

Hand book on Sensor Networks, July 2004 (In Press).

On Computational and Networking Problems in Distributed Sensor
Networks

Qishi Wu 1), Nageswara S.V. Rao 1), Richard R. Brooks 2), S. Sitharama Iyengar 3), Mengxia Zhu 3)

1) Center for Engineering Science Advanced Research, Computer Science and Mathematics Division, Oak
Ridge National Laboratory, Oak Ridge, TN, 37831-6355, {wuqn, raons}@ornl.gov

2) Distributed Systems Department, Applied Research Laboratory, The Pennsylvania State University, P.O. Box
30, State College, PA 16803, USA, rrb@acm.org

3) 298 Coates Hall, Louisiana State University, Baton Rouge, LA 70803, {iyengar, mzhu}@bit.csc.lsu.edu

1. Introduction

Multi-sensor systems have permeated into many aspects of our life in various applications over the past

decade. The wide variety of applications of sensor networks spans civilian services such as environment

surveillance and disaster relief, industrial processes such as instrument controls and machine monitoring, and

military operations such as target detection, classification, and tracking on the battlefields. The ever increasing

levels of sophistication of sensor network systems continue to generate a great deal of interest in the

development of new computational strategies and networking paradigms.

A distributed sensor network (DSN) is a set of geographically scattered sensors designed to collect

information about the environment in which they are deployed. The physical measurements (of different types,

such as acoustic, seismic, or infrared) from the terminal sensor nodes are preprocessed locally into abstract

and/or numerical estimates and are then transmitted through an interconnection communication network to a

processing element, where they are integrated with the information gathered from other parts of the network

according to some data fusion strategy. The integrated information is then used to derive appropriate inferences

about the environment for the application. A group of neighboring sensors that are commanded by the same

processing element forms a cluster. In tracking applications, each processing element in DSN performs tracking

function using the data from its governing cluster and possibly communicates with other processing elements in

the same network to arrive at a better estimate.

The development and implementation of such spatially distributed systems involves solving a combination of

many different problems in sensor deployment, network communication, data association and fusion, hypothesis

testing, and other areas. In particular, the design and analysis of information integration algorithms has been the

focus of research since the early stages of DSN development [1, 2]. The recent advances in sensor technologies

1

mailto:rrb@acm.org

Hand book on Sensor Networks, July 2004 (In Press).

make it possible to deploy a large number of inexpensive sensors in order to “achieve quality through quantity”.

Exploiting useful information from an enormous amount of data collected from spatially distributed sensors in

the most effective way has brought new challenges to all the aspects of DSN such as network architecture

design, data fusion methods, sensor deployment schemes, and data routing techniques.

In this chapter we conduct a broad survey of the recent research efforts in the computational aspects and

networking paradigms of distributed sensor networks. The rest of this chapter is organized as follows. Section 2

provides a general description of the fundamental aspects of DSNs such as network architectures and multi-

sensor data fusion methods. Two specific computational topics are covered in the following two sections.

Section 3 discusses the computational complexities of sensor deployment problems and presents an approximate

solution based on a genetic algorithm. Section 4 is devoted to the networking paradigms for DSN with a focus

on data routing techniques. Section 5 draws conclusions for all the work presented and discusses some future

research directions.

2. Foundational Aspects of Distributed Sensor Networks

Efficient and fault-tolerant network architectures play a very important role in the successful

implementations of distributed sensor networks. Apart from the timeliness and complexity of information

transmission, the interconnection topology has a significant impact on the computational aspects of data routing

and sensor deployment schemes that are discussed in later sections. Therefore, the overall performance of a

DSN is critically dependent on its network architecture.

Design of algorithm for data integration is one of the core tasks in the development of DSN and has attracted

a great deal of research attention during the past decades. Recent advances in sensor technology have led to

better, cheaper and smaller sensors. These advances beget a more complex tactical deployment of sensors that

requires efficient and sophisticated techniques for fault-tolerant integration of sensor information.

This section provides a general description of these two fundamental aspects of distributed sensor networks.

2.1 Traditional Network Architectures

Committees and hierarchical organizations are two basic types of network architectures [3]. In the network of

a committee organization, each node is autonomous and connected to some or all of the other nodes so that the

local information can be broadcasted between any two connected nodes. The information collected by individual

nodes in this organization is shared among the network to the fullest extent. The completely connected network

is one special case of the committee organization, which has been extensively used in many practical

applications. However, since there are connections required in such a network with nodes, the)(2NO N

2

Hand book on Sensor Networks, July 2004 (In Press).

network size imposes a high demand on the communication resources. Moreover, the final estimate obtained in

a committee organization tends to be biased because the data is shared by all participating nodes during

integration process.

A hierarchical organization arranges the nodes in multiple levels, each of which can only communicate with

its immediate subordinate and superior nodes. At each level, individual nodes receive information from the

nodes at the lower level, integrate the information according to their position in the hierarchy, and report

upwards the integrated and abstracted versions of their results. The commander node at the highest level makes

the appropriate decisions based on received information and may direct its subordinates to adjust some previous

data based on the final result that it generates. In contrast to a committee organization, a hierarchical

organization with nodes only needs to create links but consequently requires more complex

communication schemes and incurs longer communication delays. An unbiased result may be obtained because

the nodes are not connected to any other nodes at the same level, but the integration errors may accumulate as

the estimate moves up the hierarchy.

N)(NO

Due to the disadvantages in both committee and hierarchical organization, it is not appropriate to design the

network architecture for DSN as one of them alone. In practice, a mixed structure combining these two basic

types of architectures is preferable. For example, the JIK (Jayasimha, Iyengar, Kashyap) network has such a

structure where the nodes are organized as many complete binary trees whose roots are completely connected

[1, 2]. However, the JIK network still has the disadvantage of accumulated integration error as in a hierarchical

organization, which makes it difficult to identify the faulty component of the network. An improvement is made

in [4] by interconnecting the nodes at every level of the JIK network as a de Bruijn network, which results in a

new versatile architecture referred to as the Binary Multi-level de Bruijn network (BMD). The BMD structure is

often used as a basis for network architecture design in DSN implementation due to several promising fault-

tolerant properties that make the resultant network tolerant to node or link failures. Since nodes at every level

are interconnected, the BMD network is capable of eliminating estimate errors and identifying the faulty

component during the process of sensor integration by comparing the abstract estimates at the same level.

2.2 Mobile Agent-Based Distributed Sensor Networks

A novel architecture using mobile agents is proposed in [5] to meet the new challenges of the current DSNs,

such as large data volume, low communication bandwidth, and unreliable environment. Instead of sending all

the measurements collected by leaf nodes to the upper-level processing element (that performs a one-time data

fusion) as in a traditional hierarchical network with the server-client structure, the mobile agent-based

3

Hand book on Sensor Networks, July 2004 (In Press).

distributed sensor network (MADSN) distributes the computation into the participating leaf nodes. And this

approach hence makes it possible to significantly reduce the consumption of communication power and

bandwidth, while lowering the risk of being spied with hostile intent. A MADSN is usually divided into an

appropriate number of subtasks, each carried out by a mobile agent carrying the executable instructions for data

integration dispatched by the processing element. The agents selectively visit the leaf sensors along a certain

path to fuse the data incrementally on a sequential basis. A final data fusion is performed when all mobile agents

return to the processing element. Three technical issues associated with MADSN are addressed in [5]: mobile

agent routing, data integration, and optimum performance.

The objective of mobile agent routing is to find an optimal path for a mobile agent to visit the sensor nodes.

The path quality has a significant impact on the overall performance of MADSN implementation because the

communication cost and the detection accuracy depend on the order and the number of nodes to be visited. The

NP-completeness of this problem (detailed proof see [6]) rules out any polynomial-time solutions (unless

P=NP). A formal description as well as an appropriate objective function of the mobile agent routing problem

with certain constraints is provided in Section 4, where an approximate solution based on a two-level genetic

algorithm (GA) proposed in [6] is also discussed and the simulation results of the GA solution are compared

with those computed by two other heuristics, namely Local Closest First (LCF) and Global Closest First (GCF).

Data integration takes into consideration the problems such as the type of data processing to be conducted at

the nodes and the integration results to be carried with the mobile agent. An overlap function is particularly

designed to integrate the abstract estimate intervals collected from all participating nodes. In a regular DSN, the

overlap function at the finest resolution is first generated at processing elements based on all readouts from the

leaf sensor nodes and the multi-resolution analysis procedure are then applied to find the crest at the desired

resolution. In a MADSN, mobile agents migrate among sensor nodes to collect readouts and execute an overlap

function of partial integration, whose results are accumulated into a final version upon the arrival of all mobile

agents. The basic multi-resolution integration (MRI) algorithm is adapted to MADSN in [5] by applying MRI

before accumulating the overlap function in order to avoid heavy data transmission.

In addition to the routing scheme and integration function, the performance of MADSN depends on many

other factors. Actually, MADSN does not always guarantee lower data transfer time because of the overheads of

time for agent creation and dispatch, and the latency of data routing. The performance comparisons between

DSN and MADSN are made in [5] in terms of various parameters such as the number of agents, agent and file

access overhead ratio, network transfer rate, and the number of nodes.

4

Hand book on Sensor Networks, July 2004 (In Press).

2.3. Data Integration Methods

In many military or civilian applications, sensors are typically deployed in hazardous or harsh environments,

where the sensor operations and data communications are not as reliable as in regular computer networks

installed in structured areas. Therefore, the fault-tolerance is an indispensable property of data integration

algorithms. The measurements collected by sensors are usually processed into interval-valued estimates serving

as the inputs of an overlap function, whose redundancy may be used to provide error tolerance. Marzullo’s

method yields the sensor fusion interval which is the smallest interval guaranteed to contain the correct value

[7]. The common sensor averaging technique by Marzullo’s method combines the intervals of sensors by

computing local averages. This method, however, is not stable because it exhibits an irregular behavior in the

sense that a slight difference in the input may produce a quite different output. This behavior results from the

violation of Lipschitz condition with respect to a certain metric on intervals [8]. Improvements can be made by

combining interval estimates of sensor outputs into a best intersection estimate of outputs. The Schimd-

Schossmaier function proposed in [9] is a fault-tolerant interval intersection function with the same worst-case

behavior as the Marzullo function but satisfying Lipschitz condition. However, this method sacrifices the

integration accuracy because it produces sub-optimal output intervals in some cases. A new fault-tolerant

interval integration function based on Dempster-Shafer theory of evidence is proposed in [10], which provides a

smaller output interval than the one calculated by Marzullo function and also satisfies local Lipschitz condition.

Brooks-Iyengar hybrid algorithm presented in [11] makes a weighted average of the mid-points of the

regions found by the sensor fusion algorithm. The hybrid algorithm allows for increased precision, while not

sacrificing the accuracy in the process. A distributed system using this algorithm is truly robust and converges

towards an answer within a precisely defined accuracy bound.

Most recently, Cho et al. [12] propose a new interval integration method that further narrows down the

region containing the true value of the state measured by the sensors. This proposed function satisfies local

Lipschitz condition, tolerates failures of interval-valued sensors up to a certain number and has better

performance than existing fault-tolerant interval integration functions. The detailed analysis of how this function

yields a narrow interval accurately estimating the true value is given in [12] as well as a comparison of this new

function with the existing fault-tolerant interval integration functions.

Another important formulation of the data fusion deals with combining information from multiple sensors to

obtain results that are better than the best or best subset of sensors. Such problems are extensively studied in the

target detection and tracking area [13]. While similar problems are studied for centuries (early work under the

5

Hand book on Sensor Networks, July 2004 (In Press).

title Condorcet Jury models in eighteenth century), the recent DSNs calls for a specific new formulation of data

fusion problems [14]. By far a majority of these problems involve deriving a Bayesian fuser based on the joint

distributions of the sensors. But, such approach is useful only when the joint sensor distributions are known as

well as expressed in a computationally conducive form [13]. In view of the increasing sophistication of DSNs, it

is particularly difficult to obtain such joint distributions; note that it is insufficient to know the individual sensor

distributions since an optimal fuser must exploit the correlations between the sensors. On the other hand, it is

relatively easy to collect measurements from the various sensors of a DSN by sensing known objects. Such

measurements are shown to be sufficient to design the fusers that can be shown to be close to optimal with a

high probability [15].

3. Deployment of Sensors

This section discusses the computational complexities of various sensor deployment schemes and presents an

approximate solution to one of them based on a genetic algorithm.

3.1 Computational Complexities

A general sensor deployment problem and several variations have been formulated, and their computational

complexities are discussed by Wu et al. [16]. The sensor deployment problems can be categorized into different

paradigms: (i) probabilistic deployment with investment limit, referred to as the PROBABILISTIC-

DEPLOYMENT, and (ii) minimum sensor set deployment for target coverage, referred to as the MINIMUM-

COVERAGE, and the deployment for integrity. Each of them has a specific application goal and certain

constraint conditions. The NP-completeness proofs for the first two deployment paradigms are briefly described

as follows.

3.1.1 Probabilistic Deployment

The deployment objective of the PROBABILISTIC-DEPLOYMENT paradigm is to place a set of sensors

with probabilistic detection capability in a grid space such that the maximum detection probability is achieved

under the constraint of an investment limit. Intuitively speaking, the whole surveillance region is to be covered

as much as possible while the total deployment expense does not exceed a given investment budget, where the

“deployment expenses” only use abstract values incurred in purchasing the available sensors.

PROBABILISTIC-DEPLOYMENT problem can be shown to be NP-complete by reducing the KNAPSACK

problem to a special case of this paradigm, wherein each sensor monitors a detection area with a specified

probability without overlapping with any other sensors. The KNAPSACK problem is a well-known NP-

complete problem, which is stated below for the sake of completeness:

6

Hand book on Sensor Networks, July 2004 (In Press).

Given a set U of items such that for each un U∈ , we have size and the value , does

there exist a subset V of exactly items such that

+∈ Zus)(+∈ Zuv)(

U∈ k Bus
Vu

≤∑
∈

)(and K≥uv
Vu
∑
∈

)(for given and B K .

Note that exactly items are required in the above problem statement as opposed to unrestricted value in a

traditional KNAPSACK problem. Both the problems are polynomially equivalent since and the input for

either problem instance has at least items. In the same vein, the decision version of the PROBABILISTIC-

DEPLOYMENT problem asks for a deployment scheme consisting of exactly k sensors to be deployed.

k

nk ≤

n

The KNAPSACK problem is reduced to the PROBABILISTIC-DEPLOYMENT problem such that only one

sensor of each type is given, i.e. 1...21 ==== nqqq , and each sensor of type t monitors a small area

(compared with the whole arbitrarily large surveillance region) of size and when two sensors are located in

the same site only one of them detects the target (i.e. suitable conditional probabilities are zero). For this special

case, to maximize the detection probability, each deployment site is occupied by no more than one sensor.

Furthermore, under the uniform prior distribution of target in surveillance region combined with the non-

overlapping sensor detection area, the probability of detection is simply the average of the detection

probabilities of the deployed sensors. Therefore a sensor deployment scheme

tS

)(tr

ℜ with deployed sensors has

the detection probability calculated as

k

∑
=

∈
k

t
t TSP

1
|{=∈ℜ

k
RTP 1}|{

uS

tr)}(. Given an instance of KNAPSACK

problem, each u is mapped to a sensor such that its cost and value are given by and U∈)()(usuw =

∑
∈

=

Ua
v

v()}∈u a
uurTSP

)(
)(|{ , and the sensor cost bound is specified as Q B= and the detection probability as

∑
∈

=

Ua
avk

KA
)(

s
Vu
∑
∈

(

. Given a solution to the KNAPSACK problem, a solution to the PROBABILISTIC-

DEPLOYMENT problem exists by just placing the sensors corresponding to the members of V on non-

overlapping grid points. On the other hand, given a solution to the sensor deployment problem, a solution to the

KNAPSACK problem can be obtained by choosing the items corresponding to the deployed sensors. The first

condition ensures that , and the second condition ensures that: Bu ≤)

3.1.2 Minimum Coverage

In the MINIMUM-COVERAGE paradigm, the objective is to completely cover some set T of targets by a

minimum size of set of sensors in a surveillance region . Its corresponding decision problem is defined as S R

7

Hand book on Sensor Networks, July 2004 (In Press).

follows: Given some set T of targets in a surveillance region , determine whether some set of sensors can

completely cover all the targets. It is shown that even the restricted version of MINIMUM-COVERAGE

problem remains NP-complete. The proof directly follows [17].

R S

−

In the restricted version of the MINIMUM-COVERAGE problem, a finite surveillance region is divided

into a number of uniform contiguous square cells of unit size. Any target is only located at a corner of one cell.

The detection area of a sensor is a disc of some size centering at the sensor’s location. In other words, each

sensor has isotropic detection capability. The sensor’s location can be anywhere within the surveillance region.

R

It is straightforward that the MINIMUM-COVERAGE problem belongs to NP because a successful

deployment scheme can be always used as a certificate in an instance of the problem. The verifying algorithm

simply checks if every target is located within some sensor’s detection area, and the number of deployed sensors

does not exceed the size of the given sensor set. Obviously, this verification process can be done in polynomial

time. The MINIMUM-COVERAGE can be shown to be NP-complete by finding a polynomial-time reduction

algorithm from 3-SAT to MINIMUM-COVERAGE, i.e. COVERAGEOPTIMALSAT P −≤3 . The proof

details will not be given here.

3.2 Optimal Sensor Deployment Using Genetic Algorithm

The NP-completeness of the PROBABILISTIC-DEPLOYMENT problem rules out any polynomial-time

solution unless P=NP. A sub-optimal solution is presented in [18] based on a two-dimensional genetic

algorithm, which starts with a set of initial solutions and applies genetic operators to produce better solutions

using random optimization techniques until a satisfactory solution is obtained. The PROBABILISTIC-

DEPLOYMENT problem is adapted to a solution based on genetic algorithm by reducing to a simple version

where the surveillance region is restricted to a two-dimensional grid space. The method can be easily extended

and applied to a three-dimensional case.

A two-dimensional surveillance region is divided into a number of uniform contiguous rectangular cells with

identical dimensions. Each cell of R is labeled by a pair of indices (, and C denotes the corresponding

rectangular cell. This planar surveillance region R is monitored by a set of sensors placed in it to detect a target

T if located somewhere in the region. A sensor is specified by its local detection probability of detecting a target

at a point within its detection region. Normally detection is more likely as a target approaches the sensor. The

cumulative detection probability of a sensor for a region is computed by integrating its local detection

probability for detecting a target as the target gets close to the sensor, passes near the sensor, and then leaves it

behind. Given the detection probability density function for a sensor of type , its detection

), ji),(ji

kS)(xp
kS k

8

Hand book on Sensor Networks, July 2004 (In Press).

probability in a cell is defined by . To better

approximate the sensor detection performance, a Gaussian function is used to formulate the measure of the

continuous cumulative detection probability, which is defined by:

)},(|{ jiCTSP k ∈),(jiC ∫
∈

=∈
),(

)()},(|{
jiCx

Sk dxxpjiCTSP
k

],0[
kSd∈τ| SAT ∈{P

}|,, ,τατ
kk SSk AT ∈

kSd kS

},...,2,1, qε),(ji

), ji ,(i

0)(=

), ji

εw

R))(

ℜ }R∈

∑∑
−

=

−

=

∗∈ℜ
1

0

1

0
)},(|{

m

i

n

j
PjiCTP

)/(1)} nmj ∗=

∑∑
−

=

−

=

∈ℜ=
1

0

1

0
,(|{

m

i

n

j
iCTP

),(jiC

Q≤ℜ)(

,},,
2

2

2
,

kS

kkSk eS = ∗
−

ατ α
τ

τ

where, {SP is a measure of integrated detection probability at the distance of τ to the

target from the sensor location,
kSα is a coefficient parameter that determines the sensor detection quality.

Distance τ is within the range between 0 and the maximum detection distance of sensor .

A sensor deployment is a function from the cells of R to {ℜ such that ℜ is the type of sensor

deployed in cell (; and ε=)jℜ indicates no sensor is deployed in cell (, i.e. the deployment cost in

that particular cell . The expense of a sensor deployment ℜ is the sum of cost of all the sensors

deployed in region , which is defined by: ∑
∈

ℜ=ℜ
RjiC

iw
),(

(() j,Cost .

The detection probability of deployment , given by |{ TP ℜ , is the probability that a target T located

somewhere in region R will be detected by at least one deployed sensor, which is evaluated by calculating the

sum of all the local detection probabilities in the surveillance region as follows:

. According to the assumption that the location of the target has a

uniform distribution in the surveillance region, the probability of target T appearing in cell is given by:

. By plugging the occurrence probability of target T in a cell into the detection

probability expression, the objective function for the genetic algorithm is obtained as:

 with a constraint of investment limit Cost

∈=∈ℜ)},({}|{ jiCTRTP

,({ iCTP ∈

∗∈ℜ)/()}}|{ nmjRTP .

Genetic algorithm is a computational model that simulates the process of natural selection and adaptation in

biologic evolution. It has found many applications in various areas solving the combinatorial and non-linear

optimization problems with complicated constraints or non-differentiable objective functions. The computation

of genetic algorithm is an iterative process towards achieving the global optimality. On each iteration, candidate

solutions are retained and ranked according to their qualities, which are indicated by their fitness values

calculated based on the objective function. Any unqualified solutions are screened out of the population. Genetic

operators such as crossover, mutation, translocation, inversion, addition and deletion are then performed on

9

Hand book on Sensor Networks, July 2004 (In Press).

those qualified solutions to produce a new generation of candidate solutions. The above process is carried out

repeatedly until a certain convergence condition is satisfied, for example, the preset maximum generation

number is reached, or the variation of fitness values between two adjacent generations is smaller than a given

threshold value.

In the above sensor deployment problem for a surveillance region, a candidate solution can be represented by

a two-dimensional matrix of sensor ID’s. Hence, a two-dimensional numeric encoding scheme is adopted to

make up the chromosomes instead of using the conventional linear sequence. Each element in the matrix

corresponds to a cell within a surveillance region. As mentioned above, an empty value ε in the matrix

indicates that no sensor is deployed in its corresponding cell, which must be covered by the sensors deployed in

its neighborhood area.

A detailed description of the genetic algorithm implementation including fitness function construction,

genetic operator design and candidate solution selection can be found in [18], where the simulation results of

different surveillance region sizes up to 1000 by 1000 grid points with various sensor types are also presented.

Due to the difficulty of quantitatively evaluating the genetic algorithm, the performance of the solution based on

genetic algorithm is compared with that of the uniform placement in terms of deployment expense and average

detection probability.

4. Routing Paradigms for Distributed Sensor Networks

Since the network is a critical part of a DSN, the various parts of the underlying network must be carefully

designed. Various transport aspects of DSNs can be handled by suitably deployed network daemons [19]. In this

section we will discuss various routing aspects of DSNs.

4.1 Mobile Agent Routing Using Genetic Algorithm

A MADSN with a simple network configuration is shown in Fig. 1 just for illustrative purposes. This sensor

network contains one processing element, labeled as , and N=10 leaf sensor nodes, labeled as ,

one of which is inactive or sleep state. The physical distances of wireless links are represented by

.

0S NiSi ,...,2,1, =

NjNijid ji ,..,1,0,,...,1,0,,, ==≠

10

Hand book on Sensor Networks, July 2004 (In Press).

9S

2S

7S

1S

10S

8S

4S

6S

5S

iS

iS

Processing Element

3S
Active sensor

Inactive sensor

Wireless link

2,1d 1,0d

7,2d

5,7d
4,5d

10,4d

0,10d

0S

Fig. 1 An illustration of MADSN with simple configuration

The processing element dispatches a mobile agent that visits a subset of sensors within the cluster to fuse

data collected in the coverage area. Generally speaking, the more sensors are visited, the higher detection

accuracy will be achieved using any reasonable data fusion algorithm [15]. However, visiting more sensors

often incurs more communication and computing cost. The routing objective is to find a path for a mobile agent

that satisfies the desired detection accuracy while minimizing the energy consumption and path loss. An

approximate solution based on a genetic algorithm proposed in [6] is briefly described below.

To facilitate the optimization process using genetic algorithm, an objective function of path P that considers

the tradeoff between energy consumption EC(P), path loss PL(P), and detected signal energy SE(P) is defined

as:

+=

)(
1

)(
1)()(

PPLPEC
PSEPO

gPOPf +=)()(

⋅
=g

(
,0

δ

. The detailed derivation of formulas for calculating each component in

O(P) is presented in [6]. Through the punishment technique, the objective function is converted to a fitness

function: , where g represents the punishment applied for overriding the detection accuracy

constraint and is define by , where E is the desired detection accuracy or

signal energy level and

<−
≥

EPSEEEPSE
EPSE

)(/))(
)(

δ is a properly selected penalty coefficient.

A two-level encoding scheme adapts the generic string-based genetic algorithm to the mobile agent routing

problem in MADSN. The first level is a numerical encoding of the sensor (ID) label sequence L in the order of

sensor nodes being visited by mobile agent. For the MADSN shown in Fig. 1, the sensor label sequence L has

the following contents:

 0 1 2 3 7 5 6 8 4 10 9

11

Hand book on Sensor Networks, July 2004 (In Press).

The first element is always set to be ‘0’ since a mobile agent starts from the PE . The mobile agent returns

to from the last visited sensor node, which is not necessarily the last element of the label sequence if there

are inactive sensor nodes in the network. This sequence consists of a complete set of sensor labels because it

participates in the production of a new generation of solutions through the genetic operations. The new

generation is required to inherit as much information as possible from the old one. For example shown in Fig. 1,

although node 3, 6, 8, and 9 are not visited in the given solution, they or some of them may likely make up a

segment of a better solution in the new generation than the current one.

0S

0S

The second level is a binary encoding of the visit status sequence V in the same visiting order. For the

MADSN illustrated in Fig. 1, the visit status sequence V contains the following binary codes:

1 1 1 0 1 1 0 0 1 1 0

where ‘1’ indicates ‘visited’ and ‘0’ indicates ‘unvisited’. The first bit corresponds to the PE and is always set to

be ‘1’ because the PE is the starting point of the route. If a sensor is inactive, its corresponding bit remains ‘0’

until it is reactivated and visited.

A candidate path P for mobile agent can be generated by masking the first level of numerical sensor label

sequence L with the second level of binary visit status sequence V. In the above example, the path P is obtained

as follows:

0 1 2 7 5 4 10 9 8 6 3

These two levels of sequences are arranged in the same visiting order for the purpose of convenient

manipulations of visited/unvisited and active/inactive statuses in the implementation of genetic algorithm

Some common genetic operators such as crossover, mutation, inversion, translocation as well as a

proportional selection procedure are applied to these two levels of sequences simultaneously to create new

solutions. These operators are modified from those used in the conventional genetic algorithm solution to

Traveling Salesman Problem in order to suit the current context of two-level string encoding. Their

implementation details can be found in [6].

The search results computed by genetic algorithm are compared with those computed by other two greedy

heuristics, local closest first and global closest first, in order to demonstrate the effectiveness of the solution

based on genetic algorithm. A series of sensor networks with random distribution patterns and node sizes

ranging from 200 to 1600 are created for test. An appropriate desired level of the detected signal energy for each

network as well as the number of potential targets is manually selected. The sensors are randomly deployed and

12

Hand book on Sensor Networks, July 2004 (In Press).

the targets are arbitrarily placed in the region. The comparisons of routing performance between GA, LCF and

GCF are illustrated in Fig. 2, Fig. 3, Fig. 4, and Fig. 5. Note that the quantities of path losses and energy

consumptions are “normalized” into reasonable ranges before they are plotted, and the objective value only

serves as an indicator of the path quality according to the defined objective function, which does not bear a

regular unit.

0
200
400
600
800

1000
1200
1400
1600

0 200 400 600 800 1000 1200 1400 1600 1800

Node Size
(a)

N
um

be
r o

f H
op

s

GA
LCF
GCF

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800

Node Size
(b)

P
at

h
Lo

ss
 (X

10
00

)
GA
LCF
GCF

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000 1200 1400 1600 1800

Node Size
(c)

E
ne

rg
y

C
on

su
m

pt
io

n

GA
LCF
GCF

0

1

2

3

4

5

0 200 400 600 800 1000 1200 1400 1600 1800

Node Size
(d)

O
bj

ec
tiv

e
V

al
ue

GA
LCF
GCF

Fig. 2 Performance comparison: (a) Node sizes vs. hop numbers; (b) Node sizes vs. path losses; (c) Node sizes
vs. energy consumptions; (d) Node sizes vs. objective values

It has been observed from Fig. 2 that in most cases GA is able to find a satisfying path with smaller number

of hops, lower energy consumptions, and less path losses than LCF and GCF algorithms. The observations

justify that GA has a superior overall performance over two other heuristics in terms of the defined objective

function. More discussions on the algorithm comparisons such as computing complexity, real-time constraint,

and selection of starting point are provided in [6].

4.2 Connectivity-Through-Time for Mobile Wireless Networks

The wireless connection is usually the only feasible means of communication between sensors in DSN

deployed in unstructured and harsh environments. Due to the lack of network infrastructures, wireless networks

are always configured to operate in ad hoc mode. In some application scenarios such as a team of robots

exploring potentially radioactive areas, the moving nodes carrying sensors need to effectively communicate with

other nodes in the network to coordinate their activities as well as to timely combine the gathered information.

13

Hand book on Sensor Networks, July 2004 (In Press).

However, the networking needs for this class of applications are quite specific and are not adequately addressed

by the existing wireless ad hoc networking technologies.

Wireless networks have very different operational characteristics from wired networks. Firstly, the packet

losses in wireless networks are mostly due to physical link failures instead of network congestion. Secondly, the

signal attenuation often causes the link to break down when environmental interferences increase or a node

moves out of the maximum radio distance. Therefore, the network connectivity through wireless radio in ad hoc

mobile networks can be highly dynamic, intermittent, and unpredictable. The data streams based on TCP may

not meet the challenges imposed by these wireless operational characteristics because TCP is an end-to-end

transport protocol that does not provide capabilities specifically accounting for connectivity constraints in

wireless environments. In general, TCP needs routing support from the underlying routers and requires a

continuous byte-stream connection between source and destination during the entire period of transmission.

Rao etc. presents a concept of Connectivity-Through-Time (CTT) and design a CTT protocol that utilizes

node movements to enhance data transmission in ad hoc mobile networks [20]. A typical CTT example is

illustrated in Fig. 3, where data is successfully delivered from a source node to a destination node v even

though they are never directly or indirectly connected to each other. The two-directional arrow represents a

direct wireless link between two nodes located within the maximum wireless radio range.

1v 3

v2

v1

v3

t1

v2

v1

v3

t2

v2

v1

v3

t3
Fig. 3 Illustration of CTT concept: data is delivered through intermediate node movements

The data delivery process is described as follows. At time , the source node checks its neighbor list and

notices that the destination node is unreachable at the moment. Node can either wait until node come

into its radio coverage area or broadcast the data to whoever are reachable, i.e. node in this case. Suppose

node broadcasts the data as well as its destination information to node v , which afterwards carries the data

and moves towards node . At time t , node v goes out of the radio ranges of both node v and node so

that all three nodes are isolated. Eventually, node enters the radio area covered by node at time . Once

this new link is detected, node checks for the destination availability for all temporary data stored in its

1t 1v

3v

2v

1v

2

3v

3t

2v

1v

3v 2 2 1

3v

3v

2v

14

Hand book on Sensor Networks, July 2004 (In Press).

buffer. Since now node v is reachable, node retrieves the data from its data repository and transmits it to

the destination node .

3 2v

3v

Com
rou
ta

The CTT protocol is implemented based on User Datagram Protocol (UDP), which provides a

connectionless data transmission service. The framework of CTT function modules is illustrated in Fig. 4.

IAmHere
broadcast

thread

IAmHere
receive

server thread

Datagram
receive

server thread

Datagram
send thread

File table plot
thread

File table
(Input &
output
queue)

pute
ting
ble

Connectivity Computation Module Transport Control Module

Build
neighbor list

Fig. 4 Framework of CTT function modules

The connectivity computation module provides two main functions: connectivity detection and routing table

construction. Each node actively broadcasts a special datagram named “IAmHere” attached with its current

neighbor list to the network at a certain time interval. The receipt of such a datagram indicates that there exists a

wireless connection between the datagram sender and receiver. Based on the list of neighbor nodes, each node is

able to construct a complete adjacency matrix of the network and compute a routing table that provides path

information to the transport control module. Any changes affecting the network connectivity, for example, a link

breaks down or comes back up, will be detected and reflected in the neighbor list so that the routing table can

always be kept uptodate.

The transport control module consists of two main function components: datagram receiving/sending and

file table maintenance. The datagram receiving unit receives UDP datagrams either from the adjacent nodes or

local host. If the arrived message is interpreted as a “SEND” command issued by the local host, the designated

data source will be read directly from local storage devices, packed in fixed-size chunks, attached with a user-

defined header of destination information, and then put in the file table. Any incoming datagrams neither

originated from nor destined to the local host are simply placed in the datagram table of a corresponding file

buffer. The file table is maintained so that each datagram is dynamically assigned a priority level as per the CTT

15

Hand book on Sensor Networks, July 2004 (In Press).

protocol based on its waiting time and the current network connection status. The datagram sending unit

repeatedly scans the whole file list on a sequential basis and sends datagrams with higher priority levels. Any

incoming data that is destined to the local host is either forwarded to the corresponding application or saved to a

local storage device, while passing-by datagrams are loaded into the outgoing queue for forwarding or

broadcasting.

The control flow chart of the CTT protocol is illustrated in Fig. 5. A datagram is set either one of the five

modes according to the current network condition and its own status: READY, STANDBY, CTT, SENT, and

ARRIVED. The policy of transition between these five modes is briefly described as follows.

Host Process Other CTT daemons

Compute route

Is route found?

STANDBY

READY

Is current node
destination?

FULLDATAGRAM or
PARTIALDATAGRAM

Has file all
arrived?

Receive datagram

FILESAVED

ARRIVED

Broadcast & recompute
route

Load & send datagram to next hop

SENT

SENDCOMMAND

Broadcast
DGARRIVEDACK

Broadcast
FILESAVEDACK

Broadcast
DGPASSBYACK

Is it a duplicate
datagram?

Is current node
on path?

Is next hop
reachable?

CTT

Is old one
"READY" or
"ARRIVED"?

Is current node on
path of new one?

Discard
new

datagram

Save file to
harddisk

Put
incoming
datagram
in queue

Read
datagrams

from
harddisk

Yes

Yes

No

Yes

No

Yes

No

No

Yes

No

Yes

No

Is new route
found?

No

SENT timeout

Yes

STANDBY
timeout

CTT
timeout

No

Yes

Fig. 5 Control flow chart of CTT protocol

16

Hand book on Sensor Networks, July 2004 (In Press).

A newly created datagram is set as READY mode if a direct or indirect path is found between its source and

destination; otherwise it goes to STANDBY mode. A passing-by datagram remains in READY mode if the local

host is on the path and the next hop is reachable, but switches to CTT mode if the next hop is unreachable due to

dynamic changes of network connectivity. A datagram received by a node that is not expecting it also enters

STANDBY mode. Datagrams in READY mode or CTT mode when the next hop becomes reachable have the

highest priority to be selected and put in the outgoing queue, and they change to SENT mode right after they are

successfully dispatched. A broadcast as well as a path recalculation is enforced if a certain timeout expires for a

datagram in CTT, STANDY, or SENT mode.

The CTT protocol uses three different types of acknowledgements: DGARRIVEDACK, FILESAVEDACK,

and DGPASSBYACK. When a datagram arrives at its destination, it is set as ARRIVED mode and a special

acknowledgment DGARRIVEDACK is broadcasted backwards. Upon the receipt of DGARRIVEDACK, a

node removes the corresponding datagram out of its datagram table to release the allocated memory space and

marks a special label indicating that this datagram has been received by the destination. When the last datagram

(not necessarily the one with the last sequence number) arrives at the destination, another type of

acknowledgment FILESAVEDACK is broadcasted over the network. The whole datagram table is cleaned up

immediately when such an acknowledgment is received no matter the table is complete or incomplete. An

acknowledgment DGPASSBYACK is broadcasted when a datagram reaches a node to which the datagram is

not destined. The DGPASSBYACK carries the list of nodes that have received this datagram, which can be used

to effectively reduce unnecessary flooding traffic.

The CTT protocol has been implemented and tested in various application scenarios using a small team of

Mini ATRV mobile robots equipped with 802.11 wireless cards. The implementation details and simulation

results can be found in [20].

4.3 Adaptive Routing Using Emergent Protocols

In recent years, there is an increasing interest in applying classical theories in fields such as physics,

chemistry, and biology to design new routing algorithms for DSN. The motivation behind these approaches is

based on such a fact that from a microscopic perspective, the interactions between particles in a substance

exhibit similarity to those between sensor nodes in a DSN to some degree. It has been long observed that a large

number of identical infinitesimal individuals interacting with each other by following simple rules are able to

manifest a high-order and macro-scale phenomenon, which can not be demonstrated by individuals. Such peer-

to-peer interaction examples include gas molecules, fluid dynamics, sound waves, biological evolution,

17

Hand book on Sensor Networks, July 2004 (In Press).

economics, magnetization, etc. The positive feedback in the system helps to reinforce success while the negative

feedback helps to stabilize the system. There are strong chaotic components that behave randomly in system

adaptation. Routing paradigms based on the concept of such emergent behaviors may ideally serve the routing

purpose in DSN.

The routing objective in DSN is to find dynamic routes from sensor nodes to a data sink. The difficulty of

the routing problem arises from many different factors such as the chaotic behavior of DSN, limited

communication resources, irreplaceable power supplies, and low computation capacity. In many application

scenarios, a large number of mobile sensor nodes are deployed in surveillance regions that are subject to

unpredictable environmental disturbances. The enormous size of the network and hazardous nature of the

environment always makes human management infeasible. Thus, self-configuring surveillance networks that

can adapt to chaotic environments are highly desired.

The following subsection briefly introduces three most typical applications in this direction, Spin Glass,

Multi-fractal and Ant Pheromone models proposed by Brooks et al. More technical details can be found in [21].

4.3.1 Spin Glass Model

Spin Glass is a variation of the Ising model in Physics, which is one of the most important models in

statistical physics. The Ising model consists of atomic magnets that can be viewed as little magnetic vectors

(spins). Consider N such little magnetic spins Nisi ...3,2,1, = on a two-dimensional lattice, each of which

interacts with its nearest neighbors. The orientation of each spin points either northwards)1(+=is or

southwards . Each of these spins interacts with its nearest neighbors and forms a magnetic field. For a

ferromagnetic bond, spins with parallel directions have lower energy, while for an anti-ferromagnetic bond,

spins with parallel directions have higher energy. Ising model is found to be in the class of NP-complete

problems.

)1(−=is

In a two-dimensional Spin Glass routing model, a sensor node corresponding to a spin points to one of the

eight neighboring directions. A potential field specifying the minimum energy cost to transmit data from sensor

nodes to the data sink is established through local interactions. One of the most significant developments in

physics in 19th century was the discovery of the appropriate probability function to characterize the relative

importance of the numerous microscopic configurations. The probabilities of taking each of the eight possible

directions for each node are defined by the Boltzmann probability distribution function. This probabilistic

orientation is implemented by comparing a computer generated random number with a probability value pre-

18

Hand book on Sensor Networks, July 2004 (In Press).

selected for each of the eight directions. Consequently, the spin direction with a higher probability is more likely

to be selected.

Let represent the energy value of node n, whose neighbor node s has the potential value denoted by

. The probability that node n points to neighbor node s is given as follows:

][nT

][sT][sP

KTAE
A

KTsE eesP /)(/)(/][−− ∑=

where represents the energy change when node n points to neighbor ()sE s , i.e. T - ; represents

the energy change when node n points to all neighbors;

][s][nT ()AE

K is a Boltzmann constant; T is the absolute

temperature.

A temperature variable is often used to tune the balance between energy minimization and entropy

maximization. Intuitively speaking, sensor nodes are more likely to point to neighbors with lower energy value

under low temperature. A low temperature may reduce oscillations and establish a routing mechanism with a

shorter hop distance. Particularly, a near freezing temperature can protect system by refraining erroneous action

when the system is subject to harsh conditions. However, a large temperature may alleviate power taxing on

some hot traffic points by detouring them. The temperature is sometimes specified on a per-region basis in order

to allow flexible control of the system.

4.3.2 Multi-fractal Model

This classic crystal-growing prototype for gas and fluid is referred to as Diffusion Limited Aggregation

(DLA), which is first introduced by Witten and Sander in the early 1980’s. Starting with some immobilized

foreign seeds, wandering gas or fluid particles may become solidified in a certain way upon contact with the

seeds under certain crystallization conditions. For the routing strategy in DSN context, a data sink is always set

to be a single seed, from which a routing tree is formed gradually. The sensor node has an attribute value, which

defines the possibility to join the routing tree only if the tree stretches out to its neighborhood.

However, if nodes were allowed to join the tree unequivocally, the tree structure would be out of control. In

a crystallization process, the inhibiting effect of crystallization is imposed by the crystallization site on the

nearby particles. This inhibition can be physically explained by interfacial surface tension and latent heat

diffusion effects. When a particle becomes crystallized, its released heat will inhibit the crystallization of nearby

particles. It is important to specify a set of appropriate probabilities of joining the routing tree based on the

number of neighbors in the routing tree. In general, the more neighbors a node has in the routing tree, the less

likely the node will join the routing tree. Thus, a set of “stickiness” probabilities can be specified based on the

number of neighboring nodes on the routing tree. Ideally, a sparse space-filling routing tree covering most of the

19

Hand book on Sensor Networks, July 2004 (In Press).

surveillance region may be constructed after certain time steps. It is worth pointing out that DLA can be

considered as a self-repelling random walk, which can be modeled by Markov Chain.

4.3.3 Ant Pheromone Model

Based on Dorigo’s telecom routing work, the idea of ant-like mobile agents is utilized to tackle routing in

DSN. It has been observed that social ants coordinate with each other in accomplishing many tasks such as food

forage. Ants release search pheromone when they are looking for food and release return pheromone when they

are returning to the nest after finding food. There are two mechanisms for ant movement: one is that they follow

a random walk; the other is that they search for the opposite pheromone of the one they currently release. Ants

that are searching for food tend to follow the highest concentration of return pheromone. Ants that are on their

way back to the nest tend to follow the highest concentration of search pheromone. Pheromone evaporates at a

certain rate to accommodate topological disturbances. Such a food search behavior is very flexible because it is

capable of promptly responding to any internal perturbations and outside disturbances, and is also robust since

the function of the whole system is not likely to be destroyed by the failure of a single or a few ants.

The application such an intelligence of distributed nature to the routing problem in DSN results in an Ant

Pheromone Model that retains all characteristics of ant behaviors. It is straightforward to model a data source as

an ant nest and a data sink as a food location. Ants are dispatched from a data source at a certain rate in search

for a data sink. The pheromone gradient established by ants is used to guide the further movements of ants. The

Ant Pheromone Model is related to the packet-driven protocols in a sense that ants are viewed as packets

traversing from data sources to data sinks.

5. Conclusions and Future Work

A broad survey was conducted on various aspects of the design of distributed sensor networks. The issues of

and approaches to the problems of multi-sensor systems presented in this chapter demonstrate both the breadth

and depth of the present research efforts in this area. The successful design of multi-sensor systems requires

solutions to various problems relating to data integration method, sensor deployment scheme, network

architecture, real-time operating system, networking paradigm, information translation cost, fault tolerance, etc.

However, not much work has been done so far to effectively integrate these solutions to achieve a systematic

approach to the design of distributed sensor network systems.

Particularly, search for solutions to the fundamental mathematical problems in DSN is of great theoretical

interest and practical importance. Major issues include optimal distribution of sensors, tradeoff between

communication bandwidth and storage, maximization of system reliability and flexibility. Also, more attention

20

Hand book on Sensor Networks, July 2004 (In Press).

may be paid to some research directions that are currently not the mainstream areas [22]. For example, due to

the continuously increasing network size and complexity, it is very important to develop algorithms for sensor

operator decomposition, subspace decomposition, function space decomposition, and domain decomposition.

The techniques that transform numerical values (or measurements) to abstract estimates may improve the

overall application performance, and similarly the techniques that transform abstract estimates back to physical

values may also improve the performance. For visualization purposes, multiple source locations can be

displayed as an energy intensity map using distributed image reconstruction procedures. An efficient synthesis

of various methods requires the support of a distributed operating system kernel.

6. Acknowledgements

The work by Qishi Wu and Nageswara S.V. Rao is sponsored by Defense Advanced Research Projects Agency

under MIPR No. K153, National Science Foundation, and by Engineering Research Program and High-

Performance Networking Program of Office of Science, U. S. Department of Energy under Contract No. DE-

AC05-00OR22725 with UT-Battelle, LLC. The work by Richard R. Brooks, S. Sitharama Iyengar and Mengxia

Zhu was supported by the Defense Advanced Research Projects Agency (DARPA), and administered by the

Army Research Office under ESP MURI Award No. DAAD19-01-1-0504. Any opinions, findings, and

conclusions or recommendations expressed in this publication are those of the authors and do not necessarily

reflect the views of the Defense Advanced Research Projects Agency (DARPA), and Army Research Office.

7. References

[1] D.N. Jayasimha, S.S. Iyengar, and R.L. Kashyap, “Information Integration and Synchronization in

Distributed Sensor Networks”, Tech. Rpt. 8, Dept. of Computer & Information Science, The Ohio State

Univeristy, Feb. 1991. IEEE Transactions on SMC, Sept. 1991.

[2] L. Prasad, S.S. Iyengar, R.L. Kashyap, R.N. Madan, “Functional Characterization of Sensor Integration in

Distributed Sensor Networks”, TR-EE-91-23, Dept. of Electrical Engineering, Purdue Univ. 1991. IEEE

Transactions on SMC, Sept. 1991.

[3] R. Wesson, “Network structures for distributed situation assessment,” IEEE Transactions on Systems, Man

and Cybernetics, Jan. 1981, pp. 5-23.

[4] S.S. Iyengar, D.N. Jayasimha, D. Nadig, and D.K. Pradhan, “A Versatile Architecture for the Distributed

Sensor Integration Problem,” IEEE Transactions on Computers, Vol. 43, No. 2, February 1994.

21

Hand book on Sensor Networks, July 2004 (In Press).

[5] H. Qi, S.S. Iyengar. K. Chakrabarty, “Multi-resolution data integration using mobile agents in distributed

sensor networks”, IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, vol.

31, no. 3, pp383-391, August, 2001.

[6] Q. Wu, S.S. Iyengar, N. S.V. Rao, J. Barhen, V.K. Vaishnavi, H. Qi, K. Chakrabarty. “On Computing the

Route of a Mobile Agent for Data Fusion in a Distributed Sensor Network”, submitted to IEEE Transactions on

Knowledge and Data Engineering, 2003.

[7] K. Marzullo., “Tolerating Failures of Continuous- Valued Sensors”, ACM Transactions on Computer

Systems, Vol. 4, no. 4, Nov. 1990, pp. 284-304.

[8] L. Lamport, “Synchronizing time servers”. Technical Report 18, Digital System Research Center, 1987.

[9] U. Schimd and K. Schossmaier, “How to Reconcile Fault-Tolerant Interval Intersection with the Lipschiz

Condition”, Technische Universitat Wien, Department of Automation, Vienna, September 6, 1999, submitted

for publication.

[10] B. Li, Y. Zhu, X. Li, “Fault-Tolerant Interval Estimation Fusion by Dempster-Shafer Theory”, Proceedings

of the 5th International Conference on Information Fusion, Annapolis, MD, USA, July 2002, pp. 1605-1613.

[11] R. Brooks and S.S. Iyengar, “Multi-sensor Fusion: Fundamental and Application Software”, Prentice Hall,

1998, Prentice Hall Incorporation, pp. 488.

[12] E.C. Cho, S.S. Iyengar, K. Chakrabarty, H. Qi, “A New Fault-tolerant Interval Integration Function

Satisfying Local Lipschitz Condition”, paper in preparation.

[13] P. K. Varshney, Distributed Detection, Springer-Verlag, 1996.

[14] A.K. Hyder, E. Shahbazian, E. Waltz (editors), Multisensor Fusion, 2002.

[15] N. S. V. Rao, “Multisensor fusion under unknown distributions: Finite sample performance guarantees”, in

Multisensor Fusion, A.K. Hyder, E. Shahbazian, E. Waltz (editors), 2002.

[16] Q. Wu, N.S. Rao, S.S. Iyengar, “Computational Complexities of Sensor Deployment Problems”, paper in

preparation.

[17] Robert J. Fowler, Michael S. Paterson, Steven L. Tanimoto, “Optimal Packing and Covering in the Plane

are NP-complete”, Information Processing Letters, Vol. 12, number 3, 1981.

[18] Q. Wu, S.S. Iyengar, N. S.V. Rao, J. Barhen, V.K. Vaishnavi, H. Qi, K. Chakrabarty, “On Efficient

Deployment of Sensors on Planar Grid”, submitted to ACM Transactions on Embedded Computing Systems,

2003.

[19] N.S.V. Rao, Q. Wu, S.S. Iyengar, “Network Demons for Distributed Sensor Networks”, in Frontiers in

22

Hand book on Sensor Networks, July 2004 (In Press).

23

Distributed Sensor Networks, S.S. Iyengar , R. B. Brooks (editors), 2003.

[20] N.S.V. Rao, Q. Wu, S.S. Iyengar, A. Manickam, “Connectivity-Through-Time Protocols for Dynamic

Wireless Networks to Support Mobile Robot Teams”, 2003 IEEE International Conference on Robotics and

Automation, Taiwan, 2003.

[21] R. Brooks, M. Pirretti, M. Zhu, S.S. Iyengar, "Adaptive Routing using Emergent Protocols in Wireless Ad

Hoc Sensor Networks", Proceeding of SPIE Conference, 6-8 August, Vol. 5205.

[22] S.S. Iyengar, Q. Wu, “Computational Aspects of Distributed Sensor Networks”, Proceedings of

International Symposium on Parallel Architectures, Algorithms and Networks, May 22-24, 2002,

Manila/Makati, Philippines, IEEE Computer Society Press (I-SPAN 2002).

