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Absfract- Interest in the use of unmanned nnderwater vehicles 
(UUVs) for both commercial and military uses Is growing. 
Control of U W s  poses a difiicult problem because traditional 
methods of Communication and navigation, i.e. radio and GPS, 
are not efieetive due to the properties of seawater. Control and 
communication algorithms were developed to carry out multiple 
UW formation maneuvering using acoustic communications and 
Rrst tested in computer simulation and then on mobile robots. 
Three control schemes, classic logic, behavior, and neural 
network were tested in line formations in both simulator and lab 
environments. Results and issues are discussed along with future 
directions. 

Kepwrds~omponent; 

I. INTRODUCTION 
This paper focuses on the development of control 

algorithms and communication schemes required for 
Unmanned Underwater Vehicles ( u w s )  to accomplish 
formation maneuvering using vessel relative navigation. 
Because seawater dissipates electromagnetic energy (radio, 
light, etc.) so effectively, traditional positioning systems such 
as GPS and radio communications are ineffective. Inertial 
based vessel positioning systems typically yield position error 
growth on the order of 1% of the distance traveled 151 and thus 
are not adequate for formation maneuvering. Consequently, 
acoustics must be used for both vessel positioning and 
communications underwater, but these systems yield fairly 
short ranges and very low bandwidths [6]. Acoustic 
transponder systems can provide accurate vessel position but 
only in small areas. Vessel relative positioning and navigation 
using combined commnnicatiodposition acoustic systems 
offers a promising alternative for UUV formation 
maneuvering. 

In this work classic logic, behavior based, and neural 
network controllers have been developed to control multiple 
vehicle formations. They are fashioned after biologically 
inspired formations observed in nature, most notably lines of 
ducks and caterpillars. The classic logic control systems used 
were modeled aRer Braitenburg machines and served as a 
baseline capability for comparison. Neural network controllen, 
which hold the promise of real-time adaptability, were ‘grown’ 
using a genetic algorithm and in-situ sensor data. 
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Both computer simulations and tests using mobile land 
robots equipped with frequency multiplexed acoustic 
communication systems have demonstrated the feasibility of 
these approaches. Several real world problems have been 
tackled, including acoustic s e w r  directivity and reverbtion. 

This paper gives an overview of a typical UW mission in 
order to show how formation maneuvering would be used in 
the execution of a multi-vessel mission. It then discusses four 
main categories of formation maneuvering d e s m i d  in the 
literature. Next, the acoustic based relative navigation 
approach developed is dffcnbed from concept to lab testing. 
Finally, results, conclusions, and future directions are detailed. 

II. BACKGROUND 
A typical mission involving multiple UUVs will have many 

distinct phases. Initially, the UUVs will be onboard their host 
vessel(s). Depending on the size of the UUVs involved in the 
mission and the mission goals, there may be more that one host 
vessel deploying UUVs. Once sea p q p d  the UUVs will be 
launched and they will then maneuver into a transit formation 
and travel to the area of interest. The current assumption is that 
there will be at least one vehicle that has an accurate 
positioning system on board and that the others will rely on 
vessel-relative positioning. Upon getting to the area of interest, 
the U W s  will change into mission specific formations and 
execute their respective mission related goals. When the 
mission is complete they will move back into a transit 
formation and return to their host vessel(s) and download their 
data. 

Coordinating multiple autonomous vehicles moving in 
formation has become an active area of investigation in 
robotics, multi-agent systems, and control. It is impoltant h m  
a roboticRRTv standpoint in that it can be a key part of getting 
a team of robots to work together. As referred to earlier, one 
use may be to create a fonnation of U w s  and travel to a 
destination of interest in order to collect measurements of 
depth, physical water properties or to look for hazards. Using a 
formation helps the team members track other team members, 
helping to make sure that none of the U W s  gets lost along the 
way. It also augments communication by reducing the distance 
that a team member will have to transmit a message. 
Formation maneuvering based on inter-vessel positioning and 
navigation has distinct advantages in that it can reduce or 
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eliminate the requirement for predeployed positioning 
systems. Another use of a formation is to increase the s m o r  
footprint in searching and suveying tasks. 

Compared with existing works about formation control, this 
work has some distinctive features: it makes use of a machine 
learning technique to leam the control laws to move into 
(acquire) formation, and to keep (follow) formation. In one of 
the most relevant works, a genetic algoritbm is used to evolve 
neural network controllers for simulated "prey" creatures to 
learn a herding behavior protecting against predators. 
However, that work does not address the issue of forming a 
particular geometric shape (line, tree, etc.). For a more 
thorough summarization of the background see McDowell et al 
[I]. Another key difference is the inter-vehicle communication 
scheme. In ow scheme we navigate relative to an assigned 
leader using a frequency multiplexed chuping scheme and 
acoustic sensors. The group at the University of Reading [3] 
has concentrated on both non-adaptive and adaptive flocking 
behavior with mobile robots using logic based on that of 
Reynold's boids. Their robots are using ultrasonic sonars for 
obstacle avoidance and Jiequency multiplexed i n h e d  light for 
inter-robot communications. 

Other more common methods include the use of camera 
based, laser based or GPS positioning systems coupled with 
high-bandwidth communication networks which informs each 
vehicle in the formation of its position and the position of its 
leader or leaders. While these approaches have merit and in 
general work well they are not suited to the ocean environment. 

m. APPROACH 
This work is based on the leader/follower approach in 

which all of the robots in the formation position themselves 
relative to each other or the lead robot The lead robot is 
typically controlled by an operator or programmed to do 
waypoint following. To illustrate the concept, consider one of 
the simplest formations, a line formation. In a line formation 
each robot follows the robot in front of it and in turn, leads the 
one behind it. Figure 1 below shows a conceptual view of a 
line formation. In this figure the green rohot, whose id is 0, is 
the lead robot. It is followed by the robot whose id is 1, which 
is in turn followed by the robot whose id is 2, and so on. In this 
illustration, the follower robots are controlled by neural 
networks while an operator maneuvers the lead robot. 

Figure I.  M s  figure shows a robot line. The pea robot is controlled 
manually. Using their season and eontrollen, the other robots follow. 

The system operates in a passive manner meaning that the 
robots do not exchange position or bearing and range 
information. Instead each robot, except the leader, stem itself 
towards the chirp of the robot in front of it. For example, the 
leader chirps at frequency range A, the robot directly behind it 
steers in the direction that it perceives is the source of the chirp 

in frequency range A, and at the same time chirps in frequency 
range B. The robot behind it steers towards the source of 
frequency range B and so on. 

Two methods were used to determine source direction. In 
both methods, microphones are placed on each side of the 
robot, like e m ,  and the ear with the strongest signal was used 
to determine the source dmtion. The fmt method uses power 
summing and the second method uses matched filtering. In 
ideal acoustic conditions, which were seldom found in the 
laboratory, the source is louder on whichever side of the robot 
that it is closest to. 

A. Robots and Sensors 
Figure 2 below shows a picture of one of the three robots 

used in this work. The robot is an ActiveMedia Pioneer ZDX. 
From the factory it comes with bumpers, compass, and sonars, 
but they were not used for these experiments. Instead, the 
acoustic communication system was set up using a sound card 
receiving signals through two voice type karaoke microphones 
and tmnsmitting information using a small battery powered 
speaker. To help in calibration and signal amplification, 
battery powered guitar amplifiers were used to boost the signal 
coming from the microphones. 

Figure 2. Pioneer 2DX robot with microphones and amplifiers mounted. 
Notice how the microphones are mounted on each side ofrobot, like -. 

B. Communications 
The system uses chirps in order to minimize problems 

associated with constant wave (CW) tones or pulses. Because 
the lab walls and floor are good sound reflectors, its acoustic 
characteristics are far from ideal. CW tones tend to saturate the 
air volume and create standing waves to the point that it is 
almost impossible for a person to audibly discern the location 
of the speaker. Consmctive and destructive interference of the 
CW tone helps to create several regions of the room in which 
the sound is very intense, or barely audible. These local 
minima and maxima make tracking the sound an impossible 
proposition. Using a chirp alleviates these problems in two 
ways. First, because there is typically one chirp per second, 
there is time for the sound to attenuate. Second, because the 
chirp sweeps from a starting tkquency to an ending Jiequency, 
there is less time for the energy at any particular frequency to 
saturate the room and set up a standing wave, so the creation of 
regons of low and high intensity sound are reduced. 
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C. Processing Algorithms 
There are two methods that have been tested for 

determining signal strength at the robot’s microphones. While 
they both calculate a running average of the signal strength in 
order to smwth out fluctuations caused by the chirp and 
environmental effects, they differ in concept, implementation, 
and efficiency. 

The fust and much more widely used in this research, 
quantifies the amount of energy in a particular frequency range 
at each microphone. This method works by continuously 
taking the fast fourier transform (FFT) of the incoming time 
series data collected by the sound card from the robot’s two 
microphones. Briefly, the FFT converb the time series data 
from the timdintensity domain to the frequencyhntensity 
domain. Once in this form, the energy in the ffequency range 
of the chirp is summed. Sound that bounces off walls, ceilings, 
etc. is lumped in with the sound that takes a direct path. 

The FFT method effectively measures the intensity of the 
chup in the requested frequency range. In testing, it responds 
logically and predictably. Closer, louder chirps produce larger 
intensity values, and weaker, further chups produce smaller 
intensity values. Because of the effective hand-pass filtering in 
this process, it is robust to noise, including other chirps in other 
kquency ranges, Mlhz noise, robots self-noise, etc. For 
maximum computational efficiency it requires that the data set 
size be a power of two. 

The second method relies on matching the chirp waveform 
that the follower robot receives to the chirp waveform that the 
lead robot transmitted. The microphone with the closest match 
is assumed to be closest to the sound source. This method, 
called matched filter processing, relies on doing a cross 
correlation of the incoming signal to a template of the 
transmitted signal. It is of order NA2 and since the data set is 
large, it requires much more CPU time than the 0 0  FFT 
based method. Efficiency concerns aside, the matched filter 
alone is susceptible to noise corruption. It is difficult to detect 
the chirp without using a band-pass filter before the matched 
filter. With the band-pass filter, noise from other frequency 
ranges, such as 60Hz, voices, etc, has a minimal effect. The 
downside is that the filter requires additional CPU time. 

In testing, the matched filter works well with a low to 
medium volume source and in low noise environments. 
Unfortunately, this greatly limits the effective range of the 
power differencing approach. With the equipment used, when 
the volume is turned up, the speaker distorts the signal 
degrading the correlation between the transmitted and received 
signal. Additionally the high multi-path environment of the lab 
may be further degrading performance of the matched filter. 
Consequently, most of the work described uses the FFT based 
listening system. 

N. CONTROL METHODS 
Three methods of control have been tested. They are a 

classic logic approach, a behavioral approach, and a neural 
network approach. The following sections provide more detail. 

A. Classic Logic Approach 
As a baseline method to be used for testing, the robots were 

first programmed using simple logic that closely modeled that 
of Braitenberg vehicles [4]. Instead of heading towards a tight 
source using two photo-eyes controlling right and left motors 
as Braitenberg vehicles do, microphones and sound were used. 
The basics of the classic logic method is as follows: 

If (either of microphones reads a very loud intensity) then 

Else 

If (microphones read intensities that are &g to equal) then 

Else 

Velocity = Stop; 

Velocity = Go; 

Direction = straight; 

If (right microphone value is greater than left) then 

Else 
Dmtion  = right; 

Direction = l ek  

The fmt if statement keeps a robot from colliding with its 
leader. The second statement creates an “on center mne” so 
that the robot will go straight This statement is not as 
important in the simulator because reflections, bounces and 
noise are not accurately modeled, hut without it in the lab the 
robots will always tum lefl or right, creating a serpentine path. 
The final if statement selects the direction to tum, given that 
the microphone intensity was sufficiently different enough to 
not fall in the on center mne. 

B. Behavior 
Three behaviors are used to find and follow the sound 

source. They are follow, seek. and search. The follow mode is 
for maintaining a desired distance behind a lead robot, the seek 
mode is used when the robot lmows the direction to the-lead 
robot but is too far away, and the search mode is needed to 
determine the direction of the lead robot. The selection of the 
behavior is based on the gradient history of microphone 
intensities. Much like subsumption, only one behavior is active 
at a time, with the added enhancement that some behaviors 
require a waiting period before they becomes active again. 
When directly behind its leader, a robot is normally in follow 
mode, which uses the same basic logic as the classic logic 
module. If the distance between the two robots is too large or 
grows the seek behavior becomes active. Seek allows the robot 
to respond quickly to directional changes by varying the 
“close” parameter as a function of sound intensity, while follow 
tends to keep the robot moving straighter. If the robot looses 
track of the source by detecting a negative sensor gradient, 
search acts to reorient it towards the peak level of the sound 
source. Once oriented, the robot retnms to seek mode, and is 
prevented from entering search for a specified period of time. 

C. Neural Network 
The neural network controller is based on a feed forward 

neural network with one hidden layer trained by a genetic 
algorithm (CA). It was shown [I] that this concept has merit 
when applied to formation maneuvering. 
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Although similar, this work has some distinctive 
difFerences. In the work mentioned above, the neural network 
was trained by repeatedly letting a simulated robot controlled 
by the network follow a computer controlled simulated robot 
that made random come changes. The fitness function in the 
GA optimized the distance between the leader and follower. . 
After several generations, a controller was ‘‘grown” that could 
keep a follower robot consistently close to a leader robot. 
While this approach is ideal for a simulator, physically 
executing the generations of runs to develop a good controller 
on the lab robots was not an option. 

The solution was to first train the robot to guess where a 
sound source was in relation to the direction it was currently 
facing. The robot had three choices; the sound could be either 
to the left of the robot, in front of it, or to the right. Once the 
rohot could guess where the sound was, that information was 
used to guide the robot towards the source. 

Using this technique, a custom feed forward neural network 
controller is “grown” or each robot using a simple series of 
physical measurements. Moreover, this approach allows 
straightfonvard compensation for variations in robot 
characteristics such as voltage levels, leader frequency, 
microphone response, and amplifier characteristics. Without 
this simple approach of growing a custom network great care 
would have to be taken to calibrate each system. 

V. RESULTS 
The classic logic and neural network control methods both 

worked well enough to enable l i e  formations of the three lab 
robots to make several laps around the lab, while the behavior 
module was lacking. Figure 3 below shows a following test 
with two robots. 

Figure 3. This Iip shows B two robot following test. Notice the lead robot 
is not equipped with lisl&g equipment because it is controlled with the in- 

house simulator. 

I a h  and simulator results for the classic logic module were 
v e v  similar. “Cmbbmg” and serpentine paths were observed 
in both environments. Crabbing occurs when the robot is very 
close to the source, so its velocity is set to “stop”, but the 
reading from the microphones are different enough that the 
direction returned is not “straight”. 

The behavior routine works very well in simulation on a 
fixed sound source. It also works well on moving sources in 
simulation, but the poor acoustic environment in the lab makes 
the gradient-based approach ineffective. At best it stayed in 
seek mode, which led to much crabbing and serpentine paths. 

Initially the neural network based method worked, but only 
after the robots were carefully put into a stamng formation. 
Testing revealed that when microphone intensities moved 
outside of the range of the training set, the neural network’s 
responses became unpredictable. This behavior was’ohserved 
in both the simulator and in the lab. Because of this problem, 
seeking to a fured source was difficult because the network has 
to deal with a large range of microphone values, which were 
not reflected in the training data. Following worked well 
because once a follower robot has acquired its leader, the range 
of the microphone values becomes narrower and more 
constant. 

To help alleviate these problems the network was presented 
with relative sensor values, rather than scaled absolute values. 
By dividing both sensor values by the larger of the two, their 
intensities relative to each other is preserved and they always 
stay in the range of the training set. This simple modification 
resulted in a significant performance gain. In subjective tests 
the neural network was able to match the classic logic 
controller and in some cases reduce some of the serpentine 
motion. 

Note that at this point in time, all the performance 
comparisons between algorithms are subjective because the 
lab‘s robot tracking system is still under development. It is 
easy to tell if an algorithm works, or does not work, or if one 
works much better or much worse (as in the case of the 
behavior based controller) than the others, but making fine 
comparisons between algorithms by analyzing trajectories is 
not feasible at the present. 

VI. ISSUES 

A. Acoustic 
The audio equipment gives an effective hquency range 

from 300% to about 4000%. Typically the lead robot chirps 
from 300 to 500Hz for 400 milliseconds. Because a strong 2“ 
harmonic is generated, the second robot is set to chirp from 
1200 to 1400Hz for 400 milliseconds. With both robots 
chirping asynchronously, the listening programs onboard the 
2“ and 3d robots have no trouble sorting out the two chirps. 
However, the 700Hz difference between the chirps is sufficient 
to make the acoustic properties of the two chirps different. In 
house measurements have shown that the lower hquency 
chirp radiates in almost a 180 degree pattern h m  the speaker, 
while the higber hquency chirps radiate sound in a pattern that 
is strong at 0, 90 and 180 degrees, but weak everywhere else. 
The empirical solution to these problems bas been to get the 
clllrps as close in frequency to each other as possible, so that 
both robots are dealing with similar acoustic conditions. 
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measured data, see figure 6, the curves do follow a similar 
ken4 suggesting that the analogy is valid. 

F i p  4. The wall is reflecting round back to the robot fbat would n o d l y  
be radiated elrewhere. In this case the robot will read a higher intmily value 

(m its right side, causing it to unntly turn towards the wall. 

Reflections from walls can be especially troublesome 
because they tend to increase the acoustic energy that arrives at 
the microphone nearest to the wall. So if a leader/follower pair 
are traveling parallel to the wall the follower will tend to head 
to the wall because the wall reflects the sound energy that 
would normally be radiate into the air. ’ Figure 4 above 
illustrates this phenomenon. 

Sound propagates similarly in water and air. 
Characteristics sucb as higher frequencies being more 
directional hut attenuating quicker as compared to lower 
fquencies hold hue. The implication is that some of the 
same problem that arise in the air will be present in water, 
especially near ships, or in harbors with rocky bottom. 

A major area of concern is how close the in air analogy is to 
the underwater environment. To help answer this question, 
some basic equations [7l showing energy loss due to spreading 
were used to model the effect. These eqnatians are not 
medium dependent, so they apply to both air and water. 

The situation of a sound source in deep water was modeled 
using spherical spreading. The situation in which the sound 
energy is reflected off the sea surface and sea floor are modeled 
using cylindrical spreading. The equations are shown below. 

TLS[R] Transmission loss at range R due to spherical 
spreading 

TLC[R] Transmission loss at range R due to 
cylindrical spreading 

R Range of receiver from sound source 

RO Reference range (usually 1 meter) 

S Intensity of sound at reference range 

RRI Sound intensity at range R 
For spherical spreadiing: 

TLS[R] = 20810g(R/RO) 
IF] = S - TLS[R] 

For cylindrical spreading: 

TLC[R] = IO*log(RIRO) 

I[R] = S - TLC[R] 

The results are shown in figure 5.  These results were 
compared to measurements taken using a sound source and a 
sound meter. While the calculated results are smoother than the 

I I 

F i p  6. . ’Ibis figure show 811 inynsityldistmce plot of mcasunments 
taLm in a quiet non-reflective ovfdmr envimnmnt. Notice hoar the intensity 
of the s o d  in fhe I200 to 1400 Hz -e dmps fairly predictably in the 2 - 27 
feel range. 

B. Control 
Because the classic logic module is reactionaty, the robots 

tend to oscillate between right and left causing crabbing or 
serpentine paths. Letting the robot turn only when one 
microphone reads significantly higher than the other can 
alleviate the serpentine motion. A more serious problem is the 
ambiguity associated with heading directly towards or directly 
away from the source. Because it only considers present sound 
readings in the robot’s logic, there is no difference between 
headiig directly towards the sound sonrce and heading directly 
away h m  the sound source. 

The behavior-based module was created to address the 
inadequacies of the classic logic module. The source location 
ambiguity problem is addressed by looking at sensor values 
over time. If a negative gradient in the microphone intensity 
values is detected, a search mode is entered which reorients the 
robot towards the source. It reduces crabbing and serpentine 
motion by having an adjustable on center parameter, which 
makes the on center zone larger or smaller depending on how 
often a negative gradient is detected. While the behavior based 
approach woks well in simulation, the measurement of 
gradient proved difficult in an adverse acoustic environment 
with the signals used. 

3847 



The neural network tahnipue fun&mlly works the same 
as the classic logic module, but bas the advantage that it can be 
readily adapted to specific hardware. Changing to recurrent 
networks that consider more than the current sensor readings, 
coupled with a data monitoring system that detects when the 
s e m r  data is becoming out of the range of the training data 
should help alleviate the observed problems. 

[q Marshall Bradley, Envimnmenrol Aeowti~XondbookPEdirion, 1996. 
page 23 

VII. SUh,iMARY 
This work bas shown, in concept, that formation 

maneuvering using acoustic sensors is possible in both a 
simulated environment and in the physical world of the lab. It 
bas also shown that the smcture of the formation can remain 
viable without using a cent ra l i i  controller, or using 
infrastructure based communications. Since the 
communicatiom between the robots uses very low bandwidth 
acoustic methods, this work is relevant to the overall goal of 
searching and surveying using teams of W s .  

This research has many facets, so the opportunities for 
improvement are abundant. Aside from equipment related 
improvements such as better microphones, speakers, and 
amplifiers efforts need to focus on improved signaling 
schemes, behavior arbitration, on the fly learning, and inter- 
robot communications. 

On the fly learning needs to be integrated into the control 
system to allow continuous real-time adaptation in an 
unstructured environment. To date, the goal has been to show 
that if a network were tuned correctly it could be used to 
control the vehicles in a formation-maneuvering situation using 
acoustic systems. The next step is to automate the learning 
process. 

Because acoustic reverberation and multi-path cause 
problems with amplitude based following systems, one 
alternative methcd that has been considered is low bandwidth 
acoustic communications between robots that will provide a 
following robot with the intentions of the leader. This 
additional information can then be used to assist the following 
robot in determining the proper actions in the presence of 
misleading sensor data. 
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