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Content-based image retrieval is based on the idea of
extracting visual features from image and using them to
index images in a database. The comparisons that de-
termine similarity between images depend on the repre-
sentations of the features and the definition of appropri-
ate distance function. Most of the research literature
uses vectors as the predominate representation given
the rich theory of vector spaces. While vectors are an
extremely useful representation, their use in large data-
bases may be prohibitive given their usually large dimen-
sions and similarity functions. In this paper, we propose
similarity measures and an indexing algorithm based on
information theory that permits an image to be repre-
sented as a single number. When use in conjunction with
vectors, our method displays improved efficiency when
querying large databases.

1. Introduction

As digital images becone an increasingy important
class of datg the neal to store ard retrieve images in an
intuitive and efficiert manne mug be addressedHence the
field of content-base image retrievd (CBIR) focuses on
intuitive and efficient method for retrieving images from
database base solely on the contert containe in the
images The corpws of CBIR researh has focusel on the
definition of new visud featue representationfor images
tha provide ameaningfli discriminar for conductirg sim-
ilarity queries (Carsan et al., 1997 Flickner et al., 1995;
Gray, 1995 Jacols et al,, 1995 Pas et al.,, 1996 Pentland
et al,, 1996 Smith, 1997 Stricker, 1994 Zachay & lyen-
gar, 1999) Most currert representatiomof visud features
are basel on vecta forms.

In anothe pape in this issue we expam existing visual
featule representatianbasel on vecta space to improve
retrievd performane and efficiency. Our approat isbased
on the information theoretc concep of image entropy In
this paper we presen two similarity measure that use
information theoly to compae images.

Information theol has been an importart application in
image compressia and coding The initial work of (Shan-
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non, 1948 formulatel the foundatian of information theory
in terms of the information capaciy of communication
channels The fundamenth notion of information entropy
describs a theoretich lower bourd on the numbe of bits
necessar to encoc information This concep has been
usefd in the developmenof image compressin algorithms
(Gonzalg & Woods 1992 Pianykh 1998) The use of
information theoly conceps to develop@ methodsin image
interpretatio has receival little attention In (Jagersland,
1995) the entrogy of an image was usel derive adescrip-
tion of scak in an image The effort focusel on the fact that
in an image the information conten of a scere is typically
confine to a smal range of scales In this paper we
descrile an approab to the application of the information
entropy of an image in computirg a similarity value be-
tween pairs of images We presenh experimenthresuls of
our approab given generd unconstraing digital imagery.

2. Background

2.1 Visud Features

The extraction of visud features from an image is one of
the fundamenth operatios of CBIR. Visud features are
properties of an image that are extractel using image pro-
cessing patten recognition and compute vision methods
(Duda & Hart, 1973 Gonzale & Woods 1992) Most
method of feature extraction focus on color, texture shape,
ard spectra properties of images and thus are considered
required elemens at the primitive level.

2.2 Color as aVisud Feature

Color is by far the mog comma visud featue usel in
CBIR, primarily becaus of the simplicity of extracting
color information from images (Flickner et al., 1995 Gray,
1995 J. Huang 1998 Pas & Zabih 1996 Smith 1997;
Stricker, 1994 Swahn & Ballard 1991) (Stricke & Swain,
1994 presemn a thoroudh analyss of effectivenes of color
histograns intersectimm for CBIR. Color histograns de-
scribe the distribution of pixels of ead color in the color
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TABLE 1. Common distance functions defined on an M-dimensional vector space.

Metric Name Formula
Minkowski Metric (L, norm) D(p.a) = . ) Ip —alf
i=1
. . . . _,P4
Histogram Cosine (non-metric) Dy(p,q) = & = cos oll
) . d,(c;, G)
Quadratic Form Do(p,a) = (P — @'Alp — @), & =1 - —4
'max

space of the image. The algorithms developed in (Graysimplex (thus, it is an M-1-dimensional simplex). In order
1995; J. Huang, 1998; Pass & Zabih, 1996; Smith, 1997jor two distinct histograms;hand h to be distinguishable
augment color histograms with other derivative visual feafrom one another, they must be separated by a non-zero
tures, such as spatial coherence or edge information. (Cadistance. This property is called-differenceand describes
son et al., 1997) develop a region based color query methodd as a Hausdorf space. The value toflepends on the
These methods show impressive results for particulacomposition of the image data set. This suggests that the
classes of image. distances between color histograms of images with similar
Virtually all CBIR systems allow searching capability colors or images containing all the colors of the color space
based on color, an approach pioneered in (Chang & Fuare small.
1981). Most research and commercial CBIR systems that Once the feature representation space has been defined as
have been developed, such as QBIC (Flickner et al., 1996an M-dimensional color histogram space, the problem of
Virage (Gupta, 1996), Excalibur, and Photobook (Pentlandlefining the similarity between two images is described as
et al., 1996) employ color together with other visual featureghe distance between two points in the color histogram
as a search and retrieval mechanism. The results presentsgace, denoted as @) for points p and g. Similarity
in (Stricker & Swain, 1994) placed color histograms on abetween images can be defined in terms gb,f) as:
firm theoretical foundation. In his doctoral research, (Smith, Definition 2.2 An imagev is more similar tou than
1997) developed binary representations of color histogramsnother imagew is to u if D(u,v)<D(u,w).
However, most previous work in color feature extraction Once the abstract notion of similarity is defined in terms
and, to a large degree, feature extraction in general, focused distance, several mathematical formulas for the distance
on an approach restricted to a single vector-based represefunction can be defined. The terndéstance functiorand
tation of features. In particular, representation of color insimilarity functionare used interchangeably in this paper.
image has not been investigated much beyond color histo- The distance between two points can be classified as
grams. either metric or non-metric Recall that a function defined
on two points in a metric space is called a metric function if
it is non-negative and satisfies the identity, symmetry, and
triangle inequality axioms. A list of common metrics is
An appropriate representation that captures the distribugiven in Table 1.
tion of the colors in an image is necessary in the computa-
tion of similarity between images. The most common rep- .
resentation is thecolor histogram The color histogram 3'_ In_for_matlon Theory, Image Entropy, and
captures the distribution of colors in an image or region ofoimilarity
an image as a point in an M-dimensional vector space. An  Color histograms have been shown to be a promising
analysis of the metrical properties of the color histogrammethod for indexing into image databases. However, for
space is given in (Stricker & Swain, 1992). Normalization very large image databases and histogram spaces with large
of the color histograms is a necessary computation to ensug@imensions, the computational cost of performing distance
a unit variance between elements of a histogram, i.e., t@alculations can be prohibitive. This section suggests an
eliminate the dependency on the number of pixels thagiternative viewpoint of color histograms based on informa-
comprise the histogram. The definition of a normalizedtion theory that offers the potential for a substantial increase

2.3. Color Representations and Similarity Measures

color histogram space we assume is in retrieval performance.
The motivation for this chapter is the desire to reduce the
M N(c)) dimensionality of the color histogram space in order to
H=1{(h, h, ..., hy/h=0, > h=1 h= : provide a substantial improvement in retrieval performance.
. Nl- N2 . . . . _
i=1 Several dimension reduction techniques have been devel

oped, such as principle component analysis (Gerbrands,
The color histogram spadd is a subset of an M-dimen- 1981; Gonzalez & Woods, 1992) and column-wise cluster-
sional vector space and forms the face of an M-dimensionahg (Duda & Hart, 1973). Generally, these techniques re-
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duce the dimensionality of the histogram space firoto k
> 1. 121

This chapter develops the theory necessary to reduce tf
dimensionality of the color histogram space to one. The
entropyof an image is a measure of the information content 08 1
of the image. As will be seen, the Shannon entropy functior
maps an n-dimensional vector to the set of real numbers
and, hence, it can be regarded as a dimension reduction 04
the set of real valued numbers.

06 1

Fljn

0z

3.1. Color Histograms as Probability Density Function o+ a
o "-. C‘L' Qs =] CL ,\\'l & c‘\ ~
This section expands color histograms by describing ¢ v N N
them as an estimation of the first-order joint probability P
density function of an image. This description is important
in allowing us to use methods from information theory to FIG. 1. Entropy function in two dimensions.

expand the characterization of images on the basis of their
color contents.

A discrete image +F(N;,N,) of size NxN, can be The mathematics describing ¥(in the context of commu-
statistically characterized as the joint probability densitynications theory was developed in (Shannon, 1948) and is

function the most common definition of entropy in the literature. It
should be clear that W} is a function of the probability
p() =p{F(1, 1), F(1, 2), ...,F(Ny, Ny} distribution of some random variable and not a function of

the actual values the variable may assume. As seen in Figure

If each pixel value is statistically independent from all other1, H(v) is & continuous, positive, and concave function of
pixels values, then the joint probability density function is [0:1]" € 0" that maps to [0,1f M. The function HY) = 0

factored into the following form wheny =1 andy = 0 for all j#i.
The sensitivity of the entropy function to small pertur-
(1) = p{F(L, DIPIF(L, 2} . .. plF(N, Ny} bations in the probability distribution function is explained

in our other paper in this issue.

which is the product of its first-order (one-dimensional)
marginal densities. For a discrete set of values, the inter3.2. Image Entropy as a Visual Feature
pretation ofp{F(i,j)} is developed on the basis of the finite
range of possible values for F(i,j). For a digital image
source, these values are the possible colors at each pixel,
reconstruction levelslt is generally assumed that the dis-
tribution of colors across an image follows a uniform dis-
tribution, i.e., each color has a 1/M probability to be as-
signed to a pixel.

The definition of color histograms as first-order joint
pobability density functions suggests that the entropy of an
Image can be calculated. In fact, this is exactly the case. The

definition of v is derived from the interpretation of first-
order spatial histograms as a joint probability density func-
tion. An element; is the percentage of pixels in the image
For digital images, the probability density function is ath‘r’1t be_long_ to the quantized coIQrgnd 1S alsp_ a CIOS?
joint probability density function because the pixels, as2Pproximation to t_he value of th_e joint proba_blhty dens!ty
discrete random variables, are not functions of one anothep.JnCtIon value pati. The correlation of each histogram bin

s : - ; v; to a probability function value pyields the function.
Additionally, pixels ar m istically in n-1oo . !
dditionally, pixels are assumed to be statistically indepe Figure 2 gives the entropy values calculated by the

dent because thealue of a pixel is not a function of other formula for some recognizable digital images. Images such
pixel values. Furthermore, the digital image source is asés Clown. Lena. and I\?Iandril havge com ng (,:olor gistribu—
sumed to besrgodicin the sense that successive samplings ’ ' P

of a certain pixel do not determine or affect the outcome of Ons and, hence,_ ha_ve hlgher entropy va_lues. Animage with
future values at that pixel. Another way to regard this & simple color distribution, such as Pleides, has a smaller

) . entropy value.
property is that image sources areemoryless S . .
Given a vecton of numbers from a set Xy, . . . X} y |I:or aﬂgllt?jl_:]mage source, there are many interpretations
where the probability that>e v is p,=P(X;), theentropyof (v), including

v is given by the formula .
9 y 1. The average uncertainty of

2. The theoretically least number of bits necessary to en-

M codev.
H(v) = — > v; log(v;) 3. A measure of the randomness of the color distribution in
i=1 V.
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Clown Lena Mandril
Entropy = 4.61455 Entropy = 4.92325 Entropy = 6.13507

Mona Lisa Venice

Pleides ,
Entropy = 3.63569 Entropy = 2.13897 Entropy = 4.29557

FIG. 2. Entropy values for some recognizable digital images.

An increase in image entropy corresponds to more unwhether a metric or non-metric similarity function is de-
certainty and more information contained in an image fined.
Thus, the use of image entropy as a discriminant between
two images is based on the idea that a meaningful difference
between two image entropy values corresponds to a meas-3. Entropy Difference
ingful difference between the two source images. For ex-
ample, in Figure 2, a meaningful difference between thqs
entropy values for the Pleides and Venice images correp
sponds to a meaningful difference between the imageg
themselves.

Our interest will focus on the third interpretation of\ji(
since it seems to hint that entropy captures a characteristic
of an image meaningful in making a determination of D, enropy(P: @) = [H(p) — H(@)|
whether images are similar. The Shannon definition of)H(
assigns information based on “sharpness” of the distributionvhich is a straightforward application of the definition of a
that an event, or a group of pixels will have a given colorMinkowski metric given above. As such, the similarity
value, will occur. Based on the mathematical propertiesmetric D ; g0, POSSESSES the four properties of any dis
above, H{¢) = 0 implies a digital image has all pixel values tance function on a metric space, namely the non-negativity
set to the same value. Additionally, ¥J(is maximized property, the identity axiom, the symmetry axiom, and the
when all possible colors in the color space of the image argriangle inequality property.
equally represented. Intuitively, this means we can express This rather simple formulation has some interesting im-
more information in an image that has more colors than irplications and properties. It is obvious that since this defi-
an image with fewer colors. nition is simply subtraction over values in the interval [0,1],

A fundamental element of comparing images that are irthen the space isdifferent for some value dfgreater than
a certain representation is the definition of similarity. Thezero.
definition of the similarity function depends on the metrical The color histogram spackl forms the faces of an
properties of the space in which the representations arkl-dimensional simplex. Recall that a set of points
defined. For color histogram spaces, the definition of simiv,,v,, . .. vy, in f™ spans a hyperplane defined by the
larity in terms ofnormsis natural given the theory of finite linear combinations A,v;+Av,+. . . +AyVvy Such that
dimensional vector spaces. The definition of similarity be-A;+A,+. . .+A,, = 1. Figure 3shows a 2-simplex defined
tween points in entropy space must be based on an undedpy three unit vectors,, e,, ande;. Any linear combination
standing of the metrical properties of the space regardless o=\, +A,€,+A3e; where A;+A,+A;=1 translates to a

The usual definition of similarity between color images
based on the J-norm between two points in the color
istogram space. In the entropy space, this definition degen-
rates to the absolute value of the difference between two
entropy values. The formula is given by
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This upper bound on |} — H(g)| provides an important
H(e,) =0 insight into the expected results of using entropy as an
indexing key for image in an image database. We would
expect that fewer results be retrieved for the entropjie L
H(ema) = H(es) =0 norm than for the color histogram;norm.
maximum It was shown that a meaningful difference between im-
age entropy values for two images implies a meaningful
H(es) =0 difference between the images themselves. This is primarily

a function of the entropy definition as a measure of the

FIG. 3. A color histogram space of dimension 3 represents a 2-simplexinformation for a given source. However, from a perceptual
or a triangle. perspective, the converse is not necessarily true. That is, a
gross perceptual difference in images does not imply a

inton the f  the trianale. If th {ropi fih . tdifference in entropy values. The value pj& H(g)| can
pointon the face ofthe triangie. fHne entropies ot the poin Sapproach zero for two very dissimilar images and, yet, be
on the face of the 2-simplex are plotted as a contour, the

T, o reater than zero for two very similar images. For example,
the distribution is such that the minima are found at the: y 9 P

. . : in Figure 4, three images are shown. Two of these images
vertices of the 2-simplex. The maximum entropy corre-

sponds to the point at the center of the 2-simplex corredisplay randomly distributed black pixels on a white back-
- ' i i 0 0
sponding to 1/%&, + 1/3 e, + 1/3 6, ground in proportions of 50% and 75%. They are named

Geometrically, the entropy minima correspond to points
in the color histogram space that are a maximal distanc 0% of the image. The entropy differences areo|aitk5Q

from one another. The interpretation in terms of the content H(red50| = 0.0 and |Hblack7§ — H(red50| =

of digital binary images is a completgly_whlte image and a|]H(bIack75 _ H(black50| = 0.130812. Even to the most
completely black image are more similar to one anothe

(with entropies equal to zero) than to any other image. Thiscasual of observerdjlack50and black75are much more

includes a white image with a single back pixel. This will PercePtully similar thablack50andredsa

have a serious implication for using the use of entro From an information theoretic point of view, however,
_Serious Imp . g the P¥this is not true. The reason is thalack50and blackwhite
values in an indexing algorithm for color images.

An interesting relationship exists as a quantitative de_have identical distributions of black and white pixels,

. o . : ;
scription of the bounds on the entropy function by thenamely there is a 50% allocation to the black pixel bin, a

- . . . 50% allocation to the white pixel bin, and a 0% allocation
L;-norm of two probability density functions andg. This to all other colors. The imagklack75 on the other hand
bounds is expressed in the following theorem from (Cover 0 ; g . . 0 :
& Thomas, 1991). has a 75% allocation to the black pixel bin, a 25% allocation
' to the white pixel bin, and a 0% allocation to all other color
Theorem 3.3(L, Bound on Entropy) bins. Thus, from the information theoretic perspective, there
Let p and q be two probability density functions over a DIns. TS, el atl . IC peErSpective, ther
spaceH such that is no difference in the information necessary to code
black50andred5Q However, there is a difference between
I — gl the information necessary to codeack50 and black75
IH(p) — H(Q)| = —|Ip — ql|.log P—4 _ Hence, the entropy values are different falack50 and
[H black75but not forblack50andred5Q
From this discussion, we can conclude that the use of
Then, [H(p) — H(g)| as the sole measure of similarity may be
inappropriate. Color histogram comparisons using the L

black50andblack75respectively. The other bicolor image,
namedred5Q has a random distribution of red pixels over

o —dl. = Sip — _|<} norm can distinguish the difference betwegrd50 and
Pl Pail=5- black75 Therefore, we do not assert that i H(Q)| is
black50 black?:
H(black30) = 0.69147 Hiblack75) = 0.562335 H{redsih = 0.69147

FIG. 4. Entropy values for three random images.
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capable of providing a meaningful similarity measure base(
on entropy values alone. This should not be a very surpris
ing to the reader since such an assertion would suggest th
a single real number contains more information than &
vector for distinguishing between two images. The vectot
always contains more information than the single real num
ber, particularly since the single number is an aggregation of
the vector via the entropy function.

This paper asserts that the main benefit of using)H(
H(g)| as a similarity measure is that it suggests an extremely - searchR,,,,,,for thek, closest color histograms using the
efficient method for retrieving images from a database. The histogram L-norm.
strategy is to use the entropy number as a filter to generate
an interim result set of images. This interim image result set  The fundamental idea of the EELN algorithm is graph-
is then indexed based on the standard retrieval method usingally depicted in Figure 5.
the L;-norm between points in the color histogram space. It The EELN algorithm is based on using the image en-
should be clear that for all but the most pathological oftropy difference formula to decimate the number of items
image databases, the interim result set will be much smallefor an L, norm search in the image database. We have
in size than the entire image database. The following sectioshown that using image entropy in the absence of other
describes this algorithm in more detail. information does not discriminate among images satisfac-
torily. However, the entropy difference formula can be
applied to the database to return an initial set of retrieved
images. This initial set, which is smaller in size than the
entire database, is then searched using thenarm to

Color histogram indexing is based on the computation ofetrieve a final set of images similar to the initial query
distances between points in the color histogram spacémage.

Functions such as the, Inorm take two vectors and cem This algorithm will have maximum effectiveness if two
pute the distance between them, effectively providing aconditions relating to performance are met. These condi-
mapping fromR™ to M. The maximum relative entropy tions are as follows:

function provides the same mapping. For very large data-

bases that must be searched, sophisticated indexing methods1. The set of images retrieved from the EELN algorithm
are required to alleviate the computational effort in sequen- must be a proper subset of the set of images retrieved
tially searching a list of images. from using the L, norm alone. This implies that the size

Thek-nearest neighbor rulelassifies a query histogram of the results set from the EELN algorithm should be
v based on the retrieval of tHenearest histograms in the strictly less than the size of the result set from using the
image database. The alternatiaagequery is a clustering L, norm alone. Addlt_pnally, th's. 'mp“es that there
method that labels as similar all database samples within a ts:m“d be no fa.lse positives .Coma'ned In the result set of

. . . . e EELN algorithm. Subjectively, we should expect that
given distancerl of the query histogranv. Because tradi-

Li Narm %
e

Entropy Difference
'—h

FIG. 5. EELN— L, Norm Search Space Reduction Process.

3.4. Entropy Enhanced L1 Norm Algorithm

) the quality of the result set from the EELN algorithm is
tional Database Management Systems (DBMSs) do not

handle multidimensional data very efficiently, methods such
as point quad-trees, k-d trees, R-trees;tiRes, and R-
trees have been proposed to index and retrieve data con-

greater than the quality of the result set from using the L
norm alone.

. The EELN algorithm should execute faster than the L

norm, particularly for very large image databases.

tained in multidimensional spaces (Duda & Hart, 1973;
Sellis et al., 1987; Samet, 1990).

It will be shown that both conditions are satisfied in

The computation of the entropy of each image in theSection 3.6.
image database suggests an interesting possibility for im-

proving the computational efficiency of search the databas
without using the sophisticated multidimensional indexing

methods listed above.
The Entropy Enhanced L Norm (EELN) algorithm is
outlined as follows:

For each image | in the image database, computed H(l).

Sort the list of image entropies {H} in ascending order
— L.

Compute H(l,) given a query image,).

SearchL for the H(l,) such that [H() — H(l))| < e.

Insert I; = Renropy
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5.5. Maximum Relative Entropy

The primary drawback of the entropy difference formula
in the previous section is that it only measures similarity
between two distinct probability density functions only after
the entropies for the two distributions have been computed.
Approaches such as thg-horm defined on the color his
togram space perform the similarity measurement prior to
aggregating a feature into a single number. We present an
alternative approach to thednorm that follows our theme
of using concept from information theory to measure image
similarity.
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A

redr25

FlowerD4

DiFlower02 || Flower(4) D(Flower02 || redr25)
3.96028 50995

Flower()2

FIG. 6. Comparison of D(p || q) values.

The relative entropyor Kullback-Leibler distancenea- We define theanaximum relative entropfunction to be
sures the distance between two probability density func-
tions. The relative entropy is given by Domep, @) = max{D(p||q), D(qlp)}
P This definition has the following properties:
D(pla) = > plog 9 prop

Proposition 3.4: D,,,.(p,q) satisfies the identity and non-
negativity axioms.

where, to ensure continuity, we assume that 0 log-6/g Proof. The information inequality theoremimplies

and p log p/0= . N D,..{p.q) = 0 since Dp || g) = 0 and Dg || p) = O.
The relative entropy M || g) between two probability Additionally, if p; = g; for all i, then D || q) = D(q ||
density functionsp and q captures an intuitive notion of p) = 0. Thus, Q..{p.q) = max{0,0} = 0.

contrast between two images. Recall that the entropy of an

image captures the amount of information expressed by the Proposition 3.5: D,,.(p,q) satisfies the symmetry axiom.

colors present in an image. Images with more colors contain Proof. D,,,.(p,d) = max{D(p || g), D(q || p)} = max{D(q

more information than images with fewer colors. The rela- [IP), D(p [[a)} = D)

tive entropy captures the contrast in expressed information

between two images. Two images with a similar represen- Itis not true that [}, (p,q) satisfies the triangle inequal

tation of colors will have a lower relative entropy value thanity.

two images in which one has several more colors repre-

sented than the other image. Figure 6 shows the relativg 6 Discussion of Results

entropy values between two pairs of images. Flower02 is”

compared to Flower04 and redr25, an image with 25% red The experimental configuration for a process as subjec-

pixels uniformly distributed across the image. The relativetive as computing similarity between images must be care-

entropy value D(Flower02 || Flower04) 3.96028, whichis  ful arranged to gauge results with other methods and re-

less than the relative entropy value D(Flower02 || redr25jnove any perceptual biases of the experimenter. The two

= 50.998. By observance, Flower02 and Flower04 contairexperimental tools used in this work to minimize human

a similar distribution of colors. However, there is an appre-subjectivity are random sampling and a large sample space

ciable difference in the colors distribution between Flow-in the form of a large image database. A large database size

er02 and redr25, notably that redr25 does not contain angnsures that a particular class of images, such as medical

dark colors pixels. images or images of people, does not affect the methods
It can be shown that (|| q) = 0 with equality if and  being tested. An additional purpose of a large database size

only if p; = q; for all i. This is known as thenformation is that the scalability of the methods under investigation can

inequality theoremHowever, the relative entropy is not a be tested.

metric in the strict sense of the word since it does not satisfy We tested three similarity measures, (horm for color

the symmetry axiom or the triangle inequality. As dis- histograms, the EELN algorithm, and the maximum relative

cussed, there are similarity measures used in CBIR systenentropy function) with respect to color as a valid visual

that are not true metrics. The triangle inequality is typicallyfeature to discriminate between images. It is important to

the condition that is relaxed in the definition of non-metric note that we are comparing “apples to apples” in our ex-

similarity measures. In practice, it is assumed that the conperiment. Visual features such as shape, edges, and texture

dition D(p,q) = D(q,p) be valid for any similarity measure. are not tested.

862 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2001



FIG. 7. Query images used to benchmark similarity measures.

Our master database consists of 9,972 unconstrainedere averaged to present a single measure of the effective-

images of various sizes collected from several sourcesiess of a given method.

Image databases from Stanford, Caltech, INRIA, and IBM

were combined with random images collected from the

WWW into our master database. Our database containd-6-1 Retrieval Performance of Entropy Based Similarity
realistic and synthetic images, such as images of animald/éasures .
humans in various activities, landscapes, architecture, and L&t D be animage database and Q be the query image. A
space. Additionally, the database is not dominated by anfiuéry on D is expressed as function=Rf(D,Q) where R is
class of images (e.g., medical images). (hopefully) a nonzero subset of D. Let R= f ,(D,Q),

Our benchmarks are based on 20 query images given iReein = feern(D,Q), and Rire = fure(D,Q) be result sets
Figure 7. Each query has a unique correct answer manualff image similar to Q by using the,Lnorm, EELN alge
determined by inspection. The query images were randomi{fthm, and maximum relative entropy similarity measures,
determined prior to the manual determination of the uniqudespectively. _ .
correct answer. As seen in Figure 7, these query images AS @ global property of images, color histograms are
represent various situations. susceptible to false positive matches. There are two basic

The scalability of the methods presented in this papegues_tio_ns to answer concerning thg retrieval performance of
was tested across several image databases sizes. The self Similarity measures presented in this paper compared to
20 queries were tested across 19 image database of siZ&€ L. norm retrieval method for color histograms:

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000,

3000, 4000, 5000, 6000, 7000, 8000, 9000, and 9972. This 1. Are false positives in R removed in Rg y and R ge?
resulted in 380 result sets for each similarity measure. Each 2. Are new false positives introduced inR  and Ryre
database was randomly sampled from the same master thatarentin R,?

database (except the database of size 9972, which repre-

sented a test on the master database). If the unique correct The first question addresses whether the entropy-based
answer for each of the query images in Figure 7 was noimethods increase thaccuracyof the L, norm for color
included in a database, then an image was removed blyistograms. The determination of accuracy is a two-step
random draw and replaced with the unique correct answeprocess involving both quantitative measurement and sub-
The results of applying the 20 query images to a databasjective judgement. The first step is to ensure that R C
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Thus, we should expect to retrieve images with these two
L1 Norm vs. EELN (100 10 1000) themes, albeit with different spatial layouts.

The similarity of the image in Figure 11 to the result sets
80 in Figure 10 was judged to be acceptable compared to the
o +  mu LI Norm entire database from which the results sets were obtained.
20 - —#— EELN The result set for the EELN algorithm a proper subset of the

' T T result set for the Lnorm. The two images in R and not in
& & & & F Regn have properties that suggest a reasonable explanation

Resull Set Siee
=

LY
for exclusion from Rg . The first image marked “Not
Database Size Included” has very little red and orange color. However, it

does contain a large region of white pixels. The second
image marked “Not Included” has reddish-orange pixels as
well as dark pixels. However, it also contains a large region
of blue pixels corresponding to the sky above the mountain
R, and Rye C Riy. An inspection of the results to p_eaks. An inspection of the entropy values a_nd the _colo_r
o h . . L histograms shows that the presence of the bright region in
determine if the images in R but not in either Rg, \ or R . ;
L . : the first image and the blue region in the second image
Rure Or dissimilar to the query image is the second step. . )
- causes the entropy difference to be a large enough filter so
The reliability of the entropy-based methods compared to, : . ‘
. . that these two images are not part of the intermediate result
the L, norm is addressed by the second question and is . . M
. . Set upon which the Lnorm is subsequent applied in the
checked by the same set relationships betwegn Reg, v )
and R ne. EELN algorithm.
Our theory predicts that the entropy-based methods im- This general theme was repeated over several query
images and databases sizes. In general, it appears that the
prove the accuracy of the,lnorm and have the character . . : :
- . . . : . entropy difference formula acts as a filter for images with a
istic of being more reliable. The following subsections will

show that experimentally, these predictions are Conﬁrmedwell-represented count of pixels for some color not con-
P Y P tained in the query image. This is the behavior predicted by

the theory for image entropy in our companion paper in this
3.6.2 Retrieval Performance of the EELN Algorithm issue. We thus conclude that the EELN algorithm offers an
The EELN algorithm exhibits good accuracy and reli- improvement in retrieval performance in terms of accuracy
ability. For each of the 20 query images in Figure 7, theand reliability over the sole use of thg horm.
intermediate search space produced by the entropy differ-
teonieG?Irlmula ranged was reduced to factors between 2'63.31.6.3. Retrieval Performance of the Maximum Relative
The result sets for the EELN algorithm were commen-

surately smaller than the result sets for the Horm, as )
tropy measure was analyzed for the same 20 query images

shown in Figure 8 and Flgure 9. The result sets for ttﬂe.l‘ as the EELN algorithm. It was discovered that the maximum
norm and the EELN algorithm were analyzed to determine

. . : relative entropy measure provides some improvement over
whether one or more images were contained ji,R but

not in R ,. It was determined that across all query imagesthe L, norm. However, in some cases, the result set from

: using maximum relative entropy measure was not a proper
and database sizes thatdgy was a true subset of R That subset of the result set from the horm. It was determined

iS, Regrn N Ri1 = Regne 0 0
A qualitative analysis of the set,R— Reg s Was per that R ; and R,re shared between 85% and 93% of the

formed by visual inspection. The focus of the judgment
made for this analysis was to determine how dissimilar the
items in R ; but not in Reg, \ were to the query image. Each
query image was inspected across all database sizes. It w
discovered that, in general, the images not g R, could
be interpreted as dissimilar to the query image. This implies
that the use of image entropy captures some characteristic 500
perceptual similarity. "o = e
Figure 10 is an example of the result sets for th@barm o o o o A
and the EELN algorithm for a given query image across & & & s & §
database of size 100. The query image used in both retriev.
methods is given in Figure 11. There are two dominating
color characteristics present in this image. The first charac-

teristic is the presence of a red/orange background. Darkig. 9. Result set size comparison for orm and EELN algorithm for
pixels approximate to black dominate the foreground. database sizes between 1000 and 9972.

FIG. 8. Result set size comparison for horm and EELN for database
sizes between 100 and 1000.

Entropy Measure
The retrieval performance of the maximum relative en-

L1 Norm vs. EELN (1000 to 9972)

1500
1000 L1 Norm

“ETEELN

Result Set Size

Datahase Size
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L, NORM EELN

Not Included

FIG. 10. Result sets from,LNorm and EELN to an image database of size 100.

same images. But in every case, the size gkRwas less the result set for the Lnorm are similar than to the query
than the size of R. Figures 12and 13 depict the behavior image but not captured by the lhorm.
of the result set sizes for both methods.
The conclusion drawn from these experiments is that the
EELN algorithm provides a viable alternative to the use 0f3.6.4. Runtime Performance of Entropy Based Similarity
the L, norm as a similarity measure. The filtering behaviorMeasures
of the entropy difference not only reduces the search space The runtime performance of the EELN algorithm and the
for the L, norm part of the algorithm, but it also serves to maximum relative entropy measures compared to the L
remove images that have color characteristics that makeorm across the 19 databases is depicted in Figure 14. The
them dissimilar to the given query image. run time values were normalized to between 0.0 and 1.0 in
The maximum relative entropy function has some utility order to remove the bias of the software and hardware.
as a similarity measure for content-based image retrieval. The EELN algorithm executes significantly faster than
Further studies should focus on the ability of the function toeither the L, norm or the maximum relative entropy func
mimic human perceptual abilities. Additionally, studies aretion. This is the expected behavior since the initial step of
required to determine if images included in the result set fothe EELN algorithm performs a single subtraction operation
the maximum relative entropy measure but not included irfor each element in the database. This is in contrast to
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L1 Norm vs. MRE (1000 to Y972)
&
7 1500
} 1000
2 500 *— .1 Norm
:;l 0 T T T T T T T 1
- —— WA ati
o o o -\ a Max. Relative
& & & F Entropy (MRE)
Database Size
FIG. 11. Query image used for lnorm and EELN queries in Fig. 6. FIG. 13. Result set size comparison for therlorm and MRE measures

for image databases of size 1000 to 9972.

applying vector operations for each element in the image
database. The next stage of the EELN algorithm then apmay be accounted for by software overhead based on the
plies the L, norm to the intermediate result set of items yse of the G-+ Standard Library container class as a part
deemed similar to the query image. Comparing the differof the EELN implementation.
ence of the entropy values to a threshold makes the deter-
mination of similarity. Therefore, we conclude that a reduc-
tion in the search space for thg horm similarity measure
produces a result faster than searching the entire image we have presented a new indexing algorithm called
database with the Lnorm similarity measure. EELN that combines image entropy with thg horm. The

The second behavior to notice is the slower performanc@pplication of the entropy difference formula to the entire
of the maximum relative entropy measure compared to thglatabase results in a markedly smaller search space of
L, norm. This is not unexpected since the calculation of tthageS for the second phase of the a|gorithm emp|0ying the
maximum relative entropy measure for each element of the¢ ; norm. This results in improved runtime performance as
probability density function required two divisions and the the size of the image database increases. However, its
computation of the logarithm of the result. Thehorm, on  stability across query images may fall within a wider than
the other hand, requires the absolute value of the differenchpected range Compared to th@ horm and maximum
between each element in the probability density function. relative entropy functions.

The performance of the three similarity measures as a The maximum relative entropy measure was Compared
function of the queries is depicted in Figure 15. This graphto the L, norm and EELN similarity measures. Our exper
is interesting to study because it depicts the stability of themental results across various subsets of a 9972 image
three similarity measures across the 20 queries given igatabase suggest that the maximum relative entropy simi-
Figure 7. larity formula may be an effective measure of similarity

While the Ly norm and the maximum relative entropy between pairs of images, although the run time performance
function remains essentially stable as the query imagegs not as good as the,lnorm. A primary conclusion of our
changes, the EELN algorithm exhibits a wider variation intest show that the maximum relative entropy measure war-
run time performance. The range of normalized run timerants further research attention, particularly to determine if
values for the EELN algorithm as a function of the query
image was between 0.19934 and 0.484502. This behavior

4. Summary

Avg. Performance Across Queries
L1 Norm vs. MRE (100 to 1000) 4 —— EELN

) 2 o “EL}
™ —
3 %0 - ‘nr""::;l
= o .-..
2 28 L1 Nom = 05 “::' “®- L1 Norm
7 23 = pmas vever??
3 1 T I 1 I I 1 T I 1 E
- B Max. Relative z

O R -

W e s A o+ Entropy (MRE) T 2 o2 2 | Max.

Database Size Database i_{:: :;:111:::'

FIG. 12. Result set size comparison for therlorm and MRE measures FIG. 14. Runtime performance of the three similarity measures across 19
for image databases of size 100 to 1000. databases.
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