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1. Introduction 

Multi-sensor systems have permeated into many aspects of our life in various applications over the past 

decade. The wide variety of applications of sensor networks spans civilian services such as environment 

surveillance and disaster relief, industrial processes such as instrument controls and machine monitoring, and 

military operations such as target detection, classification, and tracking on the battlefields. The ever increasing 

levels of sophistication of sensor network systems continue to generate a great deal of interest in the 

development of new computational strategies and networking paradigms. 

A distributed sensor network (DSN) is a set of geographically scattered sensors designed to collect 

information about the environment in which they are deployed. The physical measurements (of different types, 

such as acoustic, seismic, or infrared) from the terminal sensor nodes are preprocessed locally into abstract 

and/or numerical estimates and are then transmitted through an interconnection communication network to a 

processing element, where they are integrated with the information gathered from other parts of the network 

according to some data fusion strategy. The integrated information is then used to derive appropriate inferences 

about the environment for the application. A group of neighboring sensors that are commanded by the same 

processing element forms a cluster. In tracking applications, each processing element in DSN performs tracking 

function using the data from its governing cluster and possibly communicates with other processing elements in 

the same network to arrive at a better estimate. 

The development and implementation of such spatially distributed systems involves solving a combination of 

many different problems in sensor deployment, network communication, data association and fusion, hypothesis 

testing, and other areas. In particular, the design and analysis of information integration algorithms has been the 

focus of research since the early stages of DSN development [1, 2]. The recent advances in sensor technologies 
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make it possible to deploy a large number of inexpensive sensors in order to “achieve quality through quantity”. 

Exploiting useful information from an enormous amount of data collected from spatially distributed sensors in 

the most effective way has brought new challenges to all the aspects of DSN such as network architecture 

design, data fusion methods, sensor deployment schemes, and data routing techniques. 

In this chapter we conduct a broad survey of the recent research efforts in the computational aspects and 

networking paradigms of distributed sensor networks. The rest of this chapter is organized as follows. Section 2 

provides a general description of the fundamental aspects of DSNs such as network architectures and multi-

sensor data fusion methods. Two specific computational topics are covered in the following two sections. 

Section 3 discusses the computational complexities of sensor deployment problems and presents an approximate 

solution based on a genetic algorithm. Section 4 is devoted to the networking paradigms for DSN with a focus 

on data routing techniques. Section 5 draws conclusions for all the work presented and discusses some future 

research directions. 

2. Foundational Aspects of Distributed Sensor Networks 

Efficient and fault-tolerant network architectures play a very important role in the successful 

implementations of distributed sensor networks. Apart from the timeliness and complexity of information 

transmission, the interconnection topology has a significant impact on the computational aspects of data routing 

and sensor deployment schemes that are discussed in later sections. Therefore, the overall performance of a 

DSN is critically dependent on its network architecture. 

Design of algorithm for data integration is one of the core tasks in the development of DSN and has attracted 

a great deal of research attention during the past decades. Recent advances in sensor technology have led to 

better, cheaper and smaller sensors. These advances beget a more complex tactical deployment of sensors that 

requires efficient and sophisticated techniques for fault-tolerant integration of sensor information. 

This section provides a general description of these two fundamental aspects of distributed sensor networks. 

2.1 Traditional Network Architectures 

Committees and hierarchical organizations are two basic types of network architectures [3]. In the network of 

a committee organization, each node is autonomous and connected to some or all of the other nodes so that the 

local information can be broadcasted between any two connected nodes. The information collected by individual 

nodes in this organization is shared among the network to the fullest extent. The completely connected network 

is one special case of the committee organization, which has been extensively used in many practical 

applications. However, since there are  connections required in such a network with  nodes, the )( 2NO N
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network size imposes a high demand on the communication resources. Moreover, the final estimate obtained in 

a committee organization tends to be biased because the data is shared by all participating nodes during 

integration process. 

A hierarchical organization arranges the nodes in multiple levels, each of which can only communicate with 

its immediate subordinate and superior nodes. At each level, individual nodes receive information from the 

nodes at the lower level, integrate the information according to their position in the hierarchy, and report 

upwards the integrated and abstracted versions of their results. The commander node at the highest level makes 

the appropriate decisions based on received information and may direct its subordinates to adjust some previous 

data based on the final result that it generates. In contrast to a committee organization, a hierarchical 

organization with  nodes only needs to create  links but consequently requires more complex 

communication schemes and incurs longer communication delays. An unbiased result may be obtained because 

the nodes are not connected to any other nodes at the same level, but the integration errors may accumulate as 

the estimate moves up the hierarchy. 

N )(NO

Due to the disadvantages in both committee and hierarchical organization, it is not appropriate to design the 

network architecture for DSN as one of them alone. In practice, a mixed structure combining these two basic 

types of architectures is preferable. For example, the JIK (Jayasimha, Iyengar, Kashyap) network has such a 

structure where the nodes are organized as many complete binary trees whose roots are completely connected 

[1, 2]. However, the JIK network still has the disadvantage of accumulated integration error as in a hierarchical 

organization, which makes it difficult to identify the faulty component of the network. An improvement is made 

in [4] by interconnecting the nodes at every level of the JIK network as a de Bruijn network, which results in a 

new versatile architecture referred to as the Binary Multi-level de Bruijn network (BMD). The BMD structure is 

often used as a basis for network architecture design in DSN implementation due to several promising fault-

tolerant properties that make the resultant network tolerant to node or link failures. Since nodes at every level 

are interconnected, the BMD network is capable of eliminating estimate errors and identifying the faulty 

component during the process of sensor integration by comparing the abstract estimates at the same level. 

2.2 Mobile Agent-Based Distributed Sensor Networks 

A novel architecture using mobile agents is proposed in [5] to meet the new challenges of the current DSNs, 

such as large data volume, low communication bandwidth, and unreliable environment. Instead of sending all 

the measurements collected by leaf nodes to the upper-level processing element (that performs a one-time data 

fusion) as in a traditional hierarchical network with the server-client structure, the mobile agent-based 
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distributed sensor network (MADSN) distributes the computation into the participating leaf nodes. And this 

approach hence makes it possible to significantly reduce the consumption of communication power and 

bandwidth, while lowering the risk of being spied with hostile intent. A MADSN is usually divided into an 

appropriate number of subtasks, each carried out by a mobile agent carrying the executable instructions for data 

integration dispatched by the processing element. The agents selectively visit the leaf sensors along a certain 

path to fuse the data incrementally on a sequential basis. A final data fusion is performed when all mobile agents 

return to the processing element. Three technical issues associated with MADSN are addressed in [5]: mobile 

agent routing, data integration, and optimum performance. 

The objective of mobile agent routing is to find an optimal path for a mobile agent to visit the sensor nodes. 

The path quality has a significant impact on the overall performance of MADSN implementation because the 

communication cost and the detection accuracy depend on the order and the number of nodes to be visited. The 

NP-completeness of this problem (detailed proof see [6]) rules out any polynomial-time solutions (unless 

P=NP). A formal description as well as an appropriate objective function of the mobile agent routing problem 

with certain constraints is provided in Section 4, where an approximate solution based on a two-level genetic 

algorithm (GA) proposed in [6] is also discussed and the simulation results of the GA solution are compared 

with those computed by two other heuristics, namely Local Closest First (LCF) and Global Closest First (GCF). 

Data integration takes into consideration the problems such as the type of data processing to be conducted at 

the nodes and the integration results to be carried with the mobile agent. An overlap function is particularly 

designed to integrate the abstract estimate intervals collected from all participating nodes. In a regular DSN, the 

overlap function at the finest resolution is first generated at processing elements based on all readouts from the 

leaf sensor nodes and the multi-resolution analysis procedure are then applied to find the crest at the desired 

resolution. In a MADSN, mobile agents migrate among sensor nodes to collect readouts and execute an overlap 

function of partial integration, whose results are accumulated into a final version upon the arrival of all mobile 

agents. The basic multi-resolution integration (MRI) algorithm is adapted to MADSN in [5] by applying MRI 

before accumulating the overlap function in order to avoid heavy data transmission. 

In addition to the routing scheme and integration function, the performance of MADSN depends on many 

other factors. Actually, MADSN does not always guarantee lower data transfer time because of the overheads of 

time for agent creation and dispatch, and the latency of data routing. The performance comparisons between 

DSN and MADSN are made in [5] in terms of various parameters such as the number of agents, agent and file 

access overhead ratio, network transfer rate, and the number of nodes. 
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2.3. Data Integration Methods 

In many military or civilian applications, sensors are typically deployed in hazardous or harsh environments, 

where the sensor operations and data communications are not as reliable as in regular computer networks 

installed in structured areas. Therefore, the fault-tolerance is an indispensable property of data integration 

algorithms. The measurements collected by sensors are usually processed into interval-valued estimates serving 

as the inputs of an overlap function, whose redundancy may be used to provide error tolerance. Marzullo’s 

method yields the sensor fusion interval which is the smallest interval guaranteed to contain the correct value 

[7]. The common sensor averaging technique by Marzullo’s method combines the intervals of sensors by 

computing local averages. This method, however, is not stable because it exhibits an irregular behavior in the 

sense that a slight difference in the input may produce a quite different output. This behavior results from the 

violation of Lipschitz condition with respect to a certain metric on intervals [8]. Improvements can be made by 

combining interval estimates of sensor outputs into a best intersection estimate of outputs. The Schimd- 

Schossmaier function proposed in [9] is a fault-tolerant interval intersection function with the same worst-case 

behavior as the Marzullo function but satisfying Lipschitz condition. However, this method sacrifices the 

integration accuracy because it produces sub-optimal output intervals in some cases. A new fault-tolerant 

interval integration function based on Dempster-Shafer theory of evidence is proposed in [10], which provides a 

smaller output interval than the one calculated by Marzullo function and also satisfies local Lipschitz condition. 

Brooks-Iyengar hybrid algorithm presented in [11] makes a weighted average of the mid-points of the 

regions found by the sensor fusion algorithm. The hybrid algorithm allows for increased precision, while not 

sacrificing the accuracy in the process. A distributed system using this algorithm is truly robust and converges 

towards an answer within a precisely defined accuracy bound. 

Most recently, Cho et al. [12] propose a new interval integration method that further narrows down the 

region containing the true value of the state measured by the sensors. This proposed function satisfies local 

Lipschitz condition, tolerates failures of interval-valued sensors up to a certain number and has better 

performance than existing fault-tolerant interval integration functions. The detailed analysis of how this function 

yields a narrow interval accurately estimating the true value is given in [12] as well as a comparison of this new 

function with the existing fault-tolerant interval integration functions. 

Another important formulation of the data fusion deals with combining information from multiple sensors to 

obtain results that are better than the best or best subset of sensors. Such problems are extensively studied in the 

target detection and tracking area [13]. While similar problems are studied for centuries (early work under the 
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title Condorcet Jury models in eighteenth century), the recent DSNs calls for a specific new formulation of data 

fusion problems [14]. By far a majority of these problems involve deriving a Bayesian fuser based on the joint 

distributions of the sensors. But, such approach is useful only when the joint sensor distributions are known as 

well as expressed in a computationally conducive form [13]. In view of the increasing sophistication of DSNs, it 

is particularly difficult to obtain such joint distributions; note that it is insufficient to know the individual sensor 

distributions since an optimal fuser must exploit the correlations between the sensors. On the other hand, it is 

relatively easy to collect measurements from the various sensors of a DSN by sensing known objects. Such 

measurements are shown to be sufficient to design the fusers that can be shown to be close to optimal with a 

high probability [15]. 

3. Deployment of Sensors 

This section discusses the computational complexities of various sensor deployment schemes and presents an 

approximate solution to one of them based on a genetic algorithm. 

3.1 Computational Complexities 

A general sensor deployment problem and several variations have been formulated, and their computational 

complexities are discussed by Wu et al. [16]. The sensor deployment problems can be categorized into different 

paradigms: (i) probabilistic deployment with investment limit, referred to as the PROBABILISTIC-

DEPLOYMENT, and (ii) minimum sensor set deployment for target coverage, referred to as the MINIMUM-

COVERAGE, and the deployment for integrity. Each of them has a specific application goal and certain 

constraint conditions. The NP-completeness proofs for the first two deployment paradigms are briefly described 

as follows. 

3.1.1 Probabilistic Deployment 

The deployment objective of the PROBABILISTIC-DEPLOYMENT paradigm is to place a set of sensors 

with probabilistic detection capability in a grid space such that the maximum detection probability is achieved 

under the constraint of an investment limit. Intuitively speaking, the whole surveillance region is to be covered 

as much as possible while the total deployment expense does not exceed a given investment budget, where the 

“deployment expenses” only use abstract values incurred in purchasing the available sensors. 

PROBABILISTIC-DEPLOYMENT problem can be shown to be NP-complete by reducing the KNAPSACK 

problem to a special case of this paradigm, wherein each sensor monitors a detection area with a specified 

probability without overlapping with any other sensors. The KNAPSACK problem is a well-known NP-

complete problem, which is stated below for the sake of completeness: 
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Given a set U  of  items such that for each un U∈ , we have size  and the value , does 

there exist a subset V  of exactly  items such that 

+∈ Zus )( +∈ Zuv )(

U∈ k Bus
Vu

≤∑
∈

)(  and K≥uv
Vu
∑
∈

)(  for given  and B K . 

Note that exactly  items are required in the above problem statement as opposed to unrestricted value in a 

traditional KNAPSACK problem. Both the problems are polynomially equivalent since  and the input for 

either problem instance has at least  items. In the same vein, the decision version of the PROBABILISTIC-

DEPLOYMENT problem asks for a deployment scheme consisting of exactly k  sensors to be deployed. 

k

nk ≤

n

The KNAPSACK problem is reduced to the PROBABILISTIC-DEPLOYMENT problem such that only one 

sensor of each type is given, i.e. 1...21 ==== nqqq , and each sensor  of type t monitors a small area 

(compared with the whole arbitrarily large surveillance region) of size  and when two sensors are located in 

the same site only one of them detects the target (i.e. suitable conditional probabilities are zero). For this special 

case, to maximize the detection probability, each deployment site is occupied by no more than one sensor. 

Furthermore, under the uniform prior distribution of target in surveillance region combined with the non-

overlapping sensor detection area, the probability of detection is simply the average of the detection 

probabilities of the deployed sensors. Therefore a sensor deployment scheme 

tS

)(tr

ℜ  with  deployed sensors has 

the detection probability calculated as 
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. Given a solution to the KNAPSACK problem, a solution to the PROBABILISTIC-

DEPLOYMENT problem exists by just placing the sensors corresponding to the members of V  on non-

overlapping grid points. On the other hand, given a solution to the sensor deployment problem, a solution to the 

KNAPSACK problem can be obtained by choosing the items corresponding to the deployed sensors. The first 

condition ensures that , and the second condition ensures that:  Bu ≤)

3.1.2 Minimum Coverage 

In the MINIMUM-COVERAGE paradigm, the objective is to completely cover some set T  of targets by a 

minimum size of set  of sensors in a surveillance region . Its corresponding decision problem is defined as S R
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follows: Given some set T  of targets in a surveillance region , determine whether some set  of sensors can 

completely cover all the targets. It is shown that even the restricted version of MINIMUM-COVERAGE 

problem remains NP-complete. The proof directly follows [17]. 

R S

−

In the restricted version of the MINIMUM-COVERAGE problem, a finite surveillance region  is divided 

into a number of uniform contiguous square cells of unit size. Any target is only located at a corner of one cell. 

The detection area of a sensor is a disc of some size centering at the sensor’s location. In other words, each 

sensor has isotropic detection capability. The sensor’s location can be anywhere within the surveillance region. 

R

It is straightforward that the MINIMUM-COVERAGE problem belongs to NP because a successful 

deployment scheme can be always used as a certificate in an instance of the problem. The verifying algorithm 

simply checks if every target is located within some sensor’s detection area, and the number of deployed sensors 

does not exceed the size of the given sensor set. Obviously, this verification process can be done in polynomial 

time. The MINIMUM-COVERAGE can be shown to be NP-complete by finding a polynomial-time reduction 

algorithm from 3-SAT to MINIMUM-COVERAGE, i.e. COVERAGEOPTIMALSAT P −≤3 . The proof 

details will not be given here. 

3.2 Optimal Sensor Deployment Using Genetic Algorithm 

The NP-completeness of the PROBABILISTIC-DEPLOYMENT problem rules out any polynomial-time 

solution unless P=NP. A sub-optimal solution is presented in [18] based on a two-dimensional genetic 

algorithm, which starts with a set of initial solutions and applies genetic operators to produce better solutions 

using random optimization techniques until a satisfactory solution is obtained. The PROBABILISTIC-

DEPLOYMENT problem is adapted to a solution based on genetic algorithm by reducing to a simple version 

where the surveillance region is restricted to a two-dimensional grid space. The method can be easily extended 

and applied to a three-dimensional case. 

A two-dimensional surveillance region is divided into a number of uniform contiguous rectangular cells with 

identical dimensions. Each cell of R is labeled by a pair of indices ( , and C  denotes the corresponding 

rectangular cell. This planar surveillance region R is monitored by a set of sensors placed in it to detect a target 

T if located somewhere in the region. A sensor is specified by its local detection probability of detecting a target 

at a point within its detection region. Normally detection is more likely as a target approaches the sensor. The 

cumulative detection probability of a sensor for a region is computed by integrating its local detection 

probability for detecting a target as the target gets close to the sensor, passes near the sensor, and then leaves it 

behind. Given the detection probability density function  for a sensor  of type , its detection 

), ji ),( ji
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kS k
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probability  in a cell  is defined by . To better 

approximate the sensor detection performance, a Gaussian function is used to formulate the measure of the 

continuous cumulative detection probability, which is defined by: 
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where, {SP  is a measure of integrated detection probability at the distance of τ  to the 

target from the sensor location, 
kSα  is a coefficient parameter that determines the sensor detection quality. 

Distance τ  is within the range between 0 and the maximum detection distance  of sensor . 

A sensor deployment is a function  from the cells of R to {ℜ  such that ℜ  is the type of sensor 

deployed in cell ( ; and ε=)jℜ  indicates no sensor is deployed in cell ( , i.e. the deployment cost in 

that particular cell . The expense of a sensor deployment ℜ  is the sum of cost of all the sensors 

deployed in region , which is defined by: ∑
∈

ℜ=ℜ
RjiC

iw
),(

(() j,Cost . 

The detection probability of deployment , given by |{ TP ℜ , is the probability that a target T located 

somewhere in region R will be detected by at least one deployed sensor, which is evaluated by calculating the 

sum of all the local detection probabilities in the surveillance region as follows: 

. According to the assumption that the location of the target has a 

uniform distribution in the surveillance region, the probability of target T appearing in cell  is given by: 

. By plugging the occurrence probability of target T in a cell into the detection 

probability expression, the objective function for the genetic algorithm is obtained as: 

 with a constraint of investment limit Cost

∈=∈ℜ )},({}|{ jiCTRTP

,({ iCTP ∈

∗∈ℜ )/()}}|{ nmjRTP . 

Genetic algorithm is a computational model that simulates the process of natural selection and adaptation in 

biologic evolution. It has found many applications in various areas solving the combinatorial and non-linear 

optimization problems with complicated constraints or non-differentiable objective functions. The computation 

of genetic algorithm is an iterative process towards achieving the global optimality. On each iteration, candidate 

solutions are retained and ranked according to their qualities, which are indicated by their fitness values 

calculated based on the objective function. Any unqualified solutions are screened out of the population. Genetic 

operators such as crossover, mutation, translocation, inversion, addition and deletion are then performed on 
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those qualified solutions to produce a new generation of candidate solutions. The above process is carried out 

repeatedly until a certain convergence condition is satisfied, for example, the preset maximum generation 

number is reached, or the variation of fitness values between two adjacent generations is smaller than a given 

threshold value. 

In the above sensor deployment problem for a surveillance region, a candidate solution can be represented by 

a two-dimensional matrix of sensor ID’s. Hence, a two-dimensional numeric encoding scheme is adopted to 

make up the chromosomes instead of using the conventional linear sequence. Each element in the matrix 

corresponds to a cell within a surveillance region. As mentioned above, an empty value ε  in the matrix 

indicates that no sensor is deployed in its corresponding cell, which must be covered by the sensors deployed in 

its neighborhood area. 

A detailed description of the genetic algorithm implementation including fitness function construction, 

genetic operator design and candidate solution selection can be found in [18], where the simulation results of 

different surveillance region sizes up to 1000 by 1000 grid points with various sensor types are also presented. 

Due to the difficulty of quantitatively evaluating the genetic algorithm, the performance of the solution based on 

genetic algorithm is compared with that of the uniform placement in terms of deployment expense and average 

detection probability. 

4. Routing Paradigms for Distributed Sensor Networks 

Since the network is a critical part of a DSN, the various parts of the underlying network must be carefully 

designed. Various transport aspects of DSNs can be handled by suitably deployed network daemons [19]. In this 

section we will discuss various routing aspects of DSNs. 

4.1 Mobile Agent Routing Using Genetic Algorithm 

A MADSN with a simple network configuration is shown in Fig. 1 just for illustrative purposes. This sensor 

network contains one processing element, labeled as , and N=10 leaf sensor nodes, labeled as , 

one of which is inactive or sleep state. The physical distances of wireless links are represented by 

. 

0S NiSi ,...,2,1, =

NjNijid ji ,..,1,0,,...,1,0,,, ==≠
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Fig. 1 An illustration of MADSN with simple configuration 

The processing element dispatches a mobile agent that visits a subset of sensors within the cluster to fuse 

data collected in the coverage area. Generally speaking, the more sensors are visited, the higher detection 

accuracy will be achieved using any reasonable data fusion algorithm [15]. However, visiting more sensors 

often incurs more communication and computing cost. The routing objective is to find a path for a mobile agent 

that satisfies the desired detection accuracy while minimizing the energy consumption and path loss. An 

approximate solution based on a genetic algorithm proposed in [6] is briefly described below. 

To facilitate the optimization process using genetic algorithm, an objective function of path P that considers 

the tradeoff between energy consumption EC(P), path loss PL(P), and detected signal energy SE(P) is defined 

as: 
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. The detailed derivation of formulas for calculating each component in 

O(P) is presented in [6]. Through the punishment technique, the objective function is converted to a fitness 

function: , where g represents the punishment applied for overriding the detection accuracy 

constraint and is define by , where E is the desired detection accuracy or 

signal energy level and 
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≥
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δ  is a properly selected penalty coefficient. 

A two-level encoding scheme adapts the generic string-based genetic algorithm to the mobile agent routing 

problem in MADSN. The first level is a numerical encoding of the sensor (ID) label sequence L in the order of 

sensor nodes being visited by mobile agent. For the MADSN shown in Fig. 1, the sensor label sequence L has 

the following contents: 

 0     1    2      3      7     5     6     8     4    10    9
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The first element is always set to be ‘0’ since a mobile agent starts from the PE . The mobile agent returns 

to  from the last visited sensor node, which is not necessarily the last element of the label sequence if there 

are inactive sensor nodes in the network. This sequence consists of a complete set of sensor labels because it 

participates in the production of a new generation of solutions through the genetic operations. The new 

generation is required to inherit as much information as possible from the old one. For example shown in Fig. 1, 

although node 3, 6, 8, and 9 are not visited in the given solution, they or some of them may likely make up a 

segment of a better solution in the new generation than the current one. 

0S

0S

The second level is a binary encoding of the visit status sequence V in the same visiting order. For the 

MADSN illustrated in Fig. 1, the visit status sequence V contains the following binary codes: 

 
1     1     1     0      1     1     0     0     1      1   0

 

where ‘1’ indicates ‘visited’ and ‘0’ indicates ‘unvisited’. The first bit corresponds to the PE and is always set to 

be ‘1’ because the PE is the starting point of the route. If a sensor is inactive, its corresponding bit remains ‘0’ 

until it is reactivated and visited. 

A candidate path P for mobile agent can be generated by masking the first level of numerical sensor label 

sequence L with the second level of binary visit status sequence V. In the above example, the path P is obtained 

as follows: 

 
0     1     2          7     5               4    10      9   8  6  3

 

These two levels of sequences are arranged in the same visiting order for the purpose of convenient 

manipulations of visited/unvisited and active/inactive statuses in the implementation of genetic algorithm 

Some common genetic operators such as crossover, mutation, inversion, translocation as well as a 

proportional selection procedure are applied to these two levels of sequences simultaneously to create new 

solutions. These operators are modified from those used in the conventional genetic algorithm solution to 

Traveling Salesman Problem in order to suit the current context of two-level string encoding. Their 

implementation details can be found in [6]. 

The search results computed by genetic algorithm are compared with those computed by other two greedy 

heuristics, local closest first and global closest first, in order to demonstrate the effectiveness of the solution 

based on genetic algorithm. A series of sensor networks with random distribution patterns and node sizes 

ranging from 200 to 1600 are created for test. An appropriate desired level of the detected signal energy for each 

network as well as the number of potential targets is manually selected. The sensors are randomly deployed and 
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the targets are arbitrarily placed in the region. The comparisons of routing performance between GA, LCF and 

GCF are illustrated in Fig. 2, Fig. 3, Fig. 4, and Fig. 5. Note that the quantities of path losses and energy 

consumptions are “normalized” into reasonable ranges before they are plotted, and the objective value only 

serves as an indicator of the path quality according to the defined objective function, which does not bear a 

regular unit. 
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Fig. 2 Performance comparison: (a) Node sizes vs. hop numbers; (b) Node sizes vs. path losses; (c) Node sizes 
vs. energy consumptions; (d) Node sizes vs. objective values 

It has been observed from Fig. 2 that in most cases GA is able to find a satisfying path with smaller number 

of hops, lower energy consumptions, and less path losses than LCF and GCF algorithms. The observations 

justify that GA has a superior overall performance over two other heuristics in terms of the defined objective 

function. More discussions on the algorithm comparisons such as computing complexity, real-time constraint, 

and selection of starting point are provided in [6]. 

4.2 Connectivity-Through-Time for Mobile Wireless Networks 

The wireless connection is usually the only feasible means of communication between sensors in DSN 

deployed in unstructured and harsh environments. Due to the lack of network infrastructures, wireless networks 

are always configured to operate in ad hoc mode. In some application scenarios such as a team of robots 

exploring potentially radioactive areas, the moving nodes carrying sensors need to effectively communicate with 

other nodes in the network to coordinate their activities as well as to timely combine the gathered information. 
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However, the networking needs for this class of applications are quite specific and are not adequately addressed 

by the existing wireless ad hoc networking technologies. 

Wireless networks have very different operational characteristics from wired networks. Firstly, the packet 

losses in wireless networks are mostly due to physical link failures instead of network congestion. Secondly, the 

signal attenuation often causes the link to break down when environmental interferences increase or a node 

moves out of the maximum radio distance. Therefore, the network connectivity through wireless radio in ad hoc 

mobile networks can be highly dynamic, intermittent, and unpredictable. The data streams based on TCP may 

not meet the challenges imposed by these wireless operational characteristics because TCP is an end-to-end 

transport protocol that does not provide capabilities specifically accounting for connectivity constraints in 

wireless environments. In general, TCP needs routing support from the underlying routers and requires a 

continuous byte-stream connection between source and destination during the entire period of transmission. 

Rao etc. presents a concept of Connectivity-Through-Time (CTT) and design a CTT protocol that utilizes 

node movements to enhance data transmission in ad hoc mobile networks [20]. A typical CTT example is 

illustrated in Fig. 3, where data is successfully delivered from a source node  to a destination node v  even 

though they are never directly or indirectly connected to each other. The two-directional arrow represents a 

direct wireless link between two nodes located within the maximum wireless radio range. 
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Fig. 3 Illustration of CTT concept: data is delivered through intermediate node movements 

The data delivery process is described as follows. At time , the source node  checks its neighbor list and 

notices that the destination node  is unreachable at the moment. Node  can either wait until node  come 

into its radio coverage area or broadcast the data to whoever are reachable, i.e. node  in this case. Suppose 

node  broadcasts the data as well as its destination information to node v , which afterwards carries the data 

and moves towards node . At time t , node v  goes out of the radio ranges of both node v  and node  so 

that all three nodes are isolated. Eventually, node  enters the radio area covered by node  at time . Once 

this new link is detected, node  checks for the destination availability for all temporary data stored in its 
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buffer. Since now node v  is reachable, node  retrieves the data from its data repository and transmits it to 

the destination node . 

3 2v

3v

Com
rou
ta

The CTT protocol is implemented based on User Datagram Protocol (UDP), which provides a 

connectionless data transmission service. The framework of CTT function modules is illustrated in Fig. 4. 

IAmHere
broadcast

thread

IAmHere
receive

server thread

Datagram
receive

server thread

Datagram
send  thread

File table plot
thread

File table
(Input &
output
queue)

pute
ting
ble

 

Connectivity Computation Module Transport Control Module

Build
neighbor list

Fig. 4 Framework of CTT function modules 

The connectivity computation module provides two main functions: connectivity detection and routing table 

construction. Each node actively broadcasts a special datagram named “IAmHere” attached with its current 

neighbor list to the network at a certain time interval. The receipt of such a datagram indicates that there exists a 

wireless connection between the datagram sender and receiver. Based on the list of neighbor nodes, each node is 

able to construct a complete adjacency matrix of the network and compute a routing table that provides path 

information to the transport control module. Any changes affecting the network connectivity, for example, a link 

breaks down or comes back up, will be detected and reflected in the neighbor list so that the routing table can 

always be kept uptodate. 

The transport control module consists of two main function components: datagram receiving/sending and 

file table maintenance. The datagram receiving unit receives UDP datagrams either from the adjacent nodes or 

local host. If the arrived message is interpreted as a “SEND” command issued by the local host, the designated 

data source will be read directly from local storage devices, packed in fixed-size chunks, attached with a user-

defined header of destination information, and then put in the file table. Any incoming datagrams neither 

originated from nor destined to the local host are simply placed in the datagram table of a corresponding file 

buffer. The file table is maintained so that each datagram is dynamically assigned a priority level as per the CTT 
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protocol based on its waiting time and the current network connection status. The datagram sending unit 

repeatedly scans the whole file list on a sequential basis and sends datagrams with higher priority levels. Any 

incoming data that is destined to the local host is either forwarded to the corresponding application or saved to a 

local storage device, while passing-by datagrams are loaded into the outgoing queue for forwarding or 

broadcasting. 

The control flow chart of the CTT protocol is illustrated in Fig. 5. A datagram is set either one of the five 

modes according to the current network condition and its own status: READY, STANDBY, CTT, SENT, and 

ARRIVED. The policy of transition between these five modes is briefly described as follows. 
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Fig. 5 Control flow chart of CTT protocol 
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A newly created datagram is set as READY mode if a direct or indirect path is found between its source and 

destination; otherwise it goes to STANDBY mode. A passing-by datagram remains in READY mode if the local 

host is on the path and the next hop is reachable, but switches to CTT mode if the next hop is unreachable due to 

dynamic changes of network connectivity. A datagram received by a node that is not expecting it also enters 

STANDBY mode. Datagrams in READY mode or CTT mode when the next hop becomes reachable have the 

highest priority to be selected and put in the outgoing queue, and they change to SENT mode right after they are 

successfully dispatched. A broadcast as well as a path recalculation is enforced if a certain timeout expires for a 

datagram in CTT, STANDY, or SENT mode. 

The CTT protocol uses three different types of acknowledgements: DGARRIVEDACK, FILESAVEDACK, 

and DGPASSBYACK. When a datagram arrives at its destination, it is set as ARRIVED mode and a special 

acknowledgment DGARRIVEDACK is broadcasted backwards. Upon the receipt of DGARRIVEDACK, a 

node removes the corresponding datagram out of its datagram table to release the allocated memory space and 

marks a special label indicating that this datagram has been received by the destination. When the last datagram 

(not necessarily the one with the last sequence number) arrives at the destination, another type of 

acknowledgment FILESAVEDACK is broadcasted over the network. The whole datagram table is cleaned up 

immediately when such an acknowledgment is received no matter the table is complete or incomplete. An 

acknowledgment DGPASSBYACK is broadcasted when a datagram reaches a node to which the datagram is 

not destined. The DGPASSBYACK carries the list of nodes that have received this datagram, which can be used 

to effectively reduce unnecessary flooding traffic. 

The CTT protocol has been implemented and tested in various application scenarios using a small team of 

Mini ATRV mobile robots equipped with 802.11 wireless cards. The implementation details and simulation 

results can be found in [20]. 

4.3 Adaptive Routing Using Emergent Protocols 

In recent years, there is an increasing interest in applying classical theories in fields such as physics, 

chemistry, and biology to design new routing algorithms for DSN. The motivation behind these approaches is 

based on such a fact that from a microscopic perspective, the interactions between particles in a substance 

exhibit similarity to those between sensor nodes in a DSN to some degree. It has been long observed that a large 

number of identical infinitesimal individuals interacting with each other by following simple rules are able to 

manifest a high-order and macro-scale phenomenon, which can not be demonstrated by individuals. Such peer-

to-peer interaction examples include gas molecules, fluid dynamics, sound waves, biological evolution, 
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economics, magnetization, etc. The positive feedback in the system helps to reinforce success while the negative 

feedback helps to stabilize the system. There are strong chaotic components that behave randomly in system 

adaptation. Routing paradigms based on the concept of such emergent behaviors may ideally serve the routing 

purpose in DSN. 

The routing objective in DSN is to find dynamic routes from sensor nodes to a data sink. The difficulty of 

the routing problem arises from many different factors such as the chaotic behavior of DSN, limited 

communication resources, irreplaceable power supplies, and low computation capacity. In many application 

scenarios, a large number of mobile sensor nodes are deployed in surveillance regions that are subject to 

unpredictable environmental disturbances. The enormous size of the network and hazardous nature of the 

environment always makes human management infeasible. Thus, self-configuring surveillance networks that 

can adapt to chaotic environments are highly desired. 

The following subsection briefly introduces three most typical applications in this direction, Spin Glass, 

Multi-fractal and Ant Pheromone models proposed by Brooks et al. More technical details can be found in [21]. 

4.3.1 Spin Glass Model 

Spin Glass is a variation of the Ising model in Physics, which is one of the most important models in 

statistical physics. The Ising model consists of atomic magnets that can be viewed as little magnetic vectors 

(spins). Consider N such little magnetic spins Nisi ...3,2,1, =  on a two-dimensional lattice, each of which 

interacts with its nearest neighbors. The orientation of each spin points either northwards )1( +=is  or 

southwards . Each of these spins interacts with its nearest neighbors and forms a magnetic field. For a 

ferromagnetic bond, spins with parallel directions have lower energy, while for an anti-ferromagnetic bond, 

spins with parallel directions have higher energy. Ising model is found to be in the class of NP-complete 

problems. 

)1( −=is

In a two-dimensional Spin Glass routing model, a sensor node corresponding to a spin points to one of the 

eight neighboring directions. A potential field specifying the minimum energy cost to transmit data from sensor 

nodes to the data sink is established through local interactions. One of the most significant developments in 

physics in 19th century was the discovery of the appropriate probability function to characterize the relative 

importance of the numerous microscopic configurations. The probabilities of taking each of the eight possible 

directions for each node are defined by the Boltzmann probability distribution function. This probabilistic 

orientation is implemented by comparing a computer generated random number with a probability value pre-

 
18



 
 

 
Hand book on Sensor Networks, July 2004 (In Press). 

selected for each of the eight directions. Consequently, the spin direction with a higher probability is more likely 

to be selected. 

Let  represent the energy value of node n, whose neighbor node s has the potential value denoted by 

. The probability  that node n points to neighbor node s is given as follows: 

][nT

][sT ][sP

KTAE
A

KTsE eesP /)(/)( /][ −− ∑=  

where  represents the energy change when node n points to neighbor ( )sE s , i.e. T - ;  represents 

the energy change when node n points to all neighbors; 

][s ][nT ( )AE

K  is a Boltzmann constant; T  is the absolute 

temperature. 

A temperature variable is often used to tune the balance between energy minimization and entropy 

maximization. Intuitively speaking, sensor nodes are more likely to point to neighbors with lower energy value 

under low temperature. A low temperature may reduce oscillations and establish a routing mechanism with a 

shorter hop distance. Particularly, a near freezing temperature can protect system by refraining erroneous action 

when the system is subject to harsh conditions. However, a large temperature may alleviate power taxing on 

some hot traffic points by detouring them. The temperature is sometimes specified on a per-region basis in order 

to allow flexible control of the system. 

4.3.2 Multi-fractal Model 

This classic crystal-growing prototype for gas and fluid is referred to as Diffusion Limited Aggregation 

(DLA), which is first introduced by Witten and Sander in the early 1980’s. Starting with some immobilized 

foreign seeds, wandering gas or fluid particles may become solidified in a certain way upon contact with the 

seeds under certain crystallization conditions. For the routing strategy in DSN context, a data sink is always set 

to be a single seed, from which a routing tree is formed gradually. The sensor node has an attribute value, which 

defines the possibility to join the routing tree only if the tree stretches out to its neighborhood. 

However, if nodes were allowed to join the tree unequivocally, the tree structure would be out of control. In 

a crystallization process, the inhibiting effect of crystallization is imposed by the crystallization site on the 

nearby particles. This inhibition can be physically explained by interfacial surface tension and latent heat 

diffusion effects. When a particle becomes crystallized, its released heat will inhibit the crystallization of nearby 

particles. It is important to specify a set of appropriate probabilities of joining the routing tree based on the 

number of neighbors in the routing tree. In general, the more neighbors a node has in the routing tree, the less 

likely the node will join the routing tree. Thus, a set of “stickiness” probabilities can be specified based on the 

number of neighboring nodes on the routing tree. Ideally, a sparse space-filling routing tree covering most of the 

 
19



 
 

 
Hand book on Sensor Networks, July 2004 (In Press). 

surveillance region may be constructed after certain time steps. It is worth pointing out that DLA can be 

considered as a self-repelling random walk, which can be modeled by Markov Chain. 

4.3.3 Ant Pheromone Model 

Based on Dorigo’s telecom routing work, the idea of ant-like mobile agents is utilized to tackle routing in 

DSN. It has been observed that social ants coordinate with each other in accomplishing many tasks such as food 

forage. Ants release search pheromone when they are looking for food and release return pheromone when they 

are returning to the nest after finding food. There are two mechanisms for ant movement: one is that they follow 

a random walk; the other is that they search for the opposite pheromone of the one they currently release. Ants 

that are searching for food tend to follow the highest concentration of return pheromone. Ants that are on their 

way back to the nest tend to follow the highest concentration of search pheromone. Pheromone evaporates at a 

certain rate to accommodate topological disturbances. Such a food search behavior is very flexible because it is 

capable of promptly responding to any internal perturbations and outside disturbances, and is also robust since 

the function of the whole system is not likely to be destroyed by the failure of a single or a few ants. 

The application such an intelligence of distributed nature to the routing problem in DSN results in an Ant 

Pheromone Model that retains all characteristics of ant behaviors. It is straightforward to model a data source as 

an ant nest and a data sink as a food location. Ants are dispatched from a data source at a certain rate in search 

for a data sink. The pheromone gradient established by ants is used to guide the further movements of ants. The 

Ant Pheromone Model is related to the packet-driven protocols in a sense that ants are viewed as packets 

traversing from data sources to data sinks. 

5. Conclusions and Future Work 

A broad survey was conducted on various aspects of the design of distributed sensor networks. The issues of 

and approaches to the problems of multi-sensor systems presented in this chapter demonstrate both the breadth 

and depth of the present research efforts in this area. The successful design of multi-sensor systems requires 

solutions to various problems relating to data integration method, sensor deployment scheme, network 

architecture, real-time operating system, networking paradigm, information translation cost, fault tolerance, etc. 

However, not much work has been done so far to effectively integrate these solutions to achieve a systematic 

approach to the design of distributed sensor network systems. 

Particularly, search for solutions to the fundamental mathematical problems in DSN is of great theoretical 

interest and practical importance. Major issues include optimal distribution of sensors, tradeoff between 

communication bandwidth and storage, maximization of system reliability and flexibility. Also, more attention 
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may be paid to some research directions that are currently not the mainstream areas [22]. For example, due to 

the continuously increasing network size and complexity, it is very important to develop algorithms for sensor 

operator decomposition, subspace decomposition, function space decomposition, and domain decomposition. 

The techniques that transform numerical values (or measurements) to abstract estimates may improve the 

overall application performance, and similarly the techniques that transform abstract estimates back to physical 

values may also improve the performance. For visualization purposes, multiple source locations can be 

displayed as an energy intensity map using distributed image reconstruction procedures. An efficient synthesis 

of various methods requires the support of a distributed operating system kernel. 
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