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CARDIAC HEALTH DIAGNOSIS USING HEART RATE VARIABILITY
SIGNALS - A COMPARATIVE STUDY
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Ngee Ann Polviechnic
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P. K. SADASIVAN
Department of Electrical and Computer Engineering
National University of Singapore

S. S. IYENGAR
Department of Computer Science
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ABSTRACT  The clectrocardiogram (ECG) is a representative signal containing information about
the condition of the heart. The shape and size of the P-QRS-T wave, the time intervals between its
various peaks cte. may contain uscful information about the nature of discase afflicting the heart.
Howcver, these subtle details can not be directly monitored by the human observer. Besides. since
bio-signals are highly subjective, the symptoms may appcear at random in the time scale. Therefore,
the signal parameters. extracted and analyzed using computers, are highly uscful in diagnostics. This
paper deals with the classification of certain discascs using Artificial Neural Network (ANN), Fuzzy
rclations and statistical classifier.  The heart rate variability is used as the base signal from which
certain parameters arc extracted and presented to the ANN for classification. The same data is also
used for Fuzzy classitier and statistical classifiers. The Fuzzy classificr and statistical classificrs are
seen to be correct in about 90% of the test cases, and the radial basis classificr yiclds correct
ciassitication in over 95% ot the cascs.

Key Words: clectrocardiograms. Fuzzy classiticr. ANN. HRV, Lyapunov cxponent

1. INTRODUCTION

Electrocardiography deals with the electrical activity of the heart. Monitored by placing sensors at the
limb extremities of the subject, electrocardiogram (ECG) is a record of the origin and propagation of the
electric potential through cardiac muscles. 1t is considered a representative signal of cardiac physiology,
useful in diagnosing cardiac disorders. The state of cardiac health is generally reflected in the shape of
ECG waveform and heart rate [1]. It may contain important pointers to the nature of diseases afflicting the
heart.

However, bio-signals are non-stationary signals and hence its reflection may occur at random on the
time scale.

That 1s, the disease symptoms may not show up all the time, but would manifest at certain irregular
intervals during the day. Therefore, for effective diagnostics, the study of ECG patiern and heart rate
variability signal (instantaneous heart rate against time axis) may have to be carried out over several hours.
Heart rate variability (HRV) is a useful signal for understanding the status of the Autonomic nervous
system (ANS).

*
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Past 20 years have witnessed the recognition of the significant relationship between autonomic
nervous system and cardiovascular mortality including sudden death due to cardiac arrest [2, 3. 4, 5, 6].
Owing of the significant results obtained in this area a task force was set up by the Board of European
Society of Cardiology and was co-sponsored by the North American Society of Pacing and
Electrophysiology. Numerous numbers of papers appeared in connection with HRV related cardiological
issues [7. 8. 9. 10] reiterates the significance of HRV in assessing the cardiac heath. The interest in the
analysis of heart rate variability (HRV), that is, the fluctuations of the heart beating in time, is not new.
Furthermore. much progress was achieved in this field with the advent of cheap and massive computational
power. which provoked many recent advances.

HRV is a non-invasive measurement of cardiovascular autonomic regulation. Specifically, it is a
measurement  of the interaction between sympathetic and parasympathetic activity in autonomic
functioning. There are two main approaches for analysis: time domain analysis of HRV for standard
deviation of normal to normal intervals (SDNN); and frequency domain analysis for power spectrum
density (PSD).  The latter provides high frequency (parasympathetic activity) and low frequency
(sympathetic activity) and total power (sympathetic/parasympathetic balance) values. Spectral analysis is
the most popular linear technique used in the analysis of HRV signals [11, 12, 13]. Spectral power in the
high - frequency (HF: 0.15-0.5 Hz) band reflects Respiratory Sinus Arrhythmia (RSA) and, thus, cardiac
vagal activity. Low-frequency (LF: 0.04-0.15 Hz) power is related baroreceptor control and is mediated by
both vagal and sympathetic systems. Very low- frequency (VLF: 0.0033-0.04 Hz) power appears to be
related thermoregulatory and vascular mechanisms, and renin-angio tensin systems.

A complex system like cardiovascular system can not be linear in nature and by considering it as a
nonlinear system can lead to better understanding of the system dynamics. Recent studies have also
stressed the importance of nonlinear techniques to study HRV in both health and disease. The progress
made in the field using measures of chaos has attracted scientific community applying these tools in
studying physiological systems. and HRV is no exception. There have been several methods of estimating
invariants from nonlinear dynamical systems reported in the literature [14, 15, 16, 17]. In this work, three
non-linear parameters are used to find the effectiveness of the reflexology on the HRV signal.

2. MATERIALS AND METHOD

For the purpose of the present work. more than 300 subjects — patients suffering from various cardiac
diseases as well as those in normal health — have been studied. The data for this work is collected from
Kasturba Medical Hospital, Manipal. India. The details of the age, sex and number of subjects in various
groups are indicated in Table I. The ECG data is stored in a holter monitor for the duration of 10-15
minutes. Then this data is sampled at a sampling rate of 200 sps with a resolution of 12bits/sample and
stored in a random access file. Later, from this file, QRS complex is obtained [18, 19]. The interval
between two successive QRS complexes is defined as the R-R interval (t,, seconds), from which the heart
rate (beats per minute) is derived. Thus, the volume of the data being enormous, the study is tedious and
time consuming. Naturally, the possibility of the analyst missing (or misreading) vital information is high.
Therefore. computer based analysis and classification of diseases can be very helpful in diagnostics R-R
interval is then found out. The interval between two successive QRS complexes is defined as the r-r
interval (.. seconds) and the heart rate (BPM: beats per minute) is given as:

HR=60/1,, (1)

For the purpose of this study, the cardiac disorders are classified into five categories namely,

1) Complete Heart Block (CHB)

(11) Sick Sinus Syndrome (SSS), Atrial Fibrillation (AF)

(11) Ischemic/Dilated Cardiomyopathy

(iv) PVC

(v) Normal

In this work, an effort is made to classify five different classes with one normal class and four different
cardiac diseases. The classification is done using three different techniques namely neural network, fuzzy
inference system and a statistical classifier. A comparative study is performed on the classification results
achieved using different techniques.
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Table I. Number of subjects in various groups.

Number of | Number Number of Number of
TYPE Male of Male Female Female Total

subjects subjects subjects subjects (45-

(21-34 yr) | (45-70 yr) (21-34 yr) 70 yr)
Normal 30 30 30 30 120
Ectopics 11 35 12 31 89
Sick Sinus 4 13 1 11 29
Syndrome (SSS)
Atrial Fibrillation 0 15 7 14 36
(AF)
Isc./Dilated 4 18 8 12 42
Cardiomyopathy
Complete Heart 3 8 7 9 27
Block (CHB)

1). Normal Sinus Rhythm (NSR): All p waves upright, rounded and similar in size and shape. A p wave
exists for every QRS complex. Each P wave is the same distance from the QRS complex — less than 20
seconds. All QRS complexes are the same size and shape and point in the same direction. Each QRS is the
same distance from the T waves and the qrs the duration is 10 seconds or less. Heart rate is varying 60-100
beats/minute and is rhythmic.

ii). Preventricular contraction (PVC): Problems are formed outside the SA node. QRS complex is
widened and not associated with the preceding P wave. T wave is inverted afier PVC. It is often followed
by a compensatory pause. In couplets, there are two consecutive PVCs exists. In Bigeminy. there is PVC
after every other NSR.

in). Complete Heart Block (CHB): The heart rate will be usually between 30-35BPM. P waves are not
conducted to the ventricles because of block at the AV node. The P waves are indicated below and show
no relation to the QRS complexes. They ‘probe’ every part of the ventricular cycle but are never
conducted. All the impulses generated from the sinus node are not conducted to the ventricle. No impulses
are conducted and the ventricular rate becomes dependent on spontaneous ventricular depolarizations.
Severe symptomatic bradycardia with HR = 20-40bpm. The ventricles are depolarized by a ventricular
escape rhythm.

iv). Sick Sinus Syndrome & Atrial Fibrillation (SSS & AF): Sick sinus syndrome is a disturbance of the
normal rhythm of the heart. The electrical impulse that drives the heart beat starts in the sinoatrial (SA)
node of the hearl, and then spreads through specialized conduction pathways, causing orderly
depolarization and contraction of the heart muscle. This can be traced on an electrocardiogram. The hear
rate is varying between bradycardia and tachycardia rhythmically. In atrial fibrillation, sinus rhythm does
not occur. Instead, multiple “patterns™ of electrical impulses travel randomly through the atria, leading to
random activation of different parts of the atria at different times. Because the tissues of the right and left
atria are not stimulated to contract in an organized manner, the walls of the atria quiver. Irregular
ventricular rhythm. Sometimes on first look the rhythm may appear regular but on closer inspection it is
clearly irregular.

v). Ischemic/Dilated Cardiomyopathy: Ischemic Cardiomyopathy is ventricular systolic dysfunction
caused by atherosclerotic coronary artery disease (CAD). As a result of smoking, hypertension, diabetes
mellitus, lipid disorders. chronic inflammation, and genetic susceptibility, atherosclerotic plaque
accumulates in the walls of coronary arteries resulting in reduced flow of blood and oxygen to the heart.
Irregular heartbeats can be observed under this condition.

3. NEURAL NETWORK CLASSIFIER

Artificial Neural Networks are biologically inspired networks — inspired by the human brain in its
orgamzation of neurons and decision making process — which are useful in application areas such as
pattern recognition, classification etc [20]. The decision making process of the ANN is more holistic,
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based on the aggregate of entire input patterns, whereas the conventional computer has to wade through the
processing of individual data elements to arrive at a conclusion.

The Neural Networks derive their power due {o their massively parallel structure, and an ability to
learn from experience. They can be used for fairly accurate classification of unknown input data into
categories, provided they are previously trained 1o do so. The accuracy of the classification depends on the
efficacy of training, which in turn depends upon the rigor and depth of the training. The knowledge gained
by the learning experience is stored in the form of connection weights, which are vsed to make decisions
on fresh input.

Three issues need to be settled in designing an ANN for a specific application: (i) topology of the
network and (ii) training algorithm (iii) neuron activation function. A network may have several ‘layers’ of
neurons and the overall architecture may either be feedback or feed forward structure. If the task is merely
to distinguish linearly separable classes, a single layer perceptron classifier is quite adequate. f the class
separation boundaries can be piecewise linear approximated, then a two layer perceptron classifier needs to
be used. If the class boundaries are more complex, a three tayer feed forward neural network. with sigmoid
activation function is more suitable [21, 22].

aG_w_yl
a_ W Zugq @ X >
YRLIVENY = Output function 7(.)

Summing part

Figure 1. Model of an artificial neuron (processing unit).
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Figure 2. Neuron activation functions.

A neural network classifier is implemented using radial basis functions [23]. The net input to the
radial basis transfer function is the vector distance between its weight vector w and the input vector p,
multiplied by the bias b. The radial basis function has a maximum of 1 when its input is 0. As the distance
between w and p decreases, the output increases. Thus a radial basis neuron acts as a detector, which
produces 1 whenever the input p is identical to its weight vector p. Probabilistic neural network, which is a
variant of radial basis network is used for the classification purpose. When an input is presented, the first
layer computes distances from the input vector to the training input vectors and produces a vector whose
element indicate how close the input is to a training input. The second layer sums these contributions for
each class of inputs to produce as its net output vector probabilities. Finally, a complete transfer function
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on the output of the second layer picks the maximum of these probabilities and produces a one for that
class and a O for the other classes. The architecture for this system is shown in Figure 3.

In this implementation we have used D=160 input training vector/target vector pairs. Each target
vector has K =5 elements (Table 11). One of these elements is one and the rest is zero. Thus each input
vector is associated with one of K = 5 classes.

The first layer input weights w is set to the transpose of the matrix formed from the D training pairs.
As the input feature vector has R=3 inputs, the weight matrix formed is of dimension 3 x 160. When an

input x is presented, ”M - .\" 1s calculated. Hw — X|| Indicates how close the input is to the vectors of the

training set. These elements are multiplied. element-by-element, by the bias and sent to the radial basis
transfer function. An input vector close to a training vector will be represented by a number close to one in
the output vector Q. The second layer weights p are set to the matrix T of target vectors. Each vector has a
one only in the row associated with that particular class of input, and zeros elsewhere. The multiplication
Qp sums the elements of Q due to each of the K input classes. Finally, the second layer transfer function is
complete by finding producing a one corresponding to the largest element and zeros elsewhere. Thus the
network has classified the input vector into a specific one of K classes because that class had the maximum
probability of being correct.

Final Ouiput
mput x

Output Q probabilines

weights p K classcs
N30 o3
Input Layer Radal Basis Layer Competitive Layer Output Layer
O WX ) Vector )
probabilitics
Q.p

Figure 3. Probabilistic Neural Network Architecture.

Table ll. Various types of output classes.

woonal | By | B2 | B3 | B4 | BS Type of Disease

1 1 0 0 0 0 Complete Heart Block (CHB)

2 0 1 0 0 0 Sick Sinus Syndrome (SSS) & Atrial Fibrillation
3 0 0 1 0 0 Ischemic/ Dilated Cardiomyopathy

4 0 0 0 1 0 Ectopics

5 0 0 0 0 1 Normal
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4. DISEASE CLASSIFICATION USING ANN

The ANN classifier is fed by three parameters derived from the heart rate signal:

i). Average Heart rate (HR,,,): Though the heart rate is a non-stationary signal. the range of heart rate for
various disease categories are seen to be different. the average heart rate can serve as a parameter of
classification (Table 11). The average is evaluated for 10 minutes interval.

i1). Largest Lyapunov exponent (LLE): Lyapunov exponent (1) is a measure of the rate at which the
trajectories separate one from other [24. 25, 26]. A negative exponent implies that the orbits approach a
common fixed point. A zero exponent means the orbits maintain their relative positions; they are on a
stable attractor. Finally, a positive exponent implies the orbits are on a chaotic attractor. For two points in
a space X0 and X0 + Ax0. that are function of time and each of which will generate an orbit in that space
using some equations or system of equations. then the separation between the two orbits Ax will also be a
function of time. This separation is also a function of the location of the initial value and has the form Ax
(X0, 1). For chaotic data set, the function Ax (X0, t) will behave erratically. The mean exponential rate of
divergence of two initially close orbits is characierized by:

The Lyapunov exponent “A™ is useful for distinguishing various orbits.

Lyapunov Exponent

Exp = 0.305 «— 0.168

1

vTine Step .
Figure 4. Lyapunov Exponent.

Largest Lyapunov exponent’s (LLE) quantify sensitivity of the system to initial conditions and gives a
measure of predictability (Figure 4). Presence of positive Lyapunov exponent indicates chaos. Even though
a m dimensional system has m Lyapunov exponents, in most applications it is sufficient to compute only
largest Lyapunov exponent (LLE). We make use of the method proposed by Rosenstien et al [27], which is
robust with data length. This method looks for nearest neighbor of each point in phase-space and tracks
their separation over certain time evolution. The LLE is estimated using a least squares fit to “average”
line defined by:

y(n) =il () 8
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Table 1ll. Range of input parameters to ANN classification model

Class HR. (bpm) LLE Ener 1
(Average)
Complete Heart Block 33.80-38.0 0x0.121 - 0.0510 0.32
0.207+£0.127
SSS & AF 67.60-120.10 0.563%£0.151 - 0.93-1.39
0.941+0.083
Isc./Dil. Cardiomyopathy 88.94-122.03 010.082 - 0.06 to 0.60
0.416£0.108
PVC 65.20-122.03 0.005+0.169 — 0.3210 0.87
0.747 £ 0.058
Normal 56.56-97.64 0.172+0.105 - 0.06 t0 0.35
0.488+ 0.056

. . 1/ . . . b
where d, (n) is the distance between /" phase-space point and its nearest neighbor at #" time step, and
<> denotes the average overall phase space points. This last averaging step is the main feature that allows

an accurate evaluation ot LLE even when we have a short and noisy data.
ii). Ener 1: The frequency of heart rate variation for various diseases are seen to be different. The power
spectrum of heart rate variability signal shows a marked concentration of energy in different frequency
bands [28, 29, 30]. Therefore the ratio of energy content in different frequency bands can be used as
parameters of classification. In the present case. two input signals are derived by evaluating the ratio of
energy content in two separate frequency bands:

Ener I = ([energy content in the band (33.3 - 100) Hz ] / [energy content in the band (0 — 33.3) Hz])

5. FUZZY CLASSIFIER

In a fuzzy classification system, pattern space is divided into multiple subspaces, and for each
subspace, the relationships between the target patterns and their classes are described by if-then type fuzzy
rules. The superb capability of this system is that a nonlinear classification boundary can be easily
implemented. Unknown patterns are classified by fuzzy inference, and patterns that belong to an unknown
class which was not considered at learning can be easily rejected. Ishibuchi et al proposed methods to
acquire a fuzzy classification system automatically by a simple learning procedure and a genetic algorithm
[31, 32]. With these methods. however, a pattern space is divided lattice-like. Therefore, many fuzzy rules
corresponding to fine subspaces are required to implement a complicated classification boundary.

A tuzzy classifier [33] using subtractive clustering and Sugeno fuzzy inference system is implemented
as a classifier as shown in Figure 5. The algortthm for implementation is as follows:

Step | - Fuzzify Inputs: The input is fuzzified using symmetric gaussian membership function given
by
. 67‘ Hy
f(xop)y=——7>F (4)
20°
Final
Input Output
Fuzzification Fuzzy Output P
—» oflnputs [———» Inference ——p Membership |——p
System function

Figure 5. Fuzzy classification System.

where ¢ and Ul are variance and mean respectively
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Step 2 - Fuzzy inference: Fuzzy inference is the process of formulating the mapping from a given
input lo an output using fuzzy logic for making decisions. From the fuzzified inputs, the cluster centers are
determined using subtractive clustering method. In this method,

*  The data point with the highest potential to be the first cluster center is selected

* All data points in the vicinity of the first cluster center (as determined by radii) is removed in

order to determine the next data cluster and its center location

*  This process is iterated until all of the data is within the radii of a cluster cenler

Step 3 - Obtaining the output: Final output is obtained using sugeno fuzzy model. The output
membership function is linear and is given by r» = ax + by +cz+d

The output level r; of each rule is weighted by the firing strength w, of the rule. The final output of the
system is the weighted average of all rule outputs, computed as

N
S

Final Qutput = &— (5)

N

2

i=l

6. STATISTICAL CLASSIFIER

A widely used pattern recognition method is calculating the various parameters required for
recognition processing from the probabilistic statistical nature of sample patierns. and recognizing
unknown patterns based on those calculated parameters. This is generally called "statistical pattern
recognition”. Since statistical pattern recognition is based on the probability distribution model of target
patterns. this method can be applied to any processing target. Statistical patiern recognition can be
classified into a parametric method and a non-parametric method. In the case of a parametric method, the
probability distribution type of target patterns is defined in advance. With a non-parametric method, on the
other hand, recognition equipment can be designed only from sample patterns, without any prior
knowledge. In other words, a non-parametric method can process various recognition patterns that have
different probabilistic statistical natures simultaneously and easily. This method is expected to be used as a
recognition engine in multimedia environments, which will be common in the future.

The statistical classifier [34,35] is implemented using discriminant functions as shown in Figure 7.

A classifier assigns feature vector x to class i if the discriminant function gi(x)>gj(x) for all j # i. By
Bayes theory. maximum value for discriminant function corresponds to minimum conditional risk,

gilx)=-R(aix)

where R( i | x ) =X C(0i | 0 ) P( @j | x ) is the conditional risk or expected loss and C( ¢ | @j ) is the loss
function incurred for taking action i . C(ai | j ) is taken as the symmetrical loss (zero-one) function
which assigns zero loss to correct decision.

Li#j
Cle, W)= o wherei,j=1,2,...¢
Jd=]

Thus, conditional risk is R( o | x ) = 1 - P(wi I'x'). A simplification for the above is gi(x) = P( wi [ x),
$0 that maximum discriminant function corresponds to maximum a posteriori probability. Classification
remains unchanged if gi(x) is replaced by Algi(x)) as long as f.) is a monotonically increasing function.
Hence the discriminant is chosen as

gi(x) =log (p( x | ®j)) + log( P(wj))

Assuming gaussian probability density function for each class, the discriminant function can be
represented as

1 - 1
gi(x) :'—T;(X —/ui)rzi l (A‘ —,u,.)—;log[}:].‘ + logP(a),.) (6)
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Figure 6 (c)

Figure 6(d) Figure 6 (e)

Figure 6. Output Fuzzy Inference Surface for (a) Complete Heart Block (b) Sick Sinus
Syndrome (c) Ischemic Cardiomyopathy (d) PVC (e) Normal.

o (X)

MAX

¢ classes

¢35

Feature Vector Discriminant Maximum Dccision
Function

Figure 7. Statistical Classifier.
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The classifier is implemented with feature vector having three inputs (d=3) and five output
classes(c=3). Five discriminant functions ( gi(x) for 1<i<35) are formed for each of the classes

described in section 2.

7. RESULTS

It can be seen from the results that, the statistical classifier and fuzzy classifier gives about 90%
correct classification and radial basis classifier gives about 95% correct classification.

Statistical classifiers are less complex. easy to implement. It does not require any training and hence it
is tast. Even fuzzy classifiers are easy to implement and also fast. But the radial basis function classifiers
do need training and hence takes time to deliver the correct output. This result can further be improved by
taking more varied test data.

8. CONCLUSION

Neural Network classifier, Fuzzy relation classifier and statistical classifiers are developed as
diagnostic tools to aid the physician. However. these tools generally do not yield results with 100%
accuracy. The accuracy of the tools depend on several factors, such as the size and quality of the training
set. the rigor of the training imparted, and also parameters chosen to represent the input. However, from
the results listed in Table IV, V. and VI, it is evident that the classifiers are effective to the tune of about 90

95% accuracy.
Table IV. Neural Network Classifier results

No. of data set No. of data set Percentage of correct
Class L. used for e .
used for training . classification
testing
Complete Heart Block 20 10 100
AF & SSS 20 10 80
isc./Dil. Cardiomyopathy 30 20 95
PVC 30 20 100
Normal 60 30 100

Table V. Results of Fuzzy Clustering Classifier

o,
No. of data set No. of data set Percentage (%)
Class L . of correct
used for training used for testing classification
Complete Heart Block 20 10 100
SSS, AF 20 10 80
Isc./Dil. Cardiomyopathy 30 20 90
PVC 30 20 100
Normal 60 30 93.33
Table VI. Results of Statistical Classifier
0,
No. of data set No. of data set Percentage (%)
Class .. . of correct
used for training | used for testing classification
Complete Heart Block 20 10 100
SSS, AF 20 10 70
Isc./Dil. Cardiomyopathy 30 20 85
PVC 30 20 90
Normal 60 30 100
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Classification Results
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Figure 8. Classification Accuracy of five categories of cardiac health.

Table VII. Overall Results of three classification techniques

Classification Results
. NN-RBF Fuzzy Statistical
Disease TestData | o\ cifier | Classifier | Classifier
CHB DISEASE 10 10 10 10
SSS + AF DISEASE 10 8 8 7
ISC./ DIL. CARDIOMYOPATHY 20 19 18 17
PVC DISEASE 20 20 20 18
NORMAL DATA 30 30 28 30
% Classification Accuracy (Overall) 96.67 93.33 91.11
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ABSTRACT—In this paper. the problem ot forcing a nonlincar system to track a desired reference
in the presence of uncertaintics in the system’s parameter valucs is addressed for a class of nonlinear
systems which can be described by a Takagi-Sugeno Fuzzy model. This approach is obtained by
properly combining the theory of robust regulation and the Takagi-Sugeno modeling. By a suitable
design of local robust controllers for cach lincar subsystem. it is shown that the aggregated controtler
guarantees asvmptotic tracking cven in the presence of variations on the parameters ot cach lincar
subsystems and in the membership functions.

Key Words: Robust output regulation. Takagi-Sugeno Fuzzy model, Chen Chaotic System

1. INTRODUCTION

A comnerstone problem in control theory is that of controlling it to track, at least asymptotically, a
desired reference signal, preserving at the same time some suitable stability property of the closed-loop
scheme. Among the different approaches studied, the so-called regulator theory has provided a frame to
accomplish such objectives. The regulator problem consists in finding a state or error feedback controller
such that the equilibrium point of the closed system with no external signals is asymptotically stable, and
the tracking error goes to zero when the system is under the influence of the exosystem. Roughly speaking,
the solution to this problem is related to the existence of a steady state behavior of the system on which the
tracking error is zeroed. The steady state dynamics may be seen as the dynamics that a stable system
undergoes when excited with a stable input. This problem has been studied intensively both in the linear
case [3], and recently in the nonlinear setting [6], [5], by showing that the nonlinear regulator problem is
solvable by means of the solution of a partial differential equations, named Francis-Isidori-Byrnes (FIB)
equations. On the other hand. for nonlinear systems, it has been shown that the inclusion of an internal
model in the controller structure was also necessary and sufficient for having robust regulation, i.e., the
capability of the controller for maintaining the output tracking error within certain predefined bounds while
ensuring the stability of the closed-loop system, despite the presence of parameter perturbations [4].
Following these ideas. in [7], [2] and [1], an error feedback controller which relies on the existence of an
internal model is presented. This internal model represents an inclusion of the exosystem dynamics into an
observable one, which allows generating, as in the linear case, all the possible steady state inputs for the
admissible values of the system parameters. A remarkable feature is that the controller is constructed on the
basis of the linear approximation of the nonlinear system and, in the case when the immersion is linear, the
controller becomes fully linear. However, since the solvability of this robust solution relies on the existence
of a solution of both the FIB equations and the exisience of an internal model, for which no solution is
guaranteed a priori, then for many complex physical systems, this may become a drawback.
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