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Content-based image retrieval is based on the idea of
extracting visual features from image and using them to
index images in a database. The comparisons that de-
termine similarity between images depend on the repre-
sentations of the features and the definition of appropri-
ate distance function. Most of the research literature
uses vectors as the predominate representation given
the rich theory of vector spaces. While vectors are an
extremely useful representation, their use in large data-
bases may be prohibitive given their usually large dimen-
sions and similarity functions. In this paper, we propose
similarity measures and an indexing algorithm based on
information theory that permits an image to be repre-
sented as a single number. When use in conjunction with
vectors, our method displays improved efficiency when
querying large databases.

1. Introduction

As digital images become an increasingly important
class of data, the need to store and retrieve images in an
intuitiveand efficient manner must beaddressed. Hence, the
field of content-based image retrieval (CBIR) focuses on
intuitive and efficient methods for retrieving images from
databases based solely on the content contained in the
images. The corpus of CBIR research has focused on the
definition of new visual feature representations for images
that provide ameaningful discriminant for conducting sim-
ilarity queries (Carson et al., 1997; Flickner et al., 1995;
Gray, 1995; Jacobs et al., 1995; Pass et al., 1996; Pentland
et al., 1996; Smith, 1997; Stricker, 1994; Zachary & Iyen-
gar, 1999). Most current representations of visual features
are based on vector forms.

In another paper in this issue, we expand existing visual
feature representations based on vector spaces to improve
retrieval performance and efficiency. Our approach is based
on the information theoretic concept of image entropy. In
this paper, we present two similarity measures that use
information theory to compare images.

Information theory has been an important application in
image compression and coding. The initial work of (Shan-

non, 1948) formulated the foundation of information theory
in terms of the information capacity of communication
channels. The fundamental notion of information entropy
describes a theoretical lower bound on the number of bits
necessary to encode information. This concept has been
useful in the development of image compression algorithms
(Gonzalez & Woods, 1992; Pianykh, 1998). The use of
information theory concepts to developed methods in image
interpretation has received littl e attention. In (Jagersland,
1995), the entropy of an image was used derive adescrip-
tion of scale in an image. The effort focused on the fact that
in an image, the information content of a scene is typically
confined to a small range of scales. In this paper, we
describe an approach to the application of the information
entropy of an image in computing a similarity value be-
tween pairs of images. We present experimental results of
our approach given general unconstrained digital imagery.

2. Background

2.1. Visual Features

The extraction of visual features from an image is one of
the fundamental operations of CBIR. Visual features are
properties of an image that are extracted using image pro-
cessing, pattern recognition, and computer vision methods
(Duda & Hart, 1973; Gonzalez & Woods, 1992). Most
methodsof featureextraction focuson color, texture, shape,
and spectral properties of images and, thus, are considered
required elements at the primitive level.

2.2. Color as a Visual Feature

Color is by far the most common visual feature used in
CBIR, primarily because of the simplicity of extracting
color information from images (Flickner et al., 1995; Gray,
1995; J. Huang, 1998; Pass & Zabih, 1996; Smith, 1997;
Stricker, 1994; Swain & Ballard, 1991). (Stricker & Swain,
1994) present a thorough analysis of effectiveness of color
histograms intersection for CBIR. Color histograms de-
scribe the distribution of pixels of each color in the color© 2001 John Wiley & Sons, Inc. ● 
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space of the image. The algorithms developed in (Gray,
1995; J. Huang, 1998; Pass & Zabih, 1996; Smith, 1997)
augment color histograms with other derivative visual fea-
tures, such as spatial coherence or edge information. (Car-
son et al., 1997) develop a region based color query method.
These methods show impressive results for particular
classes of image.

Virtually all CBIR systems allow searching capability
based on color, an approach pioneered in (Chang & Fu,
1981). Most research and commercial CBIR systems that
have been developed, such as QBIC (Flickner et al., 1996),
Virage (Gupta, 1996), Excalibur, and Photobook (Pentland
et al., 1996) employ color together with other visual features
as a search and retrieval mechanism. The results presented
in (Stricker & Swain, 1994) placed color histograms on a
firm theoretical foundation. In his doctoral research, (Smith,
1997) developed binary representations of color histograms.
However, most previous work in color feature extraction
and, to a large degree, feature extraction in general, focuses
on an approach restricted to a single vector-based represen-
tation of features. In particular, representation of color in
image has not been investigated much beyond color histo-
grams.

2.3. Color Representations and Similarity Measures

An appropriate representation that captures the distribu-
tion of the colors in an image is necessary in the computa-
tion of similarity between images. The most common rep-
resentation is thecolor histogram. The color histogram
captures the distribution of colors in an image or region of
an image as a point in an M-dimensional vector space. An
analysis of the metrical properties of the color histogram
space is given in (Stricker & Swain, 1992). Normalization
of the color histograms is a necessary computation to ensure
a unit variance between elements of a histogram, i.e., to
eliminate the dependency on the number of pixels that
comprise the histogram. The definition of a normalized
color histogram space we assume is

H 5 $~hW 1, hW 2, . . . , hW M!uhi $ 0, O
i51

M

hi 5 1 hi 5
N~ci!

N1 z N2

The color histogram spaceH is a subset of an M-dimen-
sional vector space and forms the face of an M-dimensional

simplex (thus, it is an M-1-dimensional simplex). In order
for two distinct histograms hi and hj to be distinguishable
from one another, they must be separated by a non-zero
distancet. This property is calledt-differenceand describes
H as a Hausdorf space. The value oft depends on the
composition of the image data set. This suggests that the
distances between color histograms of images with similar
colors or images containing all the colors of the color space
are small.

Once the feature representation space has been defined as
an M-dimensional color histogram space, the problem of
defining the similarity between two images is described as
the distance between two points in the color histogram
space, denoted as D(p,q) for points p and q. Similarity
between images can be defined in terms of D(p,q) as:

Definition 2.2 An imagev is more similar tou than
another imagew is to u if D(u,v),D(u,w).

Once the abstract notion of similarity is defined in terms
of distance, several mathematical formulas for the distance
function can be defined. The termsdistance functionand
similarity functionare used interchangeably in this paper.

The distance between two points can be classified as
either metric or non-metric. Recall that a function defined
on two points in a metric space is called a metric function if
it is non-negative and satisfies the identity, symmetry, and
triangle inequality axioms. A list of common metrics is
given in Table 1.

3. Information Theory, Image Entropy, and
Similarity

Color histograms have been shown to be a promising
method for indexing into image databases. However, for
very large image databases and histogram spaces with large
dimensions, the computational cost of performing distance
calculations can be prohibitive. This section suggests an
alternative viewpoint of color histograms based on informa-
tion theory that offers the potential for a substantial increase
in retrieval performance.

The motivation for this chapter is the desire to reduce the
dimensionality of the color histogram space in order to
provide a substantial improvement in retrieval performance.
Several dimension reduction techniques have been devel-
oped, such as principle component analysis (Gerbrands,
1981; Gonzalez & Woods, 1992) and column-wise cluster-
ing (Duda & Hart, 1973). Generally, these techniques re-

TABLE 1. Common distance functions defined on an M-dimensional vector space.

Metric Name Formula

Minkowski Metric (Lr norm) Dr~p, q! 5 Îr O
i51

n

upi 2 qiur

Histogram Cosine (non-metric) Du~p, q! 5 è 5 cos21
pTq
upiqu

Quadratic Form DQ~p, q! 5 ~p 2 q!TA~p 2 q!, aij 5 1 2
d2~ci, cj!

dmax
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duce the dimensionality of the histogram space fromn to k
. 1.

This chapter develops the theory necessary to reduce the
dimensionality of the color histogram space to one. The
entropyof an image is a measure of the information content
of the image. As will be seen, the Shannon entropy function
maps an n-dimensional vector to the set of real numbers,
and, hence, it can be regarded as a dimension reduction to
the set of real valued numbers.

3.1. Color Histograms as Probability Density Function

This section expands color histograms by describing a
them as an estimation of the first-order joint probability
density function of an image. This description is important
in allowing us to use methods from information theory to
expand the characterization of images on the basis of their
color contents.

A discrete image I5F(N1,N2) of size N1xN2 can be
statistically characterized as the joint probability density
function

p~I ! ; p$F~1, 1!, F~1, 2!, . . . , F~N1, N2!%

If each pixel value is statistically independent from all other
pixels values, then the joint probability density function is
factored into the following form

p~I ! 5 p$F~1, 1!%p$F~1, 2!% . . . p$F~N1, N2!%

which is the product of its first-order (one-dimensional)
marginal densities. For a discrete set of values, the inter-
pretation ofp{F(i,j)} is developed on the basis of the finite
range of possible values for F(i,j). For a digital image
source, these values are the possible colors at each pixel, or
reconstruction levels. It is generally assumed that the dis-
tribution of colors across an image follows a uniform dis-
tribution, i.e., each color has a 1/M probability to be as-
signed to a pixel.

For digital images, the probability density function is a
joint probability density function because the pixels, as
discrete random variables, are not functions of one another.
Additionally, pixels are assumed to be statistically indepen-
dent because thevalueof a pixel is not a function of other
pixel values. Furthermore, the digital image source is as-
sumed to beergodic in the sense that successive samplings
of a certain pixel do not determine or affect the outcome of
future values at that pixel. Another way to regard this
property is that image sources arememoryless.

Given a vectorv of numbers from a set {x1,x2, . . . ,xn}
where the probability that xi [ v is pi5P(xi), theentropyof
v is given by the formula

H~v! 5 2O
i51

M

vi log~vi!

The mathematics describing H(v) in the context of commu-
nications theory was developed in (Shannon, 1948) and is
the most common definition of entropy in the literature. It
should be clear that H(v) is a function of the probability
distribution of some random variable and not a function of
the actual values the variable may assume. As seen in Figure
1, H(v) is a continuous, positive, and concave function of
[0,1]n [ Rn that maps to [0,1][ R. The function H(v) 5 0
when vi 5 1 and vj 5 0 for all jÞi.

The sensitivity of the entropy function to small pertur-
bations in the probability distribution function is explained
in our other paper in this issue.

3.2. Image Entropy as a Visual Feature

The definition of color histograms as first-order joint
probability density functions suggests that the entropy of an
image can be calculated. In fact, this is exactly the case. The
definition of v is derived from the interpretation of first-
order spatial histograms as a joint probability density func-
tion. An elementvi is the percentage of pixels in the image
that belong to the quantized colorI and is also a close
approximation to the value of the joint probability density
function value pi at i. The correlation of each histogram bin
vi to a probability function value pI yields the function.

Figure 2 gives the entropy values calculated by the
formula for some recognizable digital images. Images such
as Clown, Lena, and Mandril have complex color distribu-
tions and, hence, have higher entropy values. An image with
a simple color distribution, such as Pleides, has a smaller
entropy value.

For a digital image source, there are many interpretations
of H(v), including

1. The average uncertainty ofv.
2. The theoretically least number of bits necessary to en-

codev.
3. A measure of the randomness of the color distribution in

v.

FIG. 1. Entropy function in two dimensions.
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An increase in image entropy corresponds to more un-
certainty and more information contained in an image.
Thus, the use of image entropy as a discriminant between
two images is based on the idea that a meaningful difference
between two image entropy values corresponds to a mean-
ingful difference between the two source images. For ex-
ample, in Figure 2, a meaningful difference between the
entropy values for the Pleides and Venice images corre-
sponds to a meaningful difference between the images
themselves.

Our interest will focus on the third interpretation of H(v)
since it seems to hint that entropy captures a characteristic
of an image meaningful in making a determination of
whether images are similar. The Shannon definition of H(v)
assigns information based on “sharpness” of the distribution
that an event, or a group of pixels will have a given color
value, will occur. Based on the mathematical properties
above, H(v) 5 0 implies a digital image has all pixel values
set to the same value. Additionally, H(v) is maximized
when all possible colors in the color space of the image are
equally represented. Intuitively, this means we can express
more information in an image that has more colors than in
an image with fewer colors.

A fundamental element of comparing images that are in
a certain representation is the definition of similarity. The
definition of the similarity function depends on the metrical
properties of the space in which the representations are
defined. For color histogram spaces, the definition of simi-
larity in terms ofnormsis natural given the theory of finite
dimensional vector spaces. The definition of similarity be-
tween points in entropy space must be based on an under-
standing of the metrical properties of the space regardless of

whether a metric or non-metric similarity function is de-
fined.

3.3. Entropy Difference

The usual definition of similarity between color images
is based on the L1-norm between two points in the color
histogram space. In the entropy space, this definition degen-
erates to the absolute value of the difference between two
entropy values. The formula is given by

DL12Entropy~p, q! 5 uH~p! 2 H~q!u

which is a straightforward application of the definition of a
Minkowski metric given above. As such, the similarity
metric DL1_Entropypossesses the four properties of any dis-
tance function on a metric space, namely the non-negativity
property, the identity axiom, the symmetry axiom, and the
triangle inequality property.

This rather simple formulation has some interesting im-
plications and properties. It is obvious that since this defi-
nition is simply subtraction over values in the interval [0,1],
then the space ist-different for some value oft greater than
zero.

The color histogram spaceH forms the faces of an
M-dimensional simplex. Recall that a set of points
v1,v2, . . . ,vM in RM spans a hyperplane defined by the
linear combinations l1v11l2v21. . .1lMvM such that
l11l21. . .1lM 5 1. Figure 3shows a 2-simplex defined
by three unit vectorse1, e2, ande3. Any linear combination
v5l1e11l2e21l3e3 where l11l21l351 translates to a

FIG. 2. Entropy values for some recognizable digital images.
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point on the face of the triangle. If the entropies of the points
on the face of the 2-simplex are plotted as a contour, then
the distribution is such that the minima are found at the
vertices of the 2-simplex. The maximum entropy corre-
sponds to the point at the center of the 2-simplex corre-
sponding to 1/3e1 1 1/3 e2 1 1/3 e3.

Geometrically, the entropy minima correspond to points
in the color histogram space that are a maximal distance
from one another. The interpretation in terms of the content
of digital binary images is a completely white image and a
completely black image are more similar to one another
(with entropies equal to zero) than to any other image. This
includes a white image with a single back pixel. This will
have a serious implication for using the use of entropy
values in an indexing algorithm for color images.

An interesting relationship exists as a quantitative de-
scription of the bounds on the entropy function by the
L1-norm of two probability density functionsp andq. This
bounds is expressed in the following theorem from (Cover
& Thomas, 1991).

Theorem 3.3(L1 Bound on Entropy)
Let p and q be two probability density functions over a

spaceH such that

uH~p! 2 H~q!u # 2ip 2 qiL1log
ip 2 qi

uHu .

Then,

ip 2 qiLi
5 Oupi 2 qiu #

1

2
.

This upper bound on |H(p) – H(q)| provides an important
insight into the expected results of using entropy as an
indexing key for image in an image database. We would
expect that fewer results be retrieved for the entropic L1-
norm than for the color histogram L1-norm.

It was shown that a meaningful difference between im-
age entropy values for two images implies a meaningful
difference between the images themselves. This is primarily
a function of the entropy definition as a measure of the
information for a given source. However, from a perceptual
perspective, the converse is not necessarily true. That is, a
gross perceptual difference in images does not imply a
difference in entropy values. The value |H(p) – H(q)| can
approach zero for two very dissimilar images and, yet, be
greater than zero for two very similar images. For example,
in Figure 4, three images are shown. Two of these images
display randomly distributed black pixels on a white back-
ground in proportions of 50% and 75%. They are named
black50andblack75respectively. The other bicolor image,
namedred50, has a random distribution of red pixels over
50% of the image. The entropy differences are |H(black50)
– H(red50)| 5 0.0 and |H(black75) – H(red50)| 5
|H(black75) – H(black50)| 5 0.130812. Even to the most
casual of observers,black50and black75are much more
perceptually similar thanblack50and red50.

From an information theoretic point of view, however,
this is not true. The reason is thatblack50andblackwhite
have identical distributions of black and white pixels,
namely there is a 50% allocation to the black pixel bin, a
50% allocation to the white pixel bin, and a 0% allocation
to all other colors. The imageblack75, on the other hand,
has a 75% allocation to the black pixel bin, a 25% allocation
to the white pixel bin, and a 0% allocation to all other color
bins. Thus, from the information theoretic perspective, there
is no difference in the information necessary to code
black50andred50. However, there is a difference between
the information necessary to codeblack50 and black75.
Hence, the entropy values are different forblack50 and
black75but not forblack50and red50.

From this discussion, we can conclude that the use of
|H(p) – H(q)| as the sole measure of similarity may be
inappropriate. Color histogram comparisons using the L1

norm can distinguish the difference betweenred50 and
black75. Therefore, we do not assert that |H(p) – H(q)| is

FIG. 3. A color histogram space of dimension 3 represents a 2-simplex,
or a triangle.

FIG. 4. Entropy values for three random images.
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capable of providing a meaningful similarity measure based
on entropy values alone. This should not be a very surpris-
ing to the reader since such an assertion would suggest that
a single real number contains more information than a
vector for distinguishing between two images. The vector
always contains more information than the single real num-
ber, particularly since the single number is an aggregation of
the vector via the entropy function.

This paper asserts that the main benefit of using |H(p) –
H(q)| as a similarity measure is that it suggests an extremely
efficient method for retrieving images from a database. The
strategy is to use the entropy number as a filter to generate
an interim result set of images. This interim image result set
is then indexed based on the standard retrieval method using
the L1-norm between points in the color histogram space. It
should be clear that for all but the most pathological of
image databases, the interim result set will be much smaller
in size than the entire image database. The following section
describes this algorithm in more detail.

3.4. Entropy Enhanced L1 Norm Algorithm

Color histogram indexing is based on the computation of
distances between points in the color histogram space.
Functions such as the L1 norm take two vectors and com-
pute the distance between them, effectively providing a
mapping fromRM to R. The maximum relative entropy
function provides the same mapping. For very large data-
bases that must be searched, sophisticated indexing methods
are required to alleviate the computational effort in sequen-
tially searching a list of images.

Thek-nearest neighbor ruleclassifies a query histogram
v based on the retrieval of thek nearest histograms in the
image database. The alternativerangequery is a clustering
method that labels as similar all database samples within a
given distanceT of the query histogramv. Because tradi-
tional Database Management Systems (DBMSs) do not
handle multidimensional data very efficiently, methods such
as point quad-trees, k-d trees, R-trees, R*-trees, and R1-
trees have been proposed to index and retrieve data con-
tained in multidimensional spaces (Duda & Hart, 1973;
Sellis et al., 1987; Samet, 1990).

The computation of the entropy of each image in the
image database suggests an interesting possibility for im-
proving the computational efficiency of search the database
without using the sophisticated multidimensional indexing
methods listed above.

The Entropy Enhanced L1 Norm (EELN) algorithm is
outlined as follows:

For each image I in the image database, computed H(I).
Sort the list of image entropies {H(Ij)} in ascending order
3 L.

Compute H(Iq) given a query image Iq,.
SearchL for the H(Ij) such that |H(Ij) – H(Iq)| , e.
Insert Ii 3 Rentropy.

SearchRentropyfor thek2 closest color histograms using the
histogram L1-norm.

The fundamental idea of the EELN algorithm is graph-
ically depicted in Figure 5.

The EELN algorithm is based on using the image en-
tropy difference formula to decimate the number of items
for an L1 norm search in the image database. We have
shown that using image entropy in the absence of other
information does not discriminate among images satisfac-
torily. However, the entropy difference formula can be
applied to the database to return an initial set of retrieved
images. This initial set, which is smaller in size than the
entire database, is then searched using the L1 norm to
retrieve a final set of images similar to the initial query
image.

This algorithm will have maximum effectiveness if two
conditions relating to performance are met. These condi-
tions are as follows:

1. The set of images retrieved from the EELN algorithm
must be a proper subset of the set of images retrieved
from using the L1 norm alone. This implies that the size
of the results set from the EELN algorithm should be
strictly less than the size of the result set from using the
L1 norm alone. Additionally, this implies that there
should be no false positives contained in the result set of
the EELN algorithm. Subjectively, we should expect that
the quality of the result set from the EELN algorithm is
greater than the quality of the result set from using the L1

norm alone.
2. The EELN algorithm should execute faster than the L1

norm, particularly for very large image databases.

It will be shown that both conditions are satisfied in
Section 3.6.

3.5. Maximum Relative Entropy

The primary drawback of the entropy difference formula
in the previous section is that it only measures similarity
between two distinct probability density functions only after
the entropies for the two distributions have been computed.
Approaches such as the L1-norm defined on the color his-
togram space perform the similarity measurement prior to
aggregating a feature into a single number. We present an
alternative approach to the L1-norm that follows our theme
of using concept from information theory to measure image
similarity.

FIG. 5. EELN3 L1 Norm Search Space Reduction Process.
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The relative entropyor Kullback-Leibler distancemea-
sures the distance between two probability density func-
tions. The relative entropy is given by

D~piq! 5 O
i

pilog
pi

qi

where, to ensure continuity, we assume that 0 log 0/q5 0
and p log p/05 `.

The relative entropy D(p || q) between two probability
density functionsp and q captures an intuitive notion of
contrast between two images. Recall that the entropy of an
image captures the amount of information expressed by the
colors present in an image. Images with more colors contain
more information than images with fewer colors. The rela-
tive entropy captures the contrast in expressed information
between two images. Two images with a similar represen-
tation of colors will have a lower relative entropy value than
two images in which one has several more colors repre-
sented than the other image. Figure 6 shows the relative
entropy values between two pairs of images. Flower02 is
compared to Flower04 and redr25, an image with 25% red
pixels uniformly distributed across the image. The relative
entropy value D(Flower02 || Flower04)5 3.96028, which is
less than the relative entropy value D(Flower02 || redr25)
5 50.998. By observance, Flower02 and Flower04 contain
a similar distribution of colors. However, there is an appre-
ciable difference in the colors distribution between Flow-
er02 and redr25, notably that redr25 does not contain any
dark colors pixels.

It can be shown that D(p || q) $ 0 with equality if and
only if pi 5 qi for all i. This is known as theinformation
inequality theorem. However, the relative entropy is not a
metric in the strict sense of the word since it does not satisfy
the symmetry axiom or the triangle inequality. As dis-
cussed, there are similarity measures used in CBIR systems
that are not true metrics. The triangle inequality is typically
the condition that is relaxed in the definition of non-metric
similarity measures. In practice, it is assumed that the con-
dition D(p,q) 5 D(q,p) be valid for any similarity measure.

We define themaximum relative entropyfunction to be

Dmre~p, q! 5 max$D~piq!, D~qip!%

This definition has the following properties:

Proposition 3.4: Dmre(p,q) satisfies the identity and non-
negativity axioms.

Proof. The information inequality theoremimplies
Dmre(p,q) $ 0 since D(p || q) $ 0 and D(q || p) $ 0.
Additionally, if pi 5 qi for all i, then D(p || q) 5 D(q ||
p) 5 0. Thus, Dmre(p,q) 5 max{0,0} 5 0.

Proposition 3.5: Dmre(p,q) satisfies the symmetry axiom.
Proof. Dmre(p,q) 5 max{D(p || q), D(q || p)} 5 max{D(q

|| p), D(p || q)} 5 Dmre(q,p).

It is not true that Dmre(p,q) satisfies the triangle inequal-
ity.

3.6 Discussion of Results

The experimental configuration for a process as subjec-
tive as computing similarity between images must be care-
ful arranged to gauge results with other methods and re-
move any perceptual biases of the experimenter. The two
experimental tools used in this work to minimize human
subjectivity are random sampling and a large sample space
in the form of a large image database. A large database size
ensures that a particular class of images, such as medical
images or images of people, does not affect the methods
being tested. An additional purpose of a large database size
is that the scalability of the methods under investigation can
be tested.

We tested three similarity measures (L1 norm for color
histograms, the EELN algorithm, and the maximum relative
entropy function) with respect to color as a valid visual
feature to discriminate between images. It is important to
note that we are comparing “apples to apples” in our ex-
periment. Visual features such as shape, edges, and texture
are not tested.

FIG. 6. Comparison of D(p || q) values.
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Our master database consists of 9,972 unconstrained
images of various sizes collected from several sources.
Image databases from Stanford, Caltech, INRIA, and IBM
were combined with random images collected from the
WWW into our master database. Our database contains
realistic and synthetic images, such as images of animals,
humans in various activities, landscapes, architecture, and
space. Additionally, the database is not dominated by any
class of images (e.g., medical images).

Our benchmarks are based on 20 query images given in
Figure 7. Each query has a unique correct answer manually
determined by inspection. The query images were randomly
determined prior to the manual determination of the unique
correct answer. As seen in Figure 7, these query images
represent various situations.

The scalability of the methods presented in this paper
was tested across several image databases sizes. The set of
20 queries were tested across 19 image database of sizes
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000,
3000, 4000, 5000, 6000, 7000, 8000, 9000, and 9972. This
resulted in 380 result sets for each similarity measure. Each
database was randomly sampled from the same master
database (except the database of size 9972, which repre-
sented a test on the master database). If the unique correct
answer for each of the query images in Figure 7 was not
included in a database, then an image was removed by
random draw and replaced with the unique correct answer.
The results of applying the 20 query images to a database

were averaged to present a single measure of the effective-
ness of a given method.

3.6.1 Retrieval Performance of Entropy Based Similarity
Measures

Let D be an image database and Q be the query image. A
query on D is expressed as function R5 f(D,Q) where R is
(hopefully) a nonzero subset of D. Let RL1 5 fL1(D,Q),
REELN 5 fEELN(D,Q), and RMRE 5 fMRE(D,Q) be result sets
of image similar to Q by using the L1 norm, EELN algo-
rithm, and maximum relative entropy similarity measures,
respectively.

As a global property of images, color histograms are
susceptible to false positive matches. There are two basic
questions to answer concerning the retrieval performance of
the similarity measures presented in this paper compared to
the L1 norm retrieval method for color histograms:

1. Are false positives in RL1 removed in REELN and RMRE?
2. Are new false positives introduced in REELN and RMRE

that aren’t in RL1?

The first question addresses whether the entropy-based
methods increase theaccuracyof the L1 norm for color
histograms. The determination of accuracy is a two-step
process involving both quantitative measurement and sub-
jective judgement. The first step is to ensure that REELN ,

FIG. 7. Query images used to benchmark similarity measures.
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RL1 and RMRE , RL1. An inspection of the results to
determine if the images in RL1 but not in either REELN or
RMRE or dissimilar to the query image is the second step.
The reliability of the entropy-based methods compared to
the L1 norm is addressed by the second question and is
checked by the same set relationships between RL1, REELN,
and RMRE.

Our theory predicts that the entropy-based methods im-
prove the accuracy of the L1 norm and have the character-
istic of being more reliable. The following subsections will
show that experimentally, these predictions are confirmed.

3.6.2 Retrieval Performance of the EELN Algorithm
The EELN algorithm exhibits good accuracy and reli-

ability. For each of the 20 query images in Figure 7, the
intermediate search space produced by the entropy differ-
ence formula ranged was reduced to factors between 2.63:1
to 1.63:1.

The result sets for the EELN algorithm were commen-
surately smaller than the result sets for the L1 norm, as
shown in Figure 8 and Figure 9. The result sets for the L1

norm and the EELN algorithm were analyzed to determine
whether one or more images were contained in REELN but
not in RL1. It was determined that across all query images
and database sizes that REELN was a true subset of RL1. That
is, REELN ù RL1 5 REELN.

A qualitative analysis of the set RL1 – REELN was per-
formed by visual inspection. The focus of the judgment
made for this analysis was to determine how dissimilar the
items in RL1 but not in REELN were to the query image. Each
query image was inspected across all database sizes. It was
discovered that, in general, the images not in REELN could
be interpreted as dissimilar to the query image. This implies
that the use of image entropy captures some characteristic of
perceptual similarity.

Figure 10 is an example of the result sets for the L1 norm
and the EELN algorithm for a given query image across a
database of size 100. The query image used in both retrieval
methods is given in Figure 11. There are two dominating
color characteristics present in this image. The first charac-
teristic is the presence of a red/orange background. Dark
pixels approximate to black dominate the foreground.

Thus, we should expect to retrieve images with these two
themes, albeit with different spatial layouts.

The similarity of the image in Figure 11 to the result sets
in Figure 10 was judged to be acceptable compared to the
entire database from which the results sets were obtained.
The result set for the EELN algorithm a proper subset of the
result set for the L1 norm. The two images in RL1 and not in
REELN have properties that suggest a reasonable explanation
for exclusion from REELN. The first image marked “Not
Included” has very little red and orange color. However, it
does contain a large region of white pixels. The second
image marked “Not Included” has reddish-orange pixels as
well as dark pixels. However, it also contains a large region
of blue pixels corresponding to the sky above the mountain
peaks. An inspection of the entropy values and the color
histograms shows that the presence of the bright region in
the first image and the blue region in the second image
causes the entropy difference to be a large enough filter so
that these two images are not part of the intermediate result
set upon which the L1 norm is subsequent applied in the
EELN algorithm.

This general theme was repeated over several query
images and databases sizes. In general, it appears that the
entropy difference formula acts as a filter for images with a
well-represented count of pixels for some color not con-
tained in the query image. This is the behavior predicted by
the theory for image entropy in our companion paper in this
issue. We thus conclude that the EELN algorithm offers an
improvement in retrieval performance in terms of accuracy
and reliability over the sole use of the L1 norm.

3.6.3. Retrieval Performance of the Maximum Relative
Entropy Measure

The retrieval performance of the maximum relative en-
tropy measure was analyzed for the same 20 query images
as the EELN algorithm. It was discovered that the maximum
relative entropy measure provides some improvement over
the L1 norm. However, in some cases, the result set from
using maximum relative entropy measure was not a proper
subset of the result set from the L1 norm. It was determined
that RL1 and RMRE shared between 85% and 93% of the

FIG. 9. Result set size comparison for L1 norm and EELN algorithm for
database sizes between 1000 and 9972.

FIG. 8. Result set size comparison for L1 norm and EELN for database
sizes between 100 and 1000.

864 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2001



same images. But in every case, the size of RMRE was less
than the size of RL1. Figures 12and 13 depict the behavior
of the result set sizes for both methods.

The conclusion drawn from these experiments is that the
EELN algorithm provides a viable alternative to the use of
the L1 norm as a similarity measure. The filtering behavior
of the entropy difference not only reduces the search space
for the L1 norm part of the algorithm, but it also serves to
remove images that have color characteristics that make
them dissimilar to the given query image.

The maximum relative entropy function has some utility
as a similarity measure for content-based image retrieval.
Further studies should focus on the ability of the function to
mimic human perceptual abilities. Additionally, studies are
required to determine if images included in the result set for
the maximum relative entropy measure but not included in

the result set for the L1 norm are similar than to the query
image but not captured by the L1 norm.

3.6.4. Runtime Performance of Entropy Based Similarity
Measures

The runtime performance of the EELN algorithm and the
maximum relative entropy measures compared to the L1

norm across the 19 databases is depicted in Figure 14. The
run time values were normalized to between 0.0 and 1.0 in
order to remove the bias of the software and hardware.

The EELN algorithm executes significantly faster than
either the L1 norm or the maximum relative entropy func-
tion. This is the expected behavior since the initial step of
the EELN algorithm performs a single subtraction operation
for each element in the database. This is in contrast to

FIG. 10. Result sets from L1 Norm and EELN to an image database of size 100.
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applying vector operations for each element in the image
database. The next stage of the EELN algorithm then ap-
plies the L1 norm to the intermediate result set of items
deemed similar to the query image. Comparing the differ-
ence of the entropy values to a threshold makes the deter-
mination of similarity. Therefore, we conclude that a reduc-
tion in the search space for the L1 norm similarity measure
produces a result faster than searching the entire image
database with the L1 norm similarity measure.

The second behavior to notice is the slower performance
of the maximum relative entropy measure compared to the
L1 norm. This is not unexpected since the calculation of the
maximum relative entropy measure for each element of the
probability density function required two divisions and the
computation of the logarithm of the result. The L1 norm, on
the other hand, requires the absolute value of the difference
between each element in the probability density function.

The performance of the three similarity measures as a
function of the queries is depicted in Figure 15. This graph
is interesting to study because it depicts the stability of the
three similarity measures across the 20 queries given in
Figure 7.

While the L1 norm and the maximum relative entropy
function remains essentially stable as the query image
changes, the EELN algorithm exhibits a wider variation in
run time performance. The range of normalized run time
values for the EELN algorithm as a function of the query
image was between 0.19934 and 0.484502. This behavior

may be accounted for by software overhead based on the
use of the C11 Standard Library container class as a part
of the EELN implementation.

4. Summary

We have presented a new indexing algorithm called
EELN that combines image entropy with the L1 norm. The
application of the entropy difference formula to the entire
database results in a markedly smaller search space of
images for the second phase of the algorithm employing the
L1 norm. This results in improved runtime performance as
the size of the image database increases. However, its
stability across query images may fall within a wider than
expected range compared to the L1 norm and maximum
relative entropy functions.

The maximum relative entropy measure was compared
to the L1 norm and EELN similarity measures. Our exper-
imental results across various subsets of a 9972 image
database suggest that the maximum relative entropy simi-
larity formula may be an effective measure of similarity
between pairs of images, although the run time performance
is not as good as the L1 norm. A primary conclusion of our
test show that the maximum relative entropy measure war-
rants further research attention, particularly to determine if

FIG. 11. Query image used for L1 norm and EELN queries in Fig. 6.

FIG. 12. Result set size comparison for the L1 norm and MRE measures
for image databases of size 100 to 1000.

FIG. 13. Result set size comparison for the L1 norm and MRE measures
for image databases of size 1000 to 9972.

FIG. 14. Runtime performance of the three similarity measures across 19
databases.
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the maximum relative entropy function models human per-
ceptual abilities better than the L1 norm as our qualitative
conclusions suggest.
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