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Abstract

This paper attempts to construct a goal seeking approach for modeling a system that requires
correction to reduce uncertainties by using additional context information and constraints such
as positivity of density estimates and optimal smoothing. The additional information becomes
available to the system as the iteration progresses. Based on the prior knowledge, a decision
is taken for the output to be in the desired tolerance limits. In this work, positron emission
tomography (PET) image reconstruction system is projected as a good example of goal seeking
paradigm. The image reconstructed using the proposed algorithm was found to have a percent
error of 23.77% after 50 iterations. The ML, MAP and MRP algorithms, for the same number of
iterations, have produced images with 32.61%, 24.95% and 24.54% respectively. The experimental

results are very encouraging and interesting.

1. Introduction

Medical imaging modalities like PET and SPECT demand high quality artifact-free images, which
become the basis for studying physiological and neurological processes. Recent studies have shown
that PET is sensitive to biological processes like metabolism and diseases [1]. PET modality
is found to be more sensitive in detecting biological abnormalities, which are found to produce
no changes in X-ray computed tomography (CT) and magnetic resonance imaging (MRI). Model-
based iterative approaches to PET image reconstruction allow optimal noise handling and accurate

system response modeling. Research in PET is focused on three key issues :
(1) How to select a potential function (embedded in cost function) with desired image properties.

(2) How to produce images faster to enable real time realization.
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Figure 1: Real PET image of a brain slice.

(3) How to improve the quality of the reconstructed images.

In this work, we have focused on issue (1). With the rapid development of high speed processors
like digital signal processor and media processor, it is possible to address the second issue to a
satisfactory limit [4][5]. Further, various algorithmic methods have been suggested for accelerating

the convergence of the maximum likelihood (ML) algorithm [6-12, 23].

PET image reconstruction is a complex process due to the large number of variables involved.
Hence, a systematic approach needs to be developed for a stable and desired output (image). To-
wards this, a goal seeking paradigm is developed for PET which supports uncertainty management
[18]. Uncertainty is naturally embedded in PET image reconstruction, first due to incomplete
data, and second, due to the noise embedded in the measurement data. Measurement data is
incomplete due to a finite number of detectors. Data space is connected to image space by an
maximum likelihood / maximum a — posteriori (ML/MAP) operator and hence, the shadow of
noise in data space is reflected in the image space as well. The image space is connected to the
data space by a many-to-one mapping, in which each pixel is a sensor. Image sensor is related
to all the data sensors (tube detectors) that pass through it. Though, the measurement data is
uncorrelated (independent Poisson process), the corresponding image sensors (pixels) are highly
correlated. It is this correlation that is being taken advantage of, to enhance the image quality.
A strong correlation between the image sensors (image pixels) is believed to exist [13-17]. Goal
seeking paradigm is found suitable for this type of modeling [18]. This is a very generalized way
of visualizing the MAP problem [13-17]. Fig. 1 shows an example of a real PET image, where the

localization of the metabolic activity during epilepsia treatment is very clearly visible.



The organization of the paper is as follows. Section 2 provides a brief description of ML and MAP
image reconstruction approaches used in PET. In Section 3, PET image reconstruction problem
is projected in a goal seeking paradigm [18] and a rule based approach towards PET image re-
construction problem is proposed. The proposed algorithm is summarized in section 4. Section
5 describes the implementation issues and the evaluation of the proposed algorithm, followed by

conclusions in Section 6.

2. General Description of PET Image Reconstruction

The measurements in PET, y; , j=I1,...,.M are modeled as independent Poisson random variables
with mean parameters, (; = Eéil()\i pij), j=1,..,.M , where ); , i=1,...,N are the mean parameters
of the emission process and p;; is the probability that an annihilation in the ith pixel is detected

in j* detector. The likelihood function (which is the joint probability of an annihilation event

anywhere in the object (image domain) and getting counted in the detector system) is given by,
M N
P(y/X) = [[ Poisson(ys; > _ Ai pij)- (1)
j=1 i=1
Maximum Likelihood (ML) reconstruction can be formulated as,

AME = max] logP(y/A) |- (2)

An iterative equation using ML-algorithm for obtaining the density estimates \;; ¢ = 1,..., N is

given by [3],

AR+ — AY % YjDPij (3)
a— v N :
Zj:l Pij j=1 >ic1 /\fpij

It is found that, due to dimensional instability problem which is fundamental to the application
of unconstrained ML estimation of density function based on point process data, reconstructed
image becomes noisier with increasing iterations [26]. To solve the noise problem, another class
of algorithms called maximum a-posterior (MAP) approaches were formulated [13-17]. In MAP

approach, the image field is assumed to be a Markov random field (MRF) [16] and by Hammerseley-



Clifford theorem [23], image A is characterized by Gibbs distribution,

PO) = el =2 3 3wV Ay) ()

= exp 52, wi; V(Ai, Aj
i jeN;

where, Z is the normalizing constant for the distribution, 8 is the Gibbs hyper-parameter, w;; is
the weight connecting the pixel i with the neighboring pixels jeN; [15], N; is the nearest neighbor
set of pixel ¢ and V(A;, \;) is termed as the potential at site ¢ due to the nearest neighbor elements
j.

MAP algorithm determines that estimate AMAP

as the solution which maximizes the posterior
density function P(A/y) or equivalently the log of P(\/y). Given a suitable prior P(\), MAP-

reconstruction can be formulated as,

AMAP = max{ logP(y/) + logP()) | (5)

Solution for eqn.(4) is very difficult due to the complicated nature of the prior. Green [15] has
proposed one step late (OSL) approximation for an iterative update to the MAP-problem and is
given by,

oY L yp
k+1 _ i Jjrij
NS z BV (Aix\y) ZZN Nepii )
M V(Ai,\j =1 =1 ‘i 1]
S s+ 3 e, ( 2T ) ] S
AiZA?

Given the iterative OSL-algorithm (eqn.(6)), the next step is the proper modeling of the potential

function V(X;, Aj).

The general description of ML and MAP in a goal seeking paradigm [18] is schematically shown

in Fig.2.

3. Proposed Rule Based Potential Function in goal seeking Paradigm

In this section of the paper, we propose a rule based PET image reconstruction in a goal seeking
paradigm [18]. Each pixel is considered as a sensor in the image domain. A pixel is influenced
by neighboring pixels. In this model, the weight is scaled based on the spatial distance between

these pixels. Now the task for each image sensor (pixel) 7 is to update its value based on its
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Figure 2: (a) ML and (b) MAP algorithms viewed as a goal seeking paradigm.
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Figure 3: 3 x 3 neighborhood of a central pixel (i,j), showing the directional derivative along w.

current value and the value of the neighborhood sensor’s (pixels) value j. For such a formalism,
Bayesian rule is used to connect the prior function, likelihood function and the posterior function.
Since the measurement data are from a random Poisson process (Radio-nuclei emission), they are
independent and uncorrelated. On the other hand, in the image domain, the neighboring pixels
(sensors) are highly correlated and hence, uncertainty in the image sensor (pixel) value can be
minimized by taking into account the contribution from neighboring sensors (pixel). Correlation
is invoked in the reconstruction process by defining the prior function on the image domain, while
the contribution from uncorrelated part (measurement data) is obtained through the likelihood
function. So, MAP formulation benefits from both the uncorrelated (measurement data) as well
as the correlated part (prior function). Additionally, the image constraint block in Fig.2 makes
sure that the iteration process survives (due to the multiplicative nature of ML). The Bayes rule

is given by,

POy = 2 ) ¢
The MAP formulation is given by,
AMAP = max{logP(A/y)]
= max{ logP(y/A) +logP(N) ] (8)

where, likelihood function logP(y/A) and prior function P(\) are given by eqn(l) and eqn(4)

respectively.

In the proposed scheme, a rule based potential function is adopted. Local derivatives are used

to identify the presence of edges in the neighborhood of a pixel i, along all the directions. For



example (Fig. 3), for a 3 x 3 neighborhood, an edge is assumed to be absent along the north-south
direction iff 2 out of 3 local derivatives (V(%,5), V(i — 1,7),V(i + 1,7)) are small and hence, the
corresponding decisive derivative V% (i, 7) is small. The derivative V¥ (i, j) for the pixel centered
at (i,j), along the direction D at k* iteration is V¥(i,5) D = | A¥(i,7) — A¥(x, %) |D, where,
AE (x, *)ﬁ represents the nearest pixel value along the unit directional vector D. We have considered
8 directions (viz. E,W,N ,5’, N. E,NW, SE, SW) as shown in Fig.3. A reasonable threshold for
distinguishing between the two possibilities (small or large) is b = § >- 5 V (i, §)D. The purpose for
the rule based formulation is to approximately separate the intensity variation due to the image

structure and due to noise.

The following rules are formulated for quantizing the correction to a pixel (i, j):

if V(i,7)D is small,
then Ak(i,j)D = V*(i,j)D

else, A*(i,j)D =0 9)

where, A¥(i, /)D is the correction for the pixel (¢, j) from the direction D. Eight such contributions
are collected from all the eight directions. The total correction term AX.(i, j) for pixel at (4, §) is

given by,
. 1 RN
AL (i) = 5 D A )D (10)
D

It should be noted that, the image feature block shown in Fig. 2 is in essence, the correction term
AR (i, §)-

AV (i Aj)

Replacing the error term %Ejd\f,-( o

) in Green’s MAP reconstruction algorithm
X,’ZA?

eqn.6) by LA (i), we get a new reconstruction algorithm, given by,
BaT

it X - Yipij

where, coordinates (i, j) is denoted by a single coordinate {i’ = (i — 1) ¥ /N + j}. In the iterative



image reconstruction procedure, the final correction term is fed back to update the pixel after each

iteration. The iterations are continued until acceptable convergence is obtained.

Here, the uncertainty arises from the inability to correctly anticipate the pixel values (emission
density) from the incomplete projection data obtained from the PET measurement system due to

dimensional instability and the detector inefficiency.

In the proposed approach, the reconstruction process benefits from the consequence of the correct
estimation of edges in the neighborhood. Suppose, using the current estimate, the system makes a
decision that at a pixel location (7, j), an edge is present or an edge is absent. This decision leads

to a lowering of percent error.

In PET, the goal seeking paradigm is defined as: Find a decision (presence/absent of edge), so
that the outcome (reconstructed image) is acceptable within a predefined tolerance limit of the

desired error metric.

4. Summary of the Proposed Algorithm

Table 1: Proposed Algorithm

Begin
1. Precompute the annihilation-detection probabilities @ = [p;;], i =1,...,N, j=1,...
for all the pixels and the corresponding detector tubes.
2. Obtain the sensor (detector) reading y;; j =1, ..., M.
3. Assume the initial estimate to be uniformly distributed positive value A = 0.01.
4. Calculate the local derivatives for all the pixels along all the 8 directions and
the final correction term Ar(i'), where, {i’ = (i — 1) * VN + j}(eqn.10).
5. For j =1,..., N, calculate the pseudo-projections ¢¥ = SN Apy; and
the calculate the error ¢; = (y; — (1 + 5A7(i')¢;).
¥ My
6. Now, calculate the feedback term, A(A}) = m 2=t g—;pij.
7. Update the pixel values using, 5T = Ak + A(AE).
8. Continue the iterations until acceptable convergence is obtained.
End

Summary of the proposed algorithm is shown in Table.1.



5. A Case Study of goal seeking Paradigm

5.1. Simulated PET System

The algorithm has been tested on a simulated PET system. The PET system has been configured
with 128 detectors, equivalent to 4160 detector tubes. The object space is decomposed into 128 x 128
square pixels. The object space is a square region inscribed within the circular detectors. An
electron-positron annihilation event occurring inside a pixel is governed by a number of physical
phenomena, such as attenuation, scattering, absorption and detector characteristics. All these
physical processes have a bearing on the probability matrix. In this study, we assume that the
probability of an emission in box i and its detection in tube j depends only on the geometry of the
measurement system. In such a case, an annihilation event in box #, getting detected in a tube j
with the probability p;; is proportional to the angle of view from the center of the box ¢ in to the
detector tube j, i.e, p;; = Hﬁ Shepp et al. [2] have shown that the choice of p;; based only on the
geometry of the measurement system is reasonable, and that the results of the reconstruction do
not depend critically on the choice of p;;. Before the reconstruction begins, the probability matrix

P =[p;] i=1,..,Nand j=1,..,M is precomputed and stored.

For simulating measurement data, a Monte Carlo procedure is used [3][24][25]. In Monte Carlo
procedure, one uses random numbers to conduct experiments. Here, we are trying to learn a new
system that involves some randomness, and we wish to learn what behavior can be expected without
actually watching the real system. We first formulate a mathematical model by identifying the
key random variables which describe the PET system. For generating the simulated measurement

data, the following steps are followed:

(1) First, a random pixel is chosen in the test phantom (The concentration of the radionuclei at

the given pixel is assumed to be proportional to the emission density of the pixel).

(2) This point is taken as the emission point with probability proportional to the density values of

the pixel at that point. This makes sure that higher density points are chosen more often.

(3) For each of the accepted emission point, a randomly oriented line (between 0 to m radians)

is selected and the pair of detectors with which this line intersects are found. The random line



corresponds to the direction in which the pair of annihilated photons travel.

(4) The detectors which this line intersect are assumed to detect this annihilation event and the

count corresponding to this pair of detectors is incremented.

(5) Steps (1)-(4) are continued for every count which corresponds to an annihilation event. Nor-

mally, the number of counts are taken as large as 100,000.

(6) In this way, all the emissions are simulated and counted in the respective tubes. The array of

tube counts is taken as the measurement data for image reconstruction.

We have used a source image with different density values and a total of 100,000 emission counts

for the simulation studies.

5.2. Algorithm Evaluation and Comparison of Performance

All the evaluation tests defined in this section are carried out on a simulated PET system. In the
present paper two different phantoms are used for algorithm evaluation. The proposed algorithm
with a 5 x 5 neighborhood window is used. The results are also compared with those reconstructed
using MAP reconstruction algorithm. MAP with potential V(i — A;) = 32, n, (A = A;)? and
B = 2.5 x 10* is used in the present study. This choice of 3 has produced the best estimate and
hence this value of 3 is used for this study. In general, the algorithm is found to converge for the g
values in the wide range [10> — 107]. The images were tested for both the proposed new algorithm
and as well as the existing ML and MAP algorithm. The performance of the proposed algorithm

is evaluated using 5 different metrics.

5.2.1. Visual Inspection

Figs. 4 (b), (c) and (d) show the reconstructed images using ML, MAP, median root prior (MRP)
[19][20] and the proposed algorithm after 50 and 100 iterations respectively. For quality assessment,
the original test image(phantom) is also shown (see Fig.4(a)). The images reconstructed using the
proposed algorithm (see Fig.4 (d)) are more appealing and rich in edges. The proposed algorithm

compares favorably with the MAP and MRP algorithms.

5.2.2. Residual Error

The residual error measures the deviation of the generated pseudo-projections ¢;? of the recon-
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Figure 4: (a) Original phantom, (b), (¢), (d) and (e) are the reconstructed images using ML, MAP,
MRP and the proposed algorithm respectively.

structed image from the observed projection data y;. Residual error p(AF) at kth-iteration is given
by,
M
pOF) = (y; — #f)° (12)

Jj=1

where, ¢¥ = SN Mrpy; is the pseudo-projection in the tube j at k" iteration. Fig. 5 shows the
residual error of the reconstructed images using MAP, MRP and proposed algorithm. From these
plots, it is clear that the proposed algorithm has the lowest residual error compared to the MAP
and MRP algorithms. From these plots, it can be seen that the proposed algorithm requires fewer
number of iterations for obtaining an image with desired low residual error compared to MAP and

MRP algorithms.

5.2.3. Reconstruction with coarse and fine edge phantoms

To further substantiate the potential of the new approach, we have verified the performance of the
proposed algorithm for phantom with coarse and fine edges. Both the phantoms are used to bring
out the feasibility of the proposed algorithm. Figs. 6 and 7 show reconstructed images for coarse
and fine edge phantoms. Figs. 6(b,c,d,e) and Fig. 7(b,c,d,e) are the reconstructed images after

50 iterations of ML, MAP, MRP and the proposed algorithm respectively. The MAP algorithm
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(d)

Figure 6: (a) Original phantom,(b),(c) and (d) are respectively the reconstructed images using
MAP, MRP, and proposed algorithm for a coarser phantom.

has resulted in over-smoothened image, while MRP is found to produce streaking artifacts. The
proposed algorithm has produced artifact-free reconstruction. Robustness for phantom with both

coarse and sharp edges is evident from the reconstructed images.

5.2.4. Percent Error
For Qualitative measure of image quality, percent error is calculated after each iteration. This was

proposed by S. J. Lee [22] as a measure of image quality. Percent error is defined by,

_ =

ek = IV x 100% (13)

where, AF is the k"-reconstructed image, A is the true image and || ® || is the Ly norm. Fig. 8
shows that the proposed algorithm significantly improves the quality of reconstruction in terms of
percent error. Percent Error for the proposed algorithm is found to be lower than those produced
by ML, MAP and MRP algorithms. Dimensional Instability problem is reflected in the ML plot,

similar to those obtained using x2-test obtained by Veclerov et al. [21].

5.2.5. Reconstruction with 3 x 3 and 5 x 5 window
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(d]

Figure 7: (a) Original phantom,(b),(c) and (d) are respectively the reconstructed images using
MAP, MRP, and proposed algorithm for a sharper phantom.
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Figure 8: Percent error versus iteration plot for ML, MAP, MRP and the proposed algorithm.
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Figure 9: (a) Original phantom, (b) and (c) are the reconstructed images using the proposed
algorithm with 3 x 3 and 5 x 5 window.

To understand the effect of interaction of a pixel with its neighborhood population on the recon-
structed image, we have implemented the algorithm for two different neighborhood window sizes
viz. 3 x 3 and 5 x 5. The proposed algorithm is found to produce smoother images with a 5 x 5
window compared to a 3 x 3 window. This could be because of the pronounced short range spatial
correlation present in the reconstructed image. This is well evident form the reconstructed images

shown in Figs. 9(b) and (c). The original test phantom (Fig. 9(a)) is also shown for comparison.

6. Conclusions

In this paper, we have presented a new goal seeking approach for PET image reconstruction. This
is based on the integration of goal seeking approach with rule based techniques to model the po-
tential function (which accounts for the nearest neighbor interaction) in an image reconstruction
problem. A comparison of performance is discussed and the new approach promises a marked im-
provement in the quality of the reconstructed image compared to the those generated by existing

ML, MAP and MRP algorithms.
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