantic image retrieval, a subcategory of
CBIR. The distinction between Level 1 and Level 2 is not
artificial; there exists a significant gap between them in
terms of what computer science and cognitive modeling can
currently deliver. This knowledge representation and mod-
eling gap (or chasm, depending on who you ask) is com-
monly referred to as thesemantic gap.

2.1. General System Structure

The basic problem addressed in this paper is the speci-
fication of unconstrained query images by a user to a CBIR
system to search and retrieve a set of result images that are
similar to the images initially specified. The search and
retrieval process is based on the visual features contained in
the images that comprise both the query set and the image
database. The general computational framework of a CBIR
system is depicted in Figure 5. The entire process starts with

the construction of an image database. The images to be
added to the database are processed by a feature extraction
algorithm. The output of this algorithm is a feature repre-
sentation, which is the data structure actually stored in the
database and used to compute similarity.

The same feature extraction algorithm is used to process
the query image and the images contained in the database.
Hence, the same feature representation is computed for the
query image as was for each image in the database. The
similarity measure then compares the query feature repre-
sentation with each of the feature representations in the
database. Those feature representations deemed “similar”
are returned to the user as a result set. It is not strictly
necessary that an image be specified as part of the query.
Queries can be specified by sketches or by graphical user
interface tools (Flickner et al., 1995; Gray, 1995). However,
the ultimate result of the query specification must be the
same feature representation that is used by the database to
store and index images. The specification of the query can
be with an example image, a user drawn sketch, or explicit
information from the user about the primitive features of
interest.

2.2 Visual Features

The extraction of visual features from an image is one of
the fundamental operations of CBIR. Visual features are
properties of an image that are extracted using image pro-
cessing, pattern recognition, and computer vision methods
(Duda & Hart, 1973; Gonzalez & Woods, 1992). Most
methods of feature extraction focus on color, texture, shape,
and spectral properties of images and, thus, are considered
required elements at the primitive level.

FIG. 4. Example of a Level 3 Query for the Lena Image.

FIG. 2. Examples of Level 1 Queries for Lena Image.

FIG. 3. Example of a Level 2 Query for the Lena Image.
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Color is by far the most common visual feature used in
CBIR, primarily because of the simplicity of extracting
color information from images (Flickner et al., 1995; Gray,
1995; J. Huang, 1998; Pass & Zabih, 1996; Smith, 1997;
Stricker, 1994; Swain & Ballard, 1991). (Stricker & Swain,
1994) present a thorough analysis of effectiveness of color
histograms intersection for CBIR. Color histograms de-
scribe the distribution of pixels of each color in the color
space of the image. The algorithms developed in (Gray,
1995; J. Huang, 1998; Pass & Zabih, 1996; Smith, 1997)
augment color histograms with other derivative visual fea-
tures, such as spatial coherence or edge information. (Car-
son et al., 1997) develop a region based color query method.
These methods show impressive results for particular
classes of image.

Texture is a pervasive yet ill-defined property of images;
it can be difficult to define, but we know it when we see it.
The analysis of texture in digital images has received much
attention in the areas of machine vision, pattern recognition,
and image processing (Gonzalez & Woods, 1993; Haralick
et al., 1973; Picard & Minka, 1995). In (Picard, 1996),
texture is described as lacking a specific complexity, con-
taining high frequency information, and having a finite
range of scalability. A statistical approach developed in
(Haralick et al., 1973) is the gray level co-occurrence ma-
trix. This method characterizes texture by generating statis-
tics of the distribution of intensity values as well as position
and orientation of similar valued pixels. Recent approaches
compute texture present in images by employing spectral
methods, namely Fourier and wavelet transforms (Chang &
Kuo, 1993; Prasad & Iyengar, 1997).

The recognition of shapes is a fundamental perceptual
activity, and it is natural that shape-based queries are a

component of the primitive level. A number of features of
an object’s shape in an image are computed for each object
in an image and stored. Like color histogram intersection, a
query image is analyzed in terms of the same object char-
acteristics and the computer features of the query image are
compared to the features of the stored images. Those stored
features that best match the query image features are used as
the result set. Shape features take on many geometric and
non-geometric forms, such as aspect ratio, circularity, mo-
ment invariants (Flickner et al., 1995). An example image
(QBE) or user sketch is commonly used to construct the
shape-based query.

Spectral methods, such as Fourier and wavelet trans-
forms (Prasas & Iyengar, 1997), are used independent of
texture analysis to extract features from images. In (Jacobs
et al., 1995), wavelet coefficients of images are used to
search an image database from a low-resolution example
image or user-drawn sketch. Their approach created image
signatures of the query and stored images from the Haar
wavelet decomposition method. Each signature is a trun-
cated and quantized version of the coefficients computed
from the images. A similarity comparison is made by de-
termining the number of significant coefficients in common
between the example signature and the stored signatures in
the database. The Fourier-Mellin transform is compared to
the Haar wavelet decomposition method in (Cherbuliez,
1997).

3. Color as a Visual Feature

Virtually all CBIR systems allow searching capability
based on color, an approach pioneered in (Chang & Fu,
1981). Most research and commercial CBIR systems that

FIG. 5. Computational Framework of CBIR Systems.
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have been developed, such as QBIC (Flickner et al., 1996),
Virage, Excalibur, and Photobook (Pentland et al., 1996)
employ color together with other visual features as a search
and retrieval mechanism. The results presented in (Stricker
& Swain, 1994) placed color histograms on a firm theoret-
ical foundation. In his doctoral research, (Smith, 1997)
developed binary representations of color histograms. How-
ever, most previous work in color feature extraction and, to
a large degree, feature extraction in general, focuses on an
approach restricted to a single vector-based representation
of features. In particular, representation of color in image
has not been investigated much beyond color histograms.

The extraction of color features from digital images
depends on an understanding of the theory of color and the
representation of color in digital images. Color spaces are an
important component of relating color to its representation
in digital form. The transformations between different color
spaces and the quantization of color information are primary
determinants of a given feature extraction method.

The human eye, through the receptors present in the
retina calledrodsandcones, perceives color as linear com-
binations of threeprimary colors. These primary colors, red
(R), green (G), and blue (B), have specific wavelength
values of 700nm, 546.1nm, and 435.8nm, respectively.

Chromatic light is colored light.1 The basic terms used to
describe chromatic light arehue, saturation, andbrightness.
Hue is used to describe the dominant wavelength or per-
ceived color of an object.2 It is the “redness” of an apple or
the “yellowness” of a banana. Saturation refers to purity of
a hue or the distance a color is from a gray of equal
intensity. Red is highly saturated while pink is not. Bright-
ness is the chromatic analogue of intensity for achromatic
light. Hue and saturation are sometimes combined and re-
ferred to aschromaticity.

Given the response functions fr(l), fg(l), and fb(l) for
each of the primary colors, the following equation of the
electromagnetic response for a wavelengthl is defined as

F~l! 5 Xfr~l! 1 Yfg~l! 1 Zfb~l!

The values (X,Y,Z) are called thetristimulus valuesfor
color F(l) and denote the respective amounts or red, green,
and blue necessary to form a color. Commonly, the tris-
timulus values are used to specify a color in terms of its
trichromatic coefficients

x 5
X

X 1 Y 1 Z
, y 5

Y

X 1 Y 1 Z
, z 5

Z

X 1 Y 1 Z

Tristimulus values are, in general, normalized. Thus, the
trichromatic coefficients are likewise normalized. While X,

Y, and Z may all be equal to 1, the trichromatic coefficients
are subject to the relation x1y1z51. The primary colors
and tristimulus color theory is the mechanism that allows
televisions to display the colors we see. Cathode ray tubes
(CRTs) have three channels of red, green, and blue. By
varying the voltage of each channel and combing their
outputs, each pixel on a television screen can output a large
array of colors. Secondary colors are specified in terms of
the primary colors. Magenta is formed from equal amounts
of red and blue light. Yellow is formed from equal
amounts of red and green light. Cyan is formed from equal
amounts of green and blue light. For pigments used for
print, the primary and secondary color designations are
reversed (Gonzalez & Woods, 1992).

3.1. Color Spaces

A color space (or color model) is used to specify a
three-dimensional color coordinate system and a subspace
of the system in which colors are represented as points. The
most common color space for digital images and computer
graphics is the RGB color space (Figure 6) in which colors
are represented as linear combinations of red, green, and
blue color channels. The primary reason for the ubiquity of
the RGB color space is due to the use of CRT monitors and
color raster graphics devices. Additionally, most digital
image formats store pixel values from the RGB color space.
Thus, it would seem reasonable to based color feature
extraction methods on the RGB color space. However, there
are sufficient drawbacks to the RGB color space to warrant
the use of transformations and quantizations (Smith, 1997)
to other color spaces.

The RGB color space is not perceptually uniform. The
distance between two points in the color space does not
suggest that the two colors are similar or dissimilar. Addi-
tionally, the three color channels of the RGB color space do
not vary consistently with one another with respect to
brightness. Therefore, the pixels of the images in the image
database and query examples must be transformed into an
alternative color space that satisfies the properties of uni-

1 Achromatic light is void of any color. It is characterized by the
perception of intensities, such as the gray levels one may see on a black and
white television.

2 Some colors do not have a dominant wavelength. Purple is an exam-
ple.

FIG. 6. RGB color cube. The red, green, and blue ordinates are labeled
as unit vectors. The line defined by (0,0,0) and (1,1,1) represents the set of
grayscale levels.
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formity, completeness, and uniqueness. One common alter-
native color space that satisfies these conditions is the CIE
family of color spaces.

The CIELUV and CIELAB color spaces were created in
1976 as alternatives to color spaces that assumed luminance
was constant for all colors. An equal amount of emphasis is
placed on chromaticity and luminance. As a result, the three
properties desirable of a color space in perceptually sensi-
tive application, uniformity, completeness, and uniqueness,
are satisfied. This paper proposes the use the CIELAB color
space as a foundation for feature representation and simi-
larity measurement. This choice is motivated primarily be-
cause of the almost perceptual uniformity of the space, a
characteristic that is a departure from most other CBIR
approaches. A detailed description of the transformation of
a point in RGB color space to CIELAB color space is given
in (Zachary, 2000).

The domain of values for L*, a*, and b* is from R and,
hence, necessitates that a quantization be applied to partition
the CIELAB color space into non-overlapping partitions
which completely cover the original continuous space. Our
quantization of the CIELAB color space strikes a balance
between fidelity and the dimensionality of the resulting
quantization (Figure 7). The axis defined by L* defines the
brightnessof the color, that is blackness to whiteness. The
a* and b* axes are defined by anopponent color theory
(Berger-Shunn, 1994) in which the a* ordinate describes the
redness (180) to greenness (-80) of a color, and the b*
ordinate shows the yellowness (180) to blueness (-80) of a
color. Since a* and b* define the most significant charac-
teristic of a color, namely its chroma, the quantization of
these values will be higher than for L*. This is justified by
another argument. The human visual system discerns
changes in brightness by much larger gaps than changes in
color. Especially as L* increase, the human eye cannot
detect changes in brightness for small changes in the value
of L*. Thus, the brightness values do not require as fine a
resolution as the chroma colors. Additionally, L* can be
quantized into equidistant bins as opposed to bins fit to
logarithmic distances from zero because the logarithmic
response of the human visual system has been accounted for

in the transformation formulas from the RGB color space to
the CIELAB color space.

The axis defined by L* defines thebrightnessof the
color, that is blackness to whiteness. The L* axis is quan-
tized to five equidistant bins corresponding to L*5 {[0,
20), [20, 40), [40, 60), [60, 80), [80, 100]}. The a* and b*
axes are defined by anopponent color theory(Berger-
Shunn, 1994) in which the a* ordinate describes the redness
(180) to greenness (-80) of a color, and the b* ordinate
shows the yellowness (180) to blueness (-80) of a color. If
both the a* and b* axes is partitioned into eight bins, i.e.,
{[-80, -60), [-60, -40), [-40, -20), [-20, 0), [0, 20), [20, 40),
[40, 60), [60, 80]}, then the quantization of the CIELAB
color space results in M5 5*8*8 5 320 distinct colors.

Many other color spaces exist, each with advantages and
disadvantages. As mentioned, the RGB color space is an
additive color space made popular by the ubiquity of CRTs
to display digital images. While easy to implement, it is not
linear with respect to human visual perception. Addition-
ally, the RGB color space dependent on the device display-
ing the colors. The CMY (Cyan, Magenta, Yellow) color
space is used mostly for printing output and is not percep-
tually uniform The HSL (hue, saturation, lightness) color
space has several co-spaces it shares characteristics with
HSV (hue, saturation, value) and HSI (hue, saturation, in-
tensity). This family of color spaces, too, is not perceptually
uniform. The main attraction of these color spaces is the
separation of chromaticity (hue & saturation) from lumi-
nance (intensity, brightness, and value). The YIQ, YUV,
and YCrCb color spaces are used for NTSC, PAL, and
JPEG standards, respectively. They are highly device de-
pendent and also perceptually non-uniform. A summary of
the comparisons between the different color spaces is given
in Table 1.

3.2 Color Representations

The transformation of points in the RGB color space to
the quantized CIELAB color space requires an appropriate
representation that captures the distribution of the colors in
an image. The most common representation is thecolor
histogram. The color histogram captures the distribution of
colors in an image or region of an image, and its unnormal-
ized definition is the following formula

hW I 5 hm51, . . . ,M@m# 5 O
x51

X O
y51

Y

äIi, j m

TABLE 1. Summary of color space comparisons.

Uniform Complete Unique
Device

independent

RGB No Yes No No
CMY No Yes No No
HSL, HSV, HSI No Yes Yes No
YIQ, YUV, YCrCb No Yes No No
CIELUV, CIELAB Yes Yes Yes Yes

FIG. 7. CIELAB Color Space.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2001 845



where M is the number of quantized colors, X and Y are the
width and height, respectively, of an image I, andd is the
Kronecker delta function. An analysis of the metrical prop-
erties of the color histogram space is given in (Stricker &
Swain, 1992). Normalization of the color histograms is a
necessary computation to ensure a unit variance between
elements of a histogram, i.e., to eliminate the dependency
on the number of pixels that comprise the histogram. Nor-
malized histograms are computed by dividing each element
of the histogram by the length of the histogram. The defi-
nition of a normalized color histogram space is

H 5 $~hW 1, hW 2, . . . , hW M!uhi $ 0, O
i51

M

hi 5 1

The color histogram spaceH is a subset of an M-dimen-
sional vector space and forms the face of an M-dimensional
simplex (thus, it is an M-1-dimensional simplex). In order
for two distinct histograms hi and hj to be distinguishable
from one another, they must be separated by a non-zero
distancet. This property is calledt-differenceand describes
H as a Hausdorf space. The value oft depends on the
composition of the image data set. However, Stricker &
Swain discovered a bimodal shape to distance distributions
for two large image data collection (one of which was
randomly generated). The bimodal behavior of the distance
distribution suggests that reasonable values of the variablet
are found in the first interval of the distance distribution
with a large slope. More importantly, this also suggests that
the distances between color histograms of images with
similar colors or images containing all the colors of the
color space are small.

3.3 Similarity Measures

Once the feature representation space has been defined as
an M-dimensional color histogram space, the problem of
defining the similarity between two images is described as
the distance between two points in the color histogram
space, denoted as D(p,q) for points p and q. We now
provide a formal definition of similarity.

Definition 2.2: An imagev is more similar tou than
another imagew is to u if D(u,v),D(u,w).

In (White & Jain, 1996b), similarity measurements are
defined in terms of the following parameters:

● A query object u and similarity measurement function
D(●,●) such that references are ordered in increasing value
with respect to D(u,v), @ v [ D.

● A parameterk [ Z1 is used as an upper bound for the
cardinality of the set of nearest-neighbor references as com-
puted by D.

● T [ R1 places an upper bound on the distance that database
vectors can be fromu in order to be included in the result set
R, i.e., R5 { v [ D | D(u, v) # T}.

The second item describes thek-nearest neighbor form of
similarity while the third item describes the range-based
form for similarity.

Once the abstract notion of similarity is defined in terms
of distance, several mathematical formulas for the distance
function can be defined. The termsdistance functionand
similarity functionare used interchangeably in this paper.

The distance between two points can be classified as
eithermetric or non-metric.

Definition 2.3: A set X with elements called points is
called a metric space if for any two pointsp and q in X
there is a numberD(p,q)[R called thedistancefrom p to
q such that

D~p, q! . 0if p Þ q ~non-negativity!;
D~p, q! 5 0 ~identity!;
D~p, q! 5 D~q, p! ~symmetry!;
D~p, q! # D~p, r! 1 D~r, q! ; r [ X ~triangle inequality!

Any functionD(p,q) satisfying these three properties is
called adistance functionor metric (Rudin, 1976).

A general class of distance metrics is the Minkowski
metrics orLr-norms:

Dr~p, q! 5 Îr O
i51

n

upi 2 qiur

The most commonly used Minkowski distances corre-
spond to r-values of one, two, and infinity. The D1(●,●)
distance function is called theHammingdistance, and it
corresponds to the L1-norm.

D1~p, q! 5 O
i51

n

upi 2 qiu

The D2(●,●) distance function is the well-knownEuclid-
eandistance, well known by school children in the earliest
algebra courses. The corresponding norm is the L2-norm.

D2~p, q! 5 ÎO
i51

n

~pi 2 qi!
2

The D̀ (●,●) distance reduces to

D`~p, q! 5 maxjupj 2 qju

which is the maximum coordinate orChebyshevdistance.
The histogram cosine distance function is closely related

to the L2-norm and is commonly used to compute similarity
between text documents (Smith, 1997). The inner product of
two vectorsp andq is given by
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p z q 5 pTq 5 upu uqucosè

Thus, solving foru, we have

Du~p, q! 5 è 5 cos21
pTq

upu uqu

The histogram cosine distance function measures the
difference in direction between two vectors irrespective of
the magnitude. The relationship between the histogram co-
sine distance and the L2-norm is depicted in Figure 8.We
see that the histogram cosine distance between p and q1 is
equal to the histogram cosine distance between p and q2.
However, D2(p,q1) and D2(p,q2), are clearly not equal.
Therefore, the histogram cosine distance is not a true dis-
tance function in the strictest sense since it fails to satisfy
the triangle inequality. Researchers have discovered that
satisfying the triangle inequality is not necessary in order to
define a similarity measure that models human perception.

The general quadratic form for the distance between two
vectors is

DQ~p, q! 5 ~p 2 q!TA~p 2 q!

whereA is typically a symmetric square matrix. The form
for A varies for different distance calculations. In (Niblack
et al., 1993), the matrixA is defined as a color similarity
matrix with

aij 5 1 2
d2~ci, cj!

dmax

The vectorsci and cj are the ith and jth colors in the
histogram space. The function d2(ci,cj) is the Euclidean
distance between colorsci andcj, and dmax is the maximum
distance between any two colors in the color space. The
effect of computing DQ(●,●) is the magnitude of the dis-
tance betweenp andq weighted by the distance between the
colors in the color space. The difference between color
amounts and similar colors is accounted for in this formula.
Other quadratic forms include the Mahalanobis form (Duda
& Hart, 1973).

4. Image Entropy and Color

Color histograms have been shown to be a promising
method for indexing into image databases. However, for
very large image databases and histogram spaces with large
dimensions, the computational cost of performing distance
calculations can be prohibitive. This section suggests an
alternative viewpoint of color histograms based on informa-
tion theory that offers the potential for a substantial increase
in retrieval performance.

The motivation for this section is the desire to reduce the
dimensionality of the color histogram space in order to
provide a substantial improvement in retrieval performance.
Several dimension reduction techniques have been devel-
oped, such as principle component analysis (Gerbrands,
1981; Gonzalez & Woods, 1992) and column-wise cluster-
ing (Duda & Hart, 1973). Generally, these techniques re-
duce the dimensionality of the histogram space fromn to k
. 1.

We develop the theory necessary to reduce the dimen-
sionality of the color histogram space to one. Theentropyof
an image is a measure of the information content of the
image. As will be seen, the Shannon entropy function maps
an n-dimensional vector to the set of real numbers, and,
hence, it can be regarded as a dimension reduction to the set
of real valued numbers.

4.1. Color Histograms as Probability Density Function

This section expands the discussion of color histograms
by describing a color histogram as an estimation of the
first-order joint probability density function of an image.
This description is important in allowing us to use methods
from information theory to expand the characterization of
images on the basis of their color contents.

A discrete image I5F(N1,N2) of size N1xN2 can be
statistically characterized as the joint probability density
function

p~I ! ; p$F~1, 1!, F~1, 2!, . . . , F~N1, N2!%

If each pixel value is statistically independent from all other
pixels values, then the joint probability density function is
factored into the following form

p~I ! 5 p$F~1, 1!%p$F~1, 2!%· · ·p$F~N1, N2!%

which is the product of its first-order (one-dimensional)
marginal densities. For a discrete set of values, the inter-
pretation ofp{F(i,j)} is developed on the basis of the finite
range of possible values for F(i,j). For a digital image
source, these values are the possible colors at each pixel, or
reconstruction levels. It is generally assumed that the dis-
tribution of colors across an image follows a uniform dis-
tribution, i.e., each color has a 1/M probability to be as-
signed to a pixel.

FIG. 8. Comparison of Histogram Cosine Distance to the L2-Norm.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2001 847



For digital images, the probability density function is a
joint probability density function because the pixels, as
discrete random variables, are not functions of one another.
Additionally, pixels are assumed to be statistically indepen-
dent because thevalueof a pixel is not a function of other
pixel values. Furthermore, the digital image source is as-
sumed to beergodic in the sense that successive samplings
of a certain pixel do not determine or affect the outcome of
future values at that pixel. Another way to regard this
property is that image sources arememoryless.

The Laplacian and Rayleigh joint probability density
models are used as statistical descriptions in analog analysis
of image systems (Pratt, 1978). However, for quantized
discrete random variables, i.e., digital images, histograms of
the color distribution in an image provide an adequate
estimation of first- and second-order joint probability den-
sity functions for the image.

For an ergodic image source, the first-order joint proba-
bility density function is estimated by the first-order spatial
histogram for an image

hW ~i ! 5
N~ci!

N1 z N2

where N(i) is the number of pixels in the image that are of
color ci. Despite a change in notation, this formula is iden-
tical to the formula of color histograms given previously.

Figure 9 displays the histograms for the red, green, and
blue responses of the Mona Lisa. The shape of the histo-

grams demonstrates a pattern in which the response for each
of the tristimulus values at the darker end of the histogram
is greater than the response at the brighter end. The Mona
Lisa is a good example of the color distribution typical of
most natural images.

The approximation of the second-order joint probability
density function plays a significantly less role than the
approximation of the first-order probability density function
in image analysis. For completeness, the second-order joint
probability density function of an image is estimated by the
second-order spatial histogram of an image. The latter is a
measurement of the occurrence of pairs of pixels at given
color values separated by a specific distance. The interested
reader is referred to (Gonzales & Woods, 1992; Pratt, 1978)
for details of the second-order spatial histogram formula.

4.2. Information Theory and the Entropy Function

Given a vectorv of numbers from a set {x1,x2, . . . , xn}
where the probability that xi [ v is pi 5 P(xi), the entropy
of v is given by the formula

H~v! 5 2 O
i51

n

pilog2~pi!

The mathematics describing H(v) in the context of commu-
nications theory was developed in (Shannon, 1948) and is
the most common definition of entropy in the literature. It

FIG. 9. Mona Lisa and the Histograms of the Tristimulus Channels.
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should be clear that H(v) is a function of the probability
distribution of some random variable and not a function of
the actual values the variable may assume. As seen in Figure
10, H(v) is a continuous, positive, and concave function of
[0,1]n [ Rn that maps to [0,1][ R. The function H(v) 5 0
when vi 5 1 and vj 5 0 for all jÞi.

Before pursuing a quantitative description of similarity
between images represented as entropy values, we investi-
gate the sensitivity of the entropy function to small pertur-
bations in the probability distribution function. Given a
uniform probability distributionv 5{p151/M, p251/M,
. . . , pM51/M} associated with the maximum entropy, as-
sume that a new vectoru assumes the form

ui 5 v i 1 Äv i, O Äv i 5 0

The Taylor polynomial expansion to the second derivative
of H(u) is

H~u! 5 H~v! 1 O H

v i
Äv i 1

1

2! O 2H

v i
2 ~Dv i!

2

The first partial derivative with respect to H(u) evaluates to

H~u!

v i
5 21 2 O lnS1

M
1 ÄviD

The second partial derivative with respect to H(u) evaluates
to

2H~u!

v i
2 5 2

1

1

M
1 Ävi

If these partial derivatives are evaluated atDvi50, then the
Taylor polynomial for H(u) becomes

H~u! 5 H~v! 2
M

2 O ~Dv i!
2

The term associated with the first derivative becomes zero
based on the assumption thatSDvi 5 0. Therefore, we
conclude from this sum that ifu represents a small change
in the probability distributionv, then the corresponding
difference |H(u) – H(v)| is likewise small.

4.3. Image Entropy as a Visual Feature

The definition of color histograms as first-order joint
probability density functions suggests that the entropy of an
image can be calculated. In fact, this is exactly the case. The
definition of v is derived from the interpretation of first-
order spatial histograms as a joint probability density func-
tion. An elementvi is the percentage of pixels in the image
that belong to the quantized colorI and is also a close
approximation to the value of the joint probability density
function value pi at i. The correlation of each histogram bin
vi to a probability function value pI yields the function

H~v! 5 2 O
i51

M

vilog~vi!

Figure 11 gives the entropy values calculated by the formula
for some recognizable digital images. Images such as
Clown, Lena, and Mandril have complex color distributions
and, hence, have higher entropy values. An image with a
simple color distribution, such as Pleides, has a smaller
entropy value.

For a digital image source, there are many interpretations
of H(v), including

● The average uncertainty ofv.
● The theoretically least number of bits necessary to encodev.
● A measure of the randomness of the color distribution inv.

An increase in image entropy corresponds to more un-
certainty and more information contained in an image.
Thus, the use of image entropy as a discriminant between
two images is based on the idea that a meaningful difference
between two image entropy values corresponds to a mean-
ingful difference between the two source images. For ex-
ample, in Figure 11, a meaningful difference between the
entropy values for the Pleides and Venice images corre-
sponds to a meaningful difference between the images
themselves.

Our interest will focus on the third interpretation of H(v)
since it seems to hint that entropy captures a characteristic
of an image meaningful in making a determination of
whether images are similar. The Shannon definition of H(v)
assigns information based on “sharpness” of the distribution
that an event, or a group of pixels will have a given color
value, will occur. Based on the mathematical properties

FIG. 10. Entropy function in two dimensions.
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above, H(v) 5 0 implies a digital image has all pixel values
set to the same value. Additionally, H(v) is maximized
when all possible colors in the color space of the image are
equally represented. Intuitively, this means we can express
more information in an image that has more colors than in
an image with fewer colors.

A fundamental element of comparing images that are in
a certain representation is the definition of similarity. The
definition of the similarity function depends on the metrical
properties of the space in which the representations are
defined. For color histogram spaces, the definition of simi-
larity in terms ofnormsis natural given the theory of finite
dimensional vector spaces. The definition of similarity be-
tween points in entropy space must be based on an under-
standing of the metrical properties of the space regardless of
whether a metric or non-metric similarity function is de-
fined.

4.4. Entropy Difference

The definition of similarity between color images is
based on the L1-norm between two points in the color
histogram space. In the entropy space, this definition degen-
erates to the absolute value of the difference between two
entropy values. The formula is given by

DL1_Entropy~p, q! 5 uH~p! 2 H~q!u

which is a straightforward application of the definition of a
Minkowski metric given above. As such, the similarity
metric DL1_Entropypossesses the four properties of any dis-
tance function on a metric space, namely the non-negativity

property, the identity axiom, the symmetry axiom, and the
triangle inequality property.

This rather simple formulation has some interesting im-
plications and properties. It is obvious that since this defi-
nition is simply subtraction over values in the interval [0,1],
then the space ist-different for some value oft greater than
zero.

The color histogram spaceH forms the faces of an
M-dimensional simplex. Recall that a set of points
v1,v2, . . . ,vM in RM spans a hyperplane defined by the
linear combinationsl1v11l2v21. . .1 lMvM such that
l11l21. . .1lM 5 1. Figure 12shows a 2-simplex defined
by three unit vectorse1, e2, ande3. Any linear combination
v5l1e11l2e21l3e3 where l11l21l351 translates to a
point on the face of the triangle. If the entropies of the points
on the face of the 2-simplex are plotted as a contour, then
the distribution is such that the minima are found at the
vertices of the 2-simplex. The maximum entropy corre-
sponds to the point at the center of the 2-simplex corre-
sponding to 1/3e1 1 1/3 e2 1 1/3 e3.

FIG. 11. Entropy values for some recognizable digital images.

FIG. 12. A color histogram space of dimension 3 represents a 2-simplex,
or a triangle.
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Geometrically, the entropy minima correspond to points
in the color histogram space that are a maximal distance
from one another. The interpretation in terms of the content
of digital binary images is a completely white image and a
completely black image which are more similar to one
another (with entropies equal to zero) than to any other
image. This includes a white image with a single back pixel.
This will have a serious implication for using the use of
entropy values in an indexing algorithm for color images.

An interesting relationship exists as a quantitative de-
scription of the bounds on the entropy function by the
L1-norm of two probability density functionsp andq. This
bounds is expressed in the following theorem from (Cover
& Thomas, 1991).

Theorem 3.3(L1 Bound on Entropy)
Let p and q be two probability density functions over a

spaceH such that

uH~p! 2 H~q!u # 2ip 2 qiL1log
ip 2 qi

uHu .

Then,

ip 2 qiL1 5 O upi 2 qiu #
1

2
.

This upper bound on |H(p) – H(q)| provides an important
insight into the expected results of using entropy as an
indexing key for image in an image database. We would
expect that fewer results be retrieved for the entropic L1-
norm than for the color histogram L1-norm.

It was shown that a meaningful difference between im-
age entropy values for two images implies a meaningful
difference between the images themselves. This is primarily
a function of the entropy definition as a measure of the
information for a given source. However, from a perceptual
perspective, the converse is not necessarily true. That is, a
gross perceptual difference in images does not imply a
difference in entropy values. The value |H(p) – H(q)| can
approach zero for two very dissimilar images and, yet, be
greater than zero for two very similar images. For example,
in Figure 13, three images are shown. Two of these images
display randomly distributed black pixels on a white back-
ground in proportions of 50% and 75%. They are named

black50andblack75respectively. The other bicolor image,
namedred50, has a random distribution of red pixels over
50% of the image. The entropy differences are |H(black50)
– H(red50)| 5 0.0 and |H(black75) – H(red50)| 5
|H(black75) – H(black50)| 5 0.130812. Even to the most
casual of observers,black50and black75are much more
perceptually similar thanblack50and red50.

From an information theoretic point of view, however,
this is not true. The reason is thatblack50andblackwhite
have identical distributions of black and white pixels,
namely there is a 50% allocation to the black pixel bin, a
50% allocation to the white pixel bin, and a 0% allocation
to all other colors. The imageblack75, on the other hand,
has a 75% allocation to the black pixel bin, a 25% allocation
to the white pixel bin, and a 0% allocation to all other color
bins. Thus, from the information theoretic perspective, there
is no difference in the information necessary to code
black50andred50. However, there is a difference between
the information necessary to codeblack50 and black75.
Hence, the entropy values are different forblack50 and
black75but not forblack50and red50.

From this discussion, we can conclude that the use of
|H(p) – H(q)| as the sole measure of similarity may be
inappropriate. Color histogram comparisons using the L1

norm can distinguish the difference betweenred50 and
black75. Therefore, we do not assert that |H(p) – H(q)| is
capable of providing a meaningful similarity measure based
on entropy values alone. This should not be very surprising
to the reader since such an assertion would suggest that a
single real number contains more information than a vector
for distinguishing between two images. The vector always
contains more information than the single real number,
particularly since the single number is an aggregation of the
vector via the entropy function.

This paper asserts that the main benefit of using |H(p) –
H(q)| as a similarity measure is that it suggests an extremely
efficient method for retrieving images from a database. We
highlight a basic entropy indexing method that is present in
more detail in this issue (Zachary & Iyengar, 2000). The
strategy is to use the entropy number as a filter to generate
an interim result set of images. This interim image result set
is then indexed based on the standard retrieval method using
the L1-norm between points in the color histogram space. It
should be clear that for all but the most pathological of

FIG. 13. Entropy values for three random images.
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image databases, the interim result set will be much smaller
in size than the entire image database.

5. Summary

The focus of this paper is on an information theoretic
description of the color contained in a set of images. The
goal was to derive a more compact yet expressive descrip-
tion of images that can be used as discriminant in CBIR
systems. The interpretation of digital images as probability
density functions enabled us to define the concept of image
entropy. Image entropy was described in terms of the ran-
domness in the distribution of colors in an image.

We believe that information theory and entropy have not
received an adequate amount of research attention in the
image interpretation and pattern recognition fields. Areas
for future work include information theoretic descriptions of
the other visual features of images, including spatial and
geometric features. We are also interested in expanding the
gamut of image representations beyond vectors. A compan-
ion paper in this issue explores different similarity measures
based on the image entropy concept; we suspect that other
similarity measures are possible and likely to be defined in
the future.
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