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I.  Introduction 
 
Route planning has been widely used for civilian and military purposes. Three-dimensional (3D) 
route planning is especially useful for the navigation of autonomous underwater vehicles (AUVs) 
and combat helicopters. 3D route planning is a very challenging problem because the large grids 
that are typically required can cause a prohibitive computational burden if one does not use an 
efficient search algorithm. Several search algorithms have been proposed to perform 3D route 
planning, including case-based reasoning [4,7] and the genetic algorithm [5,6]. 
 
Case–based reasoning relies on specific instances of past experience to solve new problems. A 
new path is obtained by searching previous routes to see if there is one that matches the current 
situation in the features, goals and constraints. The new path is generated by modifying an old 
path in the previous path database using a set of repair rules. However, since the number of 
possible threat distributions is very large for most battle areas, it would not be feasible to store 
old routes for all or most of the possible threat arrangements. Thus the case-based method is not 
suitable for handling threats in route planning. In addition, when it has to synthesize complete 
new routes (in an area where no old paths are available) or modify old routes by synthesizing 
new segments, it doesn’t use a guaranteed best-first search algorithm such as A*, but instead 
uses straight-line segments that go around obstacles. Thus the routes that it generates are neither 
locally nor globally optimal.  
 
The genetic algorithm (GA) method is a stochastic search technique based on the principles of 
biological evolution, natural selection and genetic recombination. Genetic algorithms generate a 
population of solutions.  Then such solutions mate and bear offspring solutions in the next 
generation. In this way, the solutions in the population improve over many generations until the 
best solution is obtained. However, genetic algorithms have been accepted slowly for research 
problems because crossing two feasible solutions does not, in many cases, result in a feasible 
solution as an offspring. Another disadvantage of GA is that although it can generate solutions to 
a route planning problem, it cannot guarantee that the solution is optimal (i.e., it can converge to 
a local, rather than a global, minimum). 
 
The A* Algorithm [3] is a guaranteed best-first search algorithm that has been used previously in 
2D route planning by several researchers including some of the authors of this paper [1,2]. A 
major advantage of the A* Algorithm compared to the other methods mentioned above is that A* 
is guaranteed to give the optimum path. In spite of this significant advantage, no one has 
previously used the A* Algorithm for 3D route planning as far as we are aware. The probable 
reason for this is that most people think that the computational cost of using A* for 3D route 
planning would be prohibitive. In this paper we show that, on the contrary, it is quite feasible to 
use A* for 3D searches if one employs the new mobility and threat heuristics that we have 
developed. These new heuristics substantially speed up the A* Algorithm so that the run times 
are quite reasonable for the large grids that are typical of 3D searches. 
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II.  A* Algorithm and Our Implementation 
 
1.  Mobility and Threat Maps 
 
Brener and Iyengar, in collaboration with Benton, have previously developed a two dimensional 
A* route planner [1,2], called the Predictive Intelligence Military Tactical Analysis System 
(PIMTAS), for military terrain vehicles such as tanks. Fig. 1 shows an example of a 2D mobility 
map (top) and 2D threat map (bottom) that were used as input to PIMTAS. The upper map in the 
figure is an actual mobility map of an area near Lauterbach, Germany, and the lower map is a 
prototype threat map which was generated in order to test the program. Both maps have 237 by 
224 grid points. The mobility map has four types of GO regions represented by the colors green, 
light green, yellow-orange, and orange, which denote unlimited, limited, slow, and very slow 
areas, respectively. The mobility penalty for grid points in the unlimited, limited , slow, and very 
slow regions is 1, 2, 3, and 4, respectively. Thus the minimum mobility penalty at each grid point 
is 1. In general, the mobility map has three types of NO-GO regions represented by the colors 
red, blue, and white, which denote impassable obstacles, water, and urban areas, respectively. 
This last restriction follows military doctrine that urban areas are to be avoided. In the prototype 
threat map, each threat is modeled by a red inner circle where the vehicle is not allowed to go 
since it would almost certainly be destroyed if it came that close to the threat, and an orange 
outer circle where the vehicle is within range of the threat. The green regions are outside of the 
range of all of the threats. The threat penalty for each threat varies linearly from 1 to 0 as one 
goes radially outward from the boundary of the red circle to the boundary of the orange circle. If 
a grid point is within the orange circle of more than one threat, the threat penalty at that point is 
the sum of the threat penalties of all of the threats acting on that point. Grid points in the green 
regions have a threat penalty of 0. 
 
In our new 3D route planner, which will be called 3DPLAN, the 2D mobility and threat maps 
described above have been extended to 3D in order to test the program. In 3DPLAN, the search 
region is represented by a digital map consisting of a Cartesian grid of points in which the step 
size in the x and y directions is the same but the step size in the z direction is in general different. 
Both the 3D mobility map and the 3D threat map have 237x224x150 grid points in the x, y, and z 
directions for a total of almost 8 million points. To our knowledge, this is the largest number of 
grid points that has ever been used in an A* search. In the 3D mobility map, each grid point in 
the GO regions has a mobility penalty of 1, 2, 3, or 4 depending on the mobility conditions. Grid 
points that are located in impassible areas are labeled as avoided points where the vehicle is not 
allowed to go. This test mobility map will be replaced with a realistic map of actual travel times 
when 3DPLAN is adapted to underwater vehicles. In our prototype 3D threat map, each threat is 
modeled by an inner sphere where the vehicle is not allowed to go and an outer sphere where the 
vehicle is within range of the threat. For each threat, the threat penalty varies linearly from 1 to 0 
as one goes radially outward from the surface of the inner sphere to the surface of the outer 
sphere. As in the 2D case, if a grid point is within the range of more than one threat, its threat 
penalty is the sum of the penalties of all of the threats acting on that point. Grid points that are 
outside of the range of all of the threats have a threat penalty of 0. 
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Figure 1.  2D mobility map (top) and 2D threat map (bottom) 
 
Given the two maps, a starting point, and a target to be reached, the military planner enters a 
weight for each of the two path cost factors being considered: (1) mobility (travel time) and (2)  
threats. 3DPLAN will then quickly generate the lowest cost path from the starting point to the 
target, where the cost of the path is determined by multiplying the weight for each factor by the 
accumulated penalty for that factor. By entering a particular set of weights, the military planner 
can put any desired degree of emphasis on each of the cost factors. For example, a large weight 
for mobility and a small weight for threats would produce a fast path that may go close to enemy 
threats, while a large weight for threats and a small weight for mobility would produce a path 
that stays as far away from threats as possible and consequently may require a considerably 
longer travel time. 
 
2.  A* Algorithm 
 
3DPLAN employs the A* Algorithm, in which the total cost, f, of the path that goes through a 
particular grid point on the digital map (this grid point will be referred to as the current point) is 
given by 
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f  = g + h                                                                                                   (1) 

 
where g is the actual cost that was accumulated in going from the starting point to the current 
point and h is an underestimate of the remaining cost required to go from the current point to 
the target. The heuristic h is the key quantity that determines how efficiently the algorithm 
works. h must not only be a guaranteed underestimate of the remaining cost, which ensures that 
no potential optimum paths will be discarded due to overestimating their total cost, but must also 
provide as close an estimate as possible of the remaining cost. The closer h is to the actual 
remaining cost, the faster the algorithm will find the optimum path. Thus the success of the 
algorithm depends on the choice of the heuristic h. With a proper choice of h, the algorithm can 
be highly efficient and can find the optimum path in a matter of seconds. 
  
The actual accumulated cost, g, is given by 
 

g = αm M + αt T                                                                     (2) 
              
where 
 

M  =  accumulated mobility penalty 
T   =  accumulated threat penalty 
αm =  mobility weight 
αt   =  threat weight 

 
The weights αm  and αt are entered by the military planner, as discussed above. 
 
The accumulated mobility and threat penalties are given by 
 

M = Σ Ri(Mi-1 + Mi)/2                                                                 (3) 
T = Σ Ri(Ti-1 + Ti)/2                                                                                  (4) 

 
where the sum is over the grid points traversed in going from the starting point to the current  
point , Mi is the mobility penalty at grid point i, Ti is the threat penalty at grid point i, and Ri is 
the stepsize to go from grid point i-1 to grid point i. 
 
The heuristic, which is an underestimate of the remaining cost required to go from the current 
point to the target, is given by: 
    

 h =  αmhm + αtht                                                                                                                   (5) 
 
where  
 

hm =  underestimate of remaining mobility penalty (mobility heuristic) 

ht = underestimate of remaining threat penalty (threat heuristic) 
 
We now describe the mobility heuristic and threat heuristic in detail. 
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 3.  Mobility Heuristic 
 
Our mobility heuristic is different and better than the straight line heuristic used in previous A* 
approaches, since our new heuristic is larger than the straight line heuristic and still is an 
underestimate of the remaining cost.  We will first describe our mobility heuristic in 2D and then 
extend it to 3D. 
 
Fig. 2 shows a 2D mobility map that consists of a square grid of points. The step size in the x and 
y directions will be labeled r1 and the diagonal step size will be labeled r2, where r2=sqrt(2)*r1. 
In this figure, each grid point has a mobility penalty of either 1, 2, 3, or 4 (i.e, 1 is the minimum 
mobility penalty at each grid point) and P1, P2, and P3 are the start point, current point, and 
target point, respectively. 
 
Let  

nx = number of steps in x direction between current point and target 
  ny = number of steps in y direction between current point and target 
 
Then the mobility heuristic hm is given by: 
 

hm = nyr2 + (nx-ny)r1    for nx > ny                                                                                    (6) 

                     nxr2 + (ny-nx)r1      for ny >= nx 

 

In the example given in Fig. 2, the mobility heuristic to go from the current point P2 to the target 
P3 is 

hm = 4*r2 + 2*r1 
 
This is larger than the straight line distance from P2 to P3, which is what other authors have used 
as the heuristic, and is still a guaranteed underestimate of the remaining mobility penalty to go 
from P2 to P3. Thus our mobility heuristic will cause the A* algorithm to run faster than it would  
with a straight line heuristic. 
 
It is straightforward to extend this mobility heuristic to 3D. Fig. 3 shows a cell in the 3D map in 
which the step size in the x and y directions is the same but the step size in the z direction is in 
general different. The figure shows the 5 possible step sizes, labeled r1, r2, r3, r4 and r5, that the 
vehicle can take to go from a grid point to one of its neighbors, where  
 

r1 = step size in x and y directions  
r2 = sqrt(2)*r1 
r3 = step size in z direction 
r4 = sqrt(r1^2+r3^2) 
r5 = sqrt(r2^2+r3^2) 

 
Let 

nx = number of steps in x direction between current point and target  

ny = number of steps in y direction between current point and target  

nz = number of steps in z direction between current point and target . 
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The 3D mobility heuristic hm is then given by 
  

hm  =  nx*r5 + (ny-nx)*r4 + (nz-ny)*r3        for  nx <= ny <= nz                              (7)  

           nx*r5 + (nz-nx)*r4 + (ny-nz)*r1        for  nx <= nz <= ny                                

           ny*r5 + (nx-ny)*r4 + (nz-nx)*r3        for  ny <= nx <= nz                                

           ny*r5 + (nz-ny)*r4 + (nx-nz)*r1        for  ny <= nz <= nx                                

           nz*r5 + (nx-nz)*r2 + (ny-nx)*r1        for  nz <= nx <= ny                                

           nz*r5 + (ny-nz)*r2 + (nx-ny)*r1        for  nz <= ny <= nx   
          
 
                     

 

 
 
 
 
 
 
 
 
                                                                                                    
                                                                                                   P3 
                                                                                                    
 
 
 
 
 
 
 
 
                                                      
           P2                                    
 
            
                                               
     
                                                                                                                                                               
                                                                                                     
            
 
  
 P1                                                           
                      
                   Figure 2.  2D mobility map consisting of a square grid of points 
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                                 Figure 3. A cell in the 3D mobility map 
 
4.  Threat Heuristic 
 
As far as we know, no other authors have ever used a threat heuristic in the A* Algorithm. The 
probable reason for this is that the minimum threat penalty is 0 rather than 1 (the minimum 
mobility penalty is 1 in our test map). Thus if one tried to use the same technique for the threat 
heuristic as was used for the mobility heuristic, the threat heuristic would be 0. In this paper we 
present a threat heuristic that is different from the mobility heuristic and is, in general, nonzero. 
Thus our new threat heuristic will speed up the A* Algorithm compared to not having a threat 
heuristic at all.  
 
We will first describe our threat heuristic in 2D and then extend it to 3D. Fig. 4 shows the same 
square grid of points that was shown in Fig. 2, where P1, P2, and P3 are the start point, current 
point and target point, respectively. The threat heuristic ht will be an underestimate of the 
remaining threat penalty to go from the current point to the target point. In order to construct this 
threat heuristic, we draw concentric squares around the target; these squares are labeled 1, 2, 
3…, as shown in the figure, and the target point is square zero. In order to go from the current 
point to the target, the vehicle must visit each square at least once (i.e., it must visit at least one 
point in each square). In order to ensure that the threat heuristic is a guaranteed underestimate, 
we will use the minimum threat penalty in the square as the threat penalty of the point that the 
vehicle visits. The threat heuristic is then given by 
 

ht =  r1(Tc + Tn,min)/2 + Σ r1(Ti,min + Ti-1,min)/2           (8)                                                 
  
where Tc is the threat penalty of the current  point, Ti,min is the minimum threat penalty in 
square i, n is the number of squares between the current point and the target, the sum is over all 
squares between the current point and the target, and we have multiplied by the smaller of the 
two step sizes that the vehicle can take, r1, in order to ensure that the threat heuristic is an 
underestimate. 
 

r1 

 

 

r2 
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r3 

r1 
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y 
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It is straightforward to extend this 2D threat heuristic to 3D. In 3D we will use concentric 
rectangular boxes around the target. The vehicle will then have to visit each box at least once to 
go from the current point to the target. For the large boxes, the minimum threat penalty in the 
box may often be 0, depending on the distribution of threats. However, for small boxes (the ones 
close to the target), the minimum threat penalty in the box is less likely to be 0, especially if 
there is a dense distribution of threats around the target. In these cases, the threat heuristic will 
significantly speed up the A* Algorithm.  
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5.  Dynamic Threats 
 
3DPLAN can also handle dynamic (changing) threats. If new threats appear or known threats 
disappear or move while the vehicle is traveling along its path, the military planner can quickly 
update the threat map. 3DPLAN will then rapidly generate a new optimum path from the current 
position to the target. 
 
III.  Test calculations and Comparison of Heuristics 
 
In this section we give the results of some optimum path calculations using our new 3D A* route 
planner, 3DPLAN. In these sample calculations we used two different mobility maps, labeled 
M1 and M2, and two different threat maps, labeled T1 and T2. In the mobility map M1, all of the 
grid points in the GO areas have a mobility penalty of 1 (i.e., the mobility is uniform except for 
the obstacles), while in mobility map M2, the points in the GO areas have a mobility penalty of 
either 1, 2, 3, or 4. The threat maps T1 and T2 contain 24 threats and 26 threats, respectively. All 
four of these maps have 237x224x150 grid points for a total of almost 8 million points, which is 
the largest number of grid points that has ever been used in an A* search as far as we are aware. 
We used four different combinations of these maps: M1T1, M1T2, M2T1, and M2T2. For each 
of these combinations of a mobility map and a threat map, we calculated three different paths by 
choosing three different pairs of start/target points, which are given in Table 1. Thus altogether 
we calculated 12 different optimum paths in a search space of approximately 8 million grid 
points in order to test our new program. In all of the path calculations, the mobility weight αm 

and threat weight αt were both set equal to 1. For each of the 12 optimum paths, we did four 
different calculations using the following four combinations of the mobility heuristic and threat 
heuristic: 
 

1) Our new mobility heuristic, our new threat heuristic 
2) Our new mobility heuristic, no threat heuristic 
3) Straight line mobility heuristic, our new threat heuristic 
4) Straight line mobility heuristic, no threat heuristic 
 

Combinations 1,2 and 3 enable us to compare our new mobility and threat heuristics with the 
heuristic that other authors have used in A* searches (combination 4). 
 
These optimum path calculations were done on a Dell PC with a 3.06 GHZ Pentium IV 
processor. One of these optimum paths, Path 1 for the map combination T1M2, is shown in Fig. 
5. The spheres in this figure are the inner spheres surrounding the threats, the rectangular solids 
are the obstacles in the mobility map, and the optimum path goes from the lower left to the upper 
right. 
 
Tables 2-5 give the CPU time in seconds for the optimum path calculations described above. 
These tables show that when our new mobility and threat heuristics are used, all of the path 
calculations require less than one and a half minutes of CPU time. The tables also show that for 
the 12 test paths considered, our new heuristics reduce the CPU time by up to 67% compared to 
a straight line mobility heuristic and no threat heuristic, which is what other researchers have 
used in A* searches. In addition, the tables show that our new mobility heuristic alone reduces 
the CPU time by up to 60% and our new threat heuristic alone reduces the CPU time by up to 
20%, compared to a straight line mobility heuristic and no threat heuristic, respectively. These 
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results demonstrate that our new mobility and threat heuristics significantly speed up the A* 
Algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              Figure 5. Path 1 for the map combination T1M2 
 
 
    
 
Paths Start Point Target 
Path 1 (6,22,0) (236,218,149) 
Path 2 (6,22,0) (136,218,89) 
Path 3 (100,0,50) (236,218,149) 
 
                                                                      Table 1 
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Map T1M1 
 Path 1 Path 2 Path 3 
Our mobility 
heuristic, our threat 
heuristic 
 

27.718 9.469 11.718 

Our mobility 
heuristic, no threat 
heuristic 

37.219 13.124 15.140 

Straight line 
mobility heuristic, 
our threat heuristic 

51.343 22.64 26.281 

Straight line 
mobility heuristic, 
no threat heuristic  

58.589 26.156 30.469 

                                            
                                                                 Table 2 
 
 
Map T1M2 
 Path 1 Path 2 Path 3 
Our mobility 
heuristic, our threat 
heuristic 
 

62.438 11.843 20.327 

Our mobility 
heuristic, no threat 
heuristic 

68.125 14.141 24.140 

Straight line 
mobility heuristic, 
our threat heuristic 

80.984 22.313 35.359 

Straight line 
mobility heuristic, 
no threat heuristic  

85.656 25.343 40.344 

                                                       
                                                                 Table 3 
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Map T2M1 
 Path 1 Path 2 Path 3 
Our mobility 
heuristic, our threat 
heuristic 
 

8.391 30.343 15.828 

Our mobility 
heuristic, no threat 
heuristic 

11.062 35.219 18.672 

Straight line 
mobility heuristic, 
our threat heuristic 

28.828 41.039 34.094 

Straight line 
mobility heuristic, 
no threat heuristic  

33.390 47.031 38.250 

                                                                 Table 4 
 
 
Map T2M2 
 Path 1 Path 2 Path 3 
Our mobility 
heuristic, our threat 
heuristic 
 

56.813 38.109 38.844 

Our mobility 
heuristic, no threat 
heuristic 

66.406 42.328 41.594 

Straight line 
mobility heuristic, 
our threat heuristic 

75.687 46.813 55.656 

Straight line 
mobility heuristic, 
no threat heuristic  

79.250 52.187 58.968 

 
                                                                 Table 5 
 
IV. Application to Autonomous Underwater Vehicles 
 
We now apply our 3D A* route planner to Autonomous Underwater Vehicles (AUVs). In this 
application, we replace the test mobility map described above with a map of realistic travel times 
which depend on ocean currents and the still water speed of the AUV. In the test calculations 
described in the previous section, the path cost depends on mobility penalties (to which the travel 
time is roughly proportional), but in the AUV application in this section, the path cost is equal to 
the actual travel time rather than just being approximately proportional to it. As far as we are 
aware, this is the first time that actual travel times based on realistic ocean currents have been 
used in AUV route planning.  
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In order to construct the map of travel times, we first created an ocean current map using the 
current velocity data from the Navy Coastal Ocean Model (NCOM) – East Asian Seas version, 
which was provided by the Naval Research Lab (NRL) at the Stennis Space Center in 
Mississippi. In this 3D ocean current map, there are 229×128×35 grid points in the x, y and z 
directions for a total of more than one million grid points. The x coordinate goes from longitude 
115° E to 135° E in steps of 11.4 minutes of arc, the y coordinate goes from latitude 20° N to 30° 
N in steps of 11.4 minutes, and the z coordinate goes from 0 (the ocean surface) to a maximum 
depth of 4,655 m. This area includes a region of the East China Sea which contains Taiwan and 
neighboring islands.  
 
At each grid point, the map gives the two components of the current velocity: the “U” velocity, 
which is in the x (East/West) direction, and the “V” velocity, which is in the y (North/South) 
direction, where East and North are positive and West and South are negative, and the velocities 
are in m/s. There is no current velocity in the z direction. 
 
The 3D ocean current map described above is used to construct the 3D travel time map, which 
gives the times in seconds required for the AUV to go from each grid point to its 26 neighbors, 
taking into account the ocean currents and the still water speed of the AUV. Thus this map has 
26 real numbers at each grid point. Fig 6 shows a grid point, labeled Y, and its 26 neighbors 
labeled A – X, Above, and Below. 
   
 
 
 
 
 
 
 
 
 
 
                                                         
                                   Figure 6. A grid point with 26 neighbors 
 
The grid point Y will be called the central grid point and the points  A – X will be referred to as 
follows: 
 
          A – southwest above, B – southwest same level, C – southwest below,  
          D – south above, E – south same level, F – south below, 
         G – southeast above, H – southeast same level, I – southeast below, 
         J – west above, K – west same level, L – west below, 
         M – east above, N – east same level, O – east below,  
         P – northwest above, Q – northwest same level, R – northwest below, 
         S – north above, T – north same level, U – north below, 
         V – northeast above, W – northeast same level, X – northeast below. 
       
In this figure, the scale in the z direction is different from the scale in the x and y directions so 
that the grid can conveniently be displayed. In calculating the travel times to the N, S, E, W, NE, 
NW, SE, and SW neighbors in the planes above and below, we use only the component of the 
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distance in the xy plane, since the AUV can move up or down by simply changing its ballast and 
thus vertical motion that occurs at the same time as horizontal motion does not require any 
additional travel time. This assumption is valid as long as the vertical spacing between the grid 
points is substantially smaller than the horizontal spacing, which is the case here. Hence the 
difference in travel time to a neighbor in the plane above and the corresponding neighbor in the 
same plane (e.g., NE above and NE same level) is due only to the difference between the U and 
V velocities at the two neighbors and not to their distances from the central point.  
 
In order to illustrate the calculation of the travel time map, we now give the formulas for the 
travel times from the central point to the three NE neighbors (NE same level, NE above, NE 
below), the three E neighbors (E same level, E above, E below), and the neighbors directly 
above and below. 
 
NE neighbors                                                                       

                                                                        
                                                                                                                                       
                                                                                                                                                                                                                 
   
                                                                              
                                            
                                                                                                 
 
 
                                                        
  
                                                  
                                                                      
 
 
                                 Figure 7. Calculation of the travel time from P1 to P2 
 
In Fig. 7, P1 is the central point, P2 is the NE same level neighbor, d1 is the grid point spacing for 
the latitude of P1, and d2 is the grid point spacing for the latitude of P2. The grid point spacing for 
a given latitude gives the distance to neighboring points in the East, West, and North directions, 
while the distance to the South neighbor is given by the grid point spacing for the South 
neighbor’s latitude, which is slightly larger. In other words, the spacing between the grid points 
slowly decreases as the latitude increases, which reflects the fact that the distance between 
latitude and longitude circles on the earth’s surface gets smaller as the latitude gets larger. The 
angles α, θ, φ, and the distance d between the central point P1 and the neighbor P2 are given by 

α = cos-1(
1

21

2d
dd − )                                                                                                        (9) 

θ =  cos-1(
1

21

4d
dd + )                                                                                              (10) 

                                                                                                      
φ = α − θ                                                                                                                     (11) 
                                                                                                                              

d1 d1 

d1 

d2 

P1 

P2 

d 

θ 
φ 

α 
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d = 21
2

1 dd)(d +                                                                                                       (12)                                                                                                  

The travel time t to go from P1 to P2 is then calculated as follows: 

Ua = 
2

UU 21 +
                                                                                                            (13) 

Va = 
2

VV 21 +
                                                                                                            (14) 

C12 =  Uacos(θ) + Vacos(φ)                                                                                  (15) 

Cp =  Uasin(θ) − Vasin(φ)                                                                                        (16) 

2
p

2
12 )C(SS −=                                                                                                     (17) 

VN = S12 + C12                                                                                                        (18)                                                          

  t = d / VN                                                                                                                   (19) 
                                                                                                                                                                                           
where  
 
    U1 = U velocity at P1 
    V1 = V velocity at P1 
    U2 = U velocity at P2 
    V2 = V velocity at P2 
    Ua = average of U velocities at P1 and P2 
    Va = average of V velocities at P1 and P2 
    C12 = component of current velocity along the line joining P1 and P2 
    Cp = component of current velocity perpendicular to the line joining P1 and P2 

    S = AUV’s still water horizontal velocity 
    S12 = component of AUV’s still water horizontal velocity along the line joining P1 and P2 
    VN = net velocity of AUV (the net velocity is along the line joining P1 and P2) . 
 
The travel times to the NE above and NE below neighbors are calculated with the same 
formulas, where U2 and V2 are the U and V velocities at the NE above or NE below neighbor, 
and the distance d and angles α, θ and φ are the same as for the NE same level neighbor. As 
mentioned previously, we use only horizontal distances and velocities to calculate the travel 
times to neighbors in the above and below levels (except the ones directly above and below) 
because the travel time is determined by the horizontal motion. Vertical motion that occurs 
concurrently with horizontal motion does not add to the travel time. The travel times to the NW, 
SE and SW neighbors are calculated in a similar manner. 
 
E neighbors 
                                                            

                                                                                                        
  
                            Figure 8. Calculation of the travel time from P1 to P2 
 

P1 P2 
d1 
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In Fig. 8, P1 is the central point, P2 is the E same level neighbor, and d1, the grid point spacing 
for the latitude of P1, is the distance between P1 and P2. The travel time t to go from P1 to P2 is 
calculated as follows: 
 

Ua = 
2

UU 21 +
                                                                                                   (20) 

Va = 
2

VV 21 +
                                                                                                         (21) 

2
a

2
12 )V(SS −=                                                                                                  (22) 

VN = S12 + Ua                                                                                                                                    (23) 

 t = d1 / VN                                                                                                                                        (24) 

These formulas are also used to calculate the travel times to the E above and E below neighbors. 
The travel times to the W, N and S neighbors are calculated in a similar manner. 
 
Above and Below neighbors 
 
The travel time to go from the central point to the neighbor directly above or below is given by 
  
t = d / Sv                                                                                                                        (25) 
                                                                                                                                                             
where d is the distance to the neighbor and Sv is the velocity of the AUV in the vertical direction 
(due to changing the ballast).  
 
A* equations 
 
When the travel time map, rather than the mobility map, is used, Equations 2, 3, and 5 become 

 
g = αtt TT + αt T                                                                     (26) 
 
TT = Σ TTi                                                                 (27) 
 
h =  αtthtt + αtht                                                                                                                   (28) 
 
where 
 
     TT = accumulated travel time 
     αtt = travel time weight  
     TTi = travel time to go from grid point i –1 to grid point i . 
     htt = travel time heuristic (underestimate of remaining travel time needed to reach the target) . 
 
The travel time heuristic htt is given by an expression similar to the one in Eq. (7): 
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htt  =  nx*t5 + (ny-nx)*t4 + (nz-ny)*t3        for  nx <= ny <= nz                              (29)  

          nx*t5 + (nz-nx)*t4 + (ny-nz)*t1        for  nx <= nz <= ny                                
          ny*t5 + (nx-ny)*t4 + (nz-nx)*t3        for  ny <= nx <= nz                                

          ny*t5 + (nz-ny)*t4 + (nx-nz)*t1        for  ny <= nz <= nx                                

          nz*t5 + (nx-nz)*t2 + (ny-nx)*t1        for  nz <= nx <= ny                                

          nz*t5 + (ny-nz)*t2 + (nx-ny)*t1        for  nz <= ny <= nx                                

 
where  
 
     t1 = smallest travel time to go from a central point to an E, W, N, or S neighbor in the same  
            plane 
     t2 = smallest travel time to go from a central point to a NE, NW, SE, or SW neighbor in the 
            same plane 
     t3 = smallest travel time to go from a central point to a neighbor directly above or below  
     t4 = smallest travel time to go from a central point to an E, W, N, or S neighbor in the plane 
            above or below 
     t5 = smallest travel time to go from a central point to a NE, NW, SE, or SW neighbor in the  
            plane above or below . 
 
These minimum travel times are obtained by scanning the entire travel time map. 
 
Threats 
 
Threats are handled the same way as described in Sec. II, where each threat is modeled by an 
inner sphere called the no-go sphere where the AUV is not allowed to go, and an outer sphere 
called the penalty sphere where the AUV is within range of the threat and hence incurs a threat 
penalty. Thus if the line between a central point and a neighbor passes through the no-go sphere 
of a threat, the AUV is not allowed to travel from the central point to that neighbor. If the threat 
is an underwater mine, it has a no-go sphere but no penalty sphere. 
 
Sample Path Calculations 

We used Microsoft Visual C++ 6.0 to develop 3DPLAN, the travel time map, and the AUV 
version of 3DPLAN, which will be called AUVPLAN. We then used AUVPLAN and the travel 
time map to perform optimum path calculations in a region of the East China Sea that contains 
Taiwan and neighboring islands. Figs 9-15 show the results of these optimum path calculations, 
which were done on a Dell PC with a 1.7 GHZ Pentium IV processor. All of the path 
calculations required less than 15 seconds of CPU time. Note that the optimum paths move up 
and down in order to find the most favorable currents. As discussed above, the use of the A* 
algorithm guarantees that the calculated paths have the shortest possible travel times. This cannot 
be guaranteed when other route planning algorithms, such as the genetic algorithm (GA), are 
used. 
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                    Figure 9: starting point (33,40,4), ending point (208,8,13) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   Figure 10: starting point (9,28,3), ending point (201,83,6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        Figure 11: starting point (93,86,8), ending point (189,2,21) 
 



 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
                     Figure 12: starting point (83,116,3), ending point (205,2,7) 
 
 
       
 
 
 
 
 
 
 
 
 
 
                      
                        
 
                     Figure 13: starting point (109,28,23), ending point (205,119,17) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                          Figure 14: starting point (9,8,13), ending point (108,119,7) 
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                              Figure 15: starting point (9,8,6), ending point (108,88,9) 
 
 
                            
Avoidance of Underwater Mines 
 
If there are underwater mines in the region between the start point and the target, AUVPLAN 
will calculate the fastest path that avoids the no-go spheres around the mines. Also, if previously 
undetected mines are discovered near an optimum path that has already been determined, 
AUVPLAN will quickly calculate a new path that safely bypasses the mines. As an example, 
Fig. 16 shows an initial optimum path that was calculated in the Persian Gulf, previously 
unknown mines that lie close to this path, and the new path that maintains a safe distance from 
these mines. This new path is optimal subject to the constraint of avoiding the mines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Figure 16: Two paths in Persian Gulf—one path goes close to the mines, while   
                          the new path avoids the mines. 
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V. Numerical Comparison of A* Algorithm and Genetic Algorithm 
 
In order to compare the A* Algorithm to other methods, we developed a Genetic Algorithm 
(GA) 3D route planner and used both it and AUVPLAN to perform optimum path calculations in 
the East China Sea. In these calculations, we used a small map with 22×12×16 = 4,224 grid 
points and a medium size map with 110×60×25 = 165,000 grid points in addition to the full size 
map described above which has 229×128×35 = 1,025,920 grid points. For the full size map we 
considered 5 different paths, which are given in Table 6. For the small map and the medium size 
map, we used the first 3 paths and the first 4 paths, respectively. The results of these calculations 
are given below. 
 
 
Paths Start Point Target 
Path 1 (3,2,6) (7,5,4) 
Path 2 (4,6,7) (15,9,11) 
Path 3 (21,1,15) (0,11,6) 
Path 4 (109,59,19) (0,1,5) 
Path 5 (228,127,30) (0,1,5) 
 
                                                                      Table 6 
 
 
1.  Small map (22×12×16 = 4,224 grid points) 
 
Path 1: Start Point (3, 2, 6), Target (7, 5, 4) 
 Path Cost (Travel Time) CPU Time Path Length  
A* Algorithm 9.97 hours 0.015 seconds 5 
Genetic Algorithm 9.97 hours 0.344 seconds 5  
 
Path 2: Start Point (4, 6, 7), Target (15, 9, 11) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 20.42 hours 0.046 seconds 12  
Genetic Algorithm 20.42 hours 19.546 seconds 12  
 
Path 3: Start Point (21, 1, 15), Target (0, 11, 6) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 36.66 hours 0.062 seconds 22 
Genetic Algorithm Failed to find a path N/A N/A 
 
 
2.  Medium size map (110×60×25 = 165,000 grid points) 
 

Path 1: Start Point (3, 2, 6), Target (7, 5, 4) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 9.97 hours 0.047 seconds 5 
Genetic Algorithm 9.97 hours 0.610 seconds 5 
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Path 2: Start Point (4, 6, 7), Target (15, 9, 11) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 20.42 hours   0.079 seconds 12 
Genetic Algorithm 20.42 hours 45.600 seconds 12 
 
Path 3: Start Point (21, 1, 15), Target (0, 11, 6) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 36.66 hours   0.140 seconds 22 
Genetic Algorithm Failed to find a path   N/A N/A 
 
Path 4: Start Point (109, 59, 19), Target (0, 1, 5) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 197.46 hours 1.719 seconds 112 
Genetic Algorithm Failed to find a path  N/A  N/A 
 
 
3.  Full size map (229×128×35 = 1,025,920 grid points) 
 

Path 1: Start Point (3, 2, 6), Target (7, 5, 4) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 9.97 hours 0.218 seconds 5 
Genetic Algorithm 9.97 hours 0.579 seconds 5 
 
Path 2: Start Point (4, 6, 7), Target (15, 9, 11) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 20.42 hours 0.219 seconds 12 
Genetic Algorithm 20.42 hours 12.656 seconds 12 
 
Path 3: Start Point (21, 1, 15), Target (0, 11, 6) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 36.66 hours 0.297 seconds 22 
Genetic Algorithm Failed to find a path N/A N/A 
 
Path 4: Start Point (109, 59, 19), Target (0, 1, 5) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 197.46 hours 5.016 seconds 112 
Genetic Algorithm Failed to find a path N/A N/A 
 
Path 5: Start Point (228, 127, 30), Target (0, 1, 5) 
 Path Cost (Travel Time) CPU Time Path Length 
A* Algorithm 383.55 hours 13.359 seconds 229 
Genetic Algorithm Failed to find a path  N/A N/A 
 
 
As shown above, GA was able to find the optimum path only for Paths 1 and 2, which are short 
paths with 5 and 12 nodes (grid points), respectively. In these calculations, the CPU time 
required for GA was considerably longer than for A*, particularly for Path 2 . Furthermore, as 
stated above, A* is guaranteed to find the optimum path in every calculation, but the same is not 
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true for GA. When GA finds a path, there is no way to know if the path is optimal unless A* has 
already been run for that start point and target. On the average, the GA planner had to be run 
twice to find the optimum path for Path 1 and 20 times to find the optimum path for Path 2. For 
Path 3, which is relatively short with 22 nodes, and Paths 4 and 5, which are longer with 112 and 
229 nodes, the GA planner failed to find any path at all. Thus GA cannot handle the large maps 
that are typical of 3D route planning. 
 
 
VI.  Conclusion 
 
We have developed a 3D A* route planner, called 3DPLAN, which runs efficiently for the large 
grids that are typical of 3D maps. The A* Algorithm has a major advantage compared to other 
search methods because it is guaranteed to give the optimum path. To our knowledge, this is the 
first time that A* has been used in 3D searches. The probable reason for this is that most 
researchers think that the computational cost of using A* for 3D route planning would be 
prohibitive. We have shown that, on the contrary, it is quite feasible to use A* for 3D searches as 
a result of the new mobility and threat heuristics that we have developed. These new heuristics 
substantially speed up the A* algorithm and make it a useful and efficient method for 3D route 
planning. 
 
We have adapted 3DPLAN to autonomous underwater vehicles (AUVs) by replacing the test 
mobility maps that were used initially with a map of realistic travel times which depend on ocean 
currents and the still water speed of the AUV. This version of 3DPLAN, called AUVPLAN, was 
used to calculate optimum paths in a region of the East China Sea that contains Taiwan and 
neighboring islands. These optimum path calculations employed a travel time map with more 
than a million grid points and required less than 15 seconds of CPU time for each path. To our 
knowledge, this is the first time that actual travel times based on realistic ocean currents have 
been used in AUV route planning. AUVPLAN was also used to perform optimum path 
calculations in the Persian Gulf. These calculations demonstrate that AUVPLAN successfully 
avoids underwater mines. 
 
In order to compare the A* Algorithm to other route planning methods, we used AUVPLAN and 
a Genetic Algorithm (GA) route planner to perform optimum path calculations in the East China 
Sea. While AUVPLAN quickly found the optimum path in every case, the GA planner was able 
to find the optimum path only for short paths and only after several attempts. For medium size 
and long paths, the GA planner failed to find any path at all. Thus the GA is not capable of 
handling the large maps that are typical of 3D route planning. 
 
In the present version of AUVPLAN, the threats, such as underwater mines, are static and cannot 
attack the AUV from a distance. In the future, we plan to add the capability to avoid dynamic, 
long range threats such as enemy submarines and destroyers. We also plan to adapt 3DPLAN to 
manned underwater vehicles (submarines) and combat helicopters. 
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