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1 Introduction 
An important issue in the design of distributed sensor networks 

is the optimal placement of sensors for target location. If the 
surveillance region, also referred to as sensor field, is represented 
as a grid (two- or three-dimensional) of points (coordinates), tar- 
get location refers to the problem of pin-pointing a target at a grid 
point at any point in time. For enhanced coverage, a large num- 
ber of sensors are typically deployed in the sensor field, and if the 
coverage areas of multiple sensors overlap, they may all report a 
target in their respective zones. The precise location of the target 
must then be determined by examining the location of these sen- 
sors. Target location can be simplified considerably if the sensors 
are placed in such a way that every grid point in the sensor field is 
covered by a unique subset of sensors. 

The sensor placement problem for target location is closely re- 
lated to the alarm placement problem [ 11, which refers to the prob- 
lem of placing “alarms” on the nodes of a graph G such that a 
single faults in the system can be diagnosed. The alarms are there- 
fore analogous to sensors in a sensor field. It was shown in [ 13 that 
the alarm placement problem is NP-complete for arbitrary graphs. 
However, for restricted topologies, e.g. a set of grid points in a 
sensor field, a coding theory framework can be used to efficiently 
determine sensor placement. The sensor locations correspond to 
codewords of an identifying code [2] constructed over the grid 
points in the sensor field. 

I 

2 Sensor placement for target location 
The identifying code problem can be stated as an optimal cov- 

ering of vertices in an undirected graph G such that any vertex in 
G can be uniquely identified by examining the vertices that cover 
it. A ball of radius r centered on a vertex U is defined as the set 
of vertices that are at distance at most r from U .  The vertex U 

is then said to cover itself and every other vertex in the ball with 
center U .  The formal problem statement is as follows: Given an 
undirected graph G and an integer r 2 1, find a (minimal) set C 
of vertices such that every vertex in G belongs to a unique set of 
balls of radius r centered at the vertices in C. The set of vertices 
thus obtained constitutes a code for vertex identification. 

The problem of placing sensors for unique target identifica- 
tion can be solved using the theory of identifying codes. The grid 
points in the sensor field correspond to the vertices in the graph G, 
while the centers of the balls correspond to the grid points where 
sensors are placed. The unique identification of a vertex in G cor- 
responds to the unique location of a target by the sensors in the 
sensor field. Each sensor at a grid point can detect a target at grid 
points that are adjacent to it. 
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Let SE denote the number of sensors required for uniquely 
identifying targets in an n-dimensional (n _< 3) sensor field with 
p grid points in each dimension. The following theorem provides 
U per and lower bounds on SE. 
&eorem 1 The number of sensors Sz for uniquely ident&ing a 
target in an n-dimensional sensorjeld with p grid points in each 
dimension is given by:x”/.(n + 1) < S g  5 p n / n .  

Next, for every gri point (2, y,Z) in a sensor field, we asso- 
ciate a parity vector @,, p y  , py) given as follows: p ,  = x mod 
2 , p ,  = y mod 2 , p z  = z mod 2. The set of parity vectors is 
called the binary pari code and denoted b (C). , , , 

Theorem 2 For a 3-%nensional sensorje&%th p gridpoints in 
each dimension, p even and p > 2, target location is achieved with 
a smallestpossible number of sensors (SE = p n / 4 )  ifthe binary 
parity code P(C) is the perfect binary (3,1,3) Hamming code, 
where aperfect (n, IC, d)  Hamming code consists of 2k codewords 
in n dimensions and the minimum distance between codewords 
is d. 
Theorem 3 For a three-dimensional sensor field with p grid 
points (p > 4, p even) in each dimension, sensorplacement with a 
minimum number of sensors (SE = p3/q can be achieved $and 
only ifsensors are placed on grid points whose parity vectors are 
(0,O.O) and ( I , I , l ) .  

The next theorem addresses cases where p is not necessarily 
even. For a sensor field with p grid points in each dimension, we 
can define an n-dimensional p-ary code C with covering radius 2 
as follows: C is the smallest set of grid points (vertices) such that 
each non-codeword is at distance at most two from a codeword. 
Theorem 4 Let K P ( n ,  2 )  be the minimum number of codewords 
in a p-ary n-dimensional code with covering radius 2. Then for 
any p > 4, an upper bound on the minimum number of sensors 
S$ for target location in an n-dimensional sensorjeld with p grid 
points isgiven by SE 5 ( 2 n  + l ) K p ( n ,  2) .  
Theorem 4 implies that sensor placement can be carried out by 
first determining a code Kp(n ,  2) with covering radius 2. Sen- 
sors are then placed on the grid points corresponding to the code- 
words as well as on all grid points that are adjacent to codewords 
of Kp(n, 2 ) .  

It can also be shown that as the number of grid points in a 
sensor field tends to infinity, the fraction of sets of targets of car- 
dinality exactly 1 that are uniquely identifiable approaches one if 
1 = o(fi). This underlines the effectiveness of the sensor place- 
ment approach for single targets, and implies that separate place- 
ment algorithms for multiple targets are not necessary. 

~ ~~ __ 
~ 

M ~ ~ 

References 
[l] N. S. V. Rao. Computational complexity issues in operative diag- 

nosis of graph-based systems. IEEE Transactions on Computers, 
vol. 42, pp. 447457, April 1993. 

[2] M. G. Karpovksy, K. Chakrabarty and L. B. Levitin. IEEE Trans- 
actions on Information Theory, vol. 44, pp. 599-61 1, March 1998. 

157 
0-7803-7123-2/01/$10.00 02001 IEEE 


