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Abstract:  
Wireless sensor networks have the potential to become significant subsystems of engineering 

applications. Before relegating important and safety-critical tasks to such subsystems, it is necessary to 

understand the dynamic behavior of these subsystems in simulation environments. There is an urgent need 

to develop  simulation platforms that are useful to explore both the networking issues and the distributed 

computing aspects of wireless sensor networks. Current efforts to simulating wireless sensor networks 

largely focus on the networking issues. These approaches use well-known network simulation tools that are 

difficult to extend to explore distributed computing issues.  

Discrete-event simulation is a trusted platform for modeling and simulating a variety of systems. 

We report results obtained from a new simulator for wireless sensor networks networks that is based on the 

discrete event simulation framework called OMNeT++. Work is underway to develop a simulation 

platform that allows developers and researchers to investigate topological, phenomenological, networking, 

robustness and scaling issues related to wireless sensor networks. As a first step, we have developed 

simulations for the 802.11 MAC and the well-known sensor network protocol called Directed Diffusion. 

We demonstrate the performance of our simulator by comparing its performance to that of the well-known 

simulator ns2. Our results indicate that our simulator executes at least an order of magnitude faster than 

NS-2 and makes more efficient use of the available memory.  The ease of modifying the sensor network 

and scalability, which is defined as the number of nodes that can be simulated, are two distinguishing 

features of our simulator. 

Index Terms 

Sensor Network, Performance Evaluation, Simulation 

1. Introduction 

Wireless Sensor Networks (WSN) [2] comprises of numerous tiny sensors that are deployed in 

spatially distributed terrain. These sensors are endowed with small amount of computing and 

communication capability and can be deployed in ways that wired sensor systems couldn’t be deployed. 

For example, sensors can be deployed in environments that are inaccessible for humans or sensor networks 

can be deployed in environments that are changing such as a chemical cloud. Despite the prolific 

conceptualization of sensor networks as being useful for large-scale military applications, the reality is that 

the best migration path for sensor networks research into non-academic applications is via integration with 



existing engineering applications infrastructure. For example, sensor networks have the potential to offer 

fresh solutions to fault diagnosis, health monitoring and innovative human-machine interaction paradigms. 

[1][12][13][19][24]. 

Before emerging technologies such as sensor networks and the underlying node-level architectures 

such as the event-driven architecture of TinyOS [6] can be incorporated as subsystems in mainstream 

engineering applications, it is necessary to demonstrate the efficiency and robustness of these subsystems 

through comprehensive simulations that involve the dynamics of both the application and the sensor 

network. Such simulation studies must explore the effects of scale, density, node-level architecture, energy 

efficiency, communication architecture, failure modes at node and communication media levels, system 

architecture, algorithms, protocols and configuration among other issues. Unlike traditional computer 

systems, it is not sufficient to simulate the behavior of the sensor network in isolation because of the tight 

and ubiquitous  coupling between the sensor network and its application. 

 

2. “Why a new Simulator” 

In a recent report [20] the following paragraph summarizes the need for a new simulator.  

“ns2, perhaps the most widely used network simulator, has been extended to include some basic 

facilities to simulate Sensor Networks. However, one of the problems of ns2 is its object-oriented design 

that introduces much unnecessary interdependency between modules. Such interdependency sometimes 

makes the addition of new protocol models extremely difficult, only mastered by those who have intimate 

familiarity with the simulator.  Being difficult to extend is not a major problem for simulators targeted at 

traditional networks, for there the set of popular protocols is relatively small.  For example, Ethernet is 

widely used for wired LAN, IEEE 802.11 for wireless LAN, TCP for reliable transmission over unreliable 

media.  For sensor networks, however, the situation is quite different.  There are no such dominant 

protocols or algorithms and there will unlikely be any, because a sensor network is often tailored for a 

particular application with specific features, and it is unlikely that a single algorithm can always be the 

optimal one under various circumstances.  

Many other publicly available network simulators, such as JavaSim, SSFNet, Glomosim and its 

descendant Qualnet, attempted to address problems that were left unsolved by ns2. Among them, JavaSim 

developers realized the drawback of object-oriented design and tried to attack this problem by building a 

http://www.j-sim.org/
http://www.cs.dartmouth.edu/~jasonliu/projects/ssf/
http://pcl.cs.ucla.edu/projects/glomosim/
http://www.scalable-networks.com/


component-oriented architecture.  However, they chose Java as the simulation language, inevitably 

sacrificing the efficiency of the simulation. SSFNet and Glomosim designers were more concerned about 

parallel simulation, with the latter more focused on wireless networks. They are not superior to ns2 in terms 

of design and extensibility.”  

The design of wireless sensor networks requires us to simultaneously consider the effects of 

several factors such as energy efficiency, fault tolerance, quality of service demands, synchronization, 

scheduling strategies, system topology, communication and coordination protocols. This paper presents the 

structural design of a new simulator for wireless sensor networks that is based on the discrete event 

simulation[5][9] framework OMNeT++ and results that demonstrate that the new simulator executes at 

least an order of magnitude faster than ns2 while using memory more efficiently. While the design we 

present is general, the simulations focus on an implementation of the IEEE 802.11 MAC layer and Directed 

Diffusion integrated with the Geographical and Energy Aware Routing (GEAR) protocol.  

The remainder of this paper is organized as follows: Section 3 describes the background for 

simulating sensor networks. Section 4 describes the simulation problem. Section 5 describes the 

implementation details of the new simulator and Section 6 discusses the performance of the simulator. 

 
3.  Currently available Simulators  

 
ns2 is a well-established discrete event simulator that provides extensive support for simulating 

TCP/IP, routing and multicast protocols over wired and wireless networks [4]. Radio propagation model 

based on two ray ground reflection approximation and a shared media model in the physical layer, an IEEE 

802.11 MAC protocol in the link layer and an implementation of dynamic source routing for the network 

layer were developed in the Monarch project [8].  

SensorSim builds on ns2 and claims to include models for energy and the sensor channel [11]. At 

each node, energy consumers are said to operate in multiple modes and consume different amounts of 

energy in each mode. The sensor channel models the dynamic inter-action between the physical 

environment and the sensor nodes. This simulator is no longer being developed and is not available.  

OPNET Modeler is a commercial platform for simulating communication networks [10]. 

Conceptually, OPNET model comprises processes that are based on finite state machines and these 

processes communicate as specified in the top-level model. The wireless model is based on a pipelined 



architecture to determine connectivity and propagation among nodes. Users can specify frequency, 

bandwidth, and power among other characteristics including antenna gain patterns and terrain models. 

J-Sim is another object-oriented, component-based, discrete event, network simulation framework 

written in Java [14]. Modules can be added and deleted in a plug-and-play manner and J-Sim is useful both 

for network simulation and emulation by incorporating one or more real sensor devices. This framework 

provides support for target, sensor and sink nodes, sensor channels and wireless communication channels, 

physical media such as seismic channels, power models and energy models. 

GlomoSim is a collection of library modules, each of which simulated a specific wireless 

communication protocol in the protocol stack [18]. It is used to simulate Ad-hoc and Mobile wireless 

networks.  

3.1 The OMNeT++ Framework 

Objective Modular Network Test-bed in C++ (OMNeT++) is a public-source, component-based, 

modular simulation framework [16]. It is has been used to simulate communication networks and other 

distributed systems. The OMNeT++ model is a collection of hierarchically nested modules as shown in 

Figure 1. The top-level module is also called the System Module or Network. This module contains one or 

more sub-modules each of which could contain other sub-modules. The modules can be nested to any depth 

and hence it is possible to capture complex system models in OMNeT++. Modules are distinguished as 

being either simple or compound. A simple module is associated with a C++ file that supplies the desired 

behaviors that encapsulate algorithms. Simple modules form the lowest level of the module hierarchy. 

Users implement simple modules in C++ using the OMNeT++ simulation class library. Compound 

modules are aggregates of simple modules and are not directly associated with a C++ file that supplies 

behaviors.  Modules communicate by exchanging messages. Each message may be a complex data 

structure. Messages may be exchanged directly between simple modules (based on their unique ID) or via a 

series of gates and connections. Messages represent frames or packets in a computer network. The local 

simulation time advances when a module receives messages from another module or from itself. Self-

messages are used by a module to schedule events at a later time. The structure and interface of the 

modules are specified using a network description language. They implement the underlying behaviors of 

simple modules.. Simulation executions are easily configured via initialization files. It tracks the events 

generated and ensures that messages are delivered to the right modules at the right time.   



 To take the advantage of the above features of OMNeT++ we have chosen it as the framework for 

Sensor Network Simulations. Its salient features include: 

¾ OMNeT++ allows the design of modular simulation models, which can be combined and reused 

flexibly.  

¾ It is possible to compose models with any granular hierarchy.  

¾ The object-oriented approach of OMNeT++ allows the flexible extension of the base classes provided 

in the simulation kernel.  

¾ Model components are compiled and linked with the simulation library, and one of the user interface 

libraries to form an executable program. One user interface library is optimized for command line and 

batch-oriented execution, while the other employs a graphical user interface (GUI) that can be used to 

trace and debug the simulation. 

¾ OMNeT++ offers an extensive simulation library that includes support for input/output, statistics, data 

collection, graphical presentation of simulation data, random number generators and data structures. 

¾ OMNeT++ simulation kernel uses C++ which makes it possible to be embedded in larger applications 

¾ OMNeT++ models are built with NED and omnetpp.ini and do not use scripts which makes it easier 

for various simulations to be configured. 

The following sections give the detailed implementation of our Simulation Scenario on OMNeT++. 
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Figure 1: Simple and Compound modules in OMNeT++ 

 



4. Simulation Design  

This section presents the architecture of a sensor node and the overall design of our new simulator 

[21][22][23].  The topology of the Sensor Network field in our simulations is derived from the Simple and 

Compound Module concept of the OMNeT++ framework. As shown in Figure 1, layers of a node behave 

as Simple Modules and a Sensor Node behaves as a Compound Module and all these Sensor Nodes 

constitute the Sensor Network depicted as System Module. The architecture of a Sensor Node is depicted in 

Figure 2. Each layer of the sensor node is represented as a Simple Module of OMNeT++.  The layers 

communicate with each other through gates and each of the layers has a reference to the Coordinator. The 

structure of a layer is represented as in Figure 3. These Simple Modules are connected according to the 

layered architecture of a Sensor Node. The different layers of the Sensor Node have gates to the other 

layers of the Sensor Node to form the Sensor Node stack.  A simple module with Wireless Channel 

functionality is used to communicate with these compound modules (Sensor Nodes) through multiple gates. 

The functionalities provided by each Module are described below with Radio, CPU and Battery Module 

forming the Hardware model of Sensor Node.  
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Figure 2: Basic Structure of the Sensor Node in our Simulator Structure 

 
 



A. CoOrdinator  Module 

CoOrdinator module has the functionalities that coordinate the activities of the hardware and the 

software modules of the sensor node. It is basically used for inter layer Communication. The 

CoOrdinator needs to be extended and functionality has to be added for access to properties of new 

hardware or consumers added. As shown in the Figure 3, the CoOrdinator class has the reference to all 

the layers in the sensor node and all the layers in the sensor node may access the CoOrdinator class 

implementation. Thus through the CoOrdinator any layer may access and update the properties of the 

other layer. For example the Battery Module needs to be informed on transmission or receiving the 

packets by the Physical Module so that the energy consumption is updated at the node accordingly. 

During simulation the CoOrdinator class is responsible for registering the Sensor Node to the Sensor 

Network. Registering of the Sensor Node is an indication that the sensor node is up and functioning. 

When the available energy is completely depleted, the node is unregistered from the sensor network. 
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Figure 3: Representation of a Layer in Sensor Node 

 

The connections between any two layers are done through gates and the communication is done 

through messages. These are the various connections of any layer to the other layers and the CoOrdinator. 

 

 



B. Hardware Model 

1.Battery Model: This module is an essential component of the Sensor Node, which supplies the 

necessary energy to CPU Module, Radio Module, and the Sensors used to sense the environment. Hence 

Battery is connected to all the hardware components of the node and decreases its energy resource 

depending on the power drawn by all the components. At regular intervals, the module updates its 

remaining energy depending on the type of Battery model used. Various models such as Linear Battery 

Model, Discharge Rate Dependent Model are being implemented. When all the hardware devices report 

their power consumption, the current discharge of the battery and hence the estimated duration, T (in hours) 

that the battery is expected to last is determined as  

 T = C / I, where 

C is the remaining capacity of the battery in Ampre-hours  

I is the total current drawn by the sensor node in Amperes  

The remaining capacity in the battery can be estimated assuming either a linear model or a 

discharge rate dependent model. In the linear discharge model, the  

Remaining Capacity, 

∫
∆

∆−=
t

ttICC in )(  

¾ Cin is the initial capacity of the battery and  

¾ I(t) is the current drawn by the sensor node in duration ∆ t.  
 

This model assumes that there are no self-discharges and the battery does not get damaged with 

age. The discharge rate dependent model assumes that higher discharge rates effectively reduce the 

remaining capacity of the battery. To allow various models to be implemented with the type of application, 

we have a basic Battery Module, BatteryBase, which forms the abstract class for the different battery 

models. BatteryLinear is a subclass of BatteryBase and updates the energy depending on the number of 

consumers and the state of activity of the consumers. BatteryDischargeRate is a subclass of BatteryBase 

and the energy consumption is a linear function of current.  

2. CPU Model: The nodes in a Sensor Network are usually equipped with very low-end processors or 

microcontrollers. The power consumption for performing various operations should be very low and we 

have used a standard set of parameters for energy consumption by the Processor model. The processor 

needs different levels of energy consumption in the Idle, Sleep and Active states. The processor power 



consumption model is very important and ignoring that will lead to incorrect trends in power consumption 

in the network. New processor models with enhanced features and improved energy consumption levels 

can be incorporated in this module for testing various kinds of applications. CPUBase abstract class forms 

the basis for different CPU models and it defines the interfaces of this module with CoOrdinator and the 

Battery. CPUSimple has implementation of the power consumption of the CPU in different states: Idle, 

Sleep and Active. 

3. Radio Model: This model is used to characterize the antenna property of a node. RadioBase is an 

abstract class for the different Radio models. RadioSimple, a subclass of RadioBase updates the energy of 

the battery depending on the state of the Radio: idle, sleep, transmit, and receive. The values for the 

different properties of the hardware and consumers maybe provided through the configuration file. 

 

C. Wireless Channel Model:  

The Wireless Channel Module controls and maintains all potential connections between the Sensor 

Nodes. These static connections are provided from all the nodes to the Wireless Channel Module and from 

the module to all the nodes in the NED file. These connections enable Sensor Nodes to exchange data and 

communicate with each other. Any message from a node is sent to all the neighbors within its transmission 

region with a delay d where d is (Distance between the communicating Sensor Nodes) / Speed of Light. 

Various Radio Propagation models are used to predict the received signal power of each packet. 

These models affect the communicating region between any 2 nodes and are derived by the Wireless 

Channel.  

1. Free Space Propagation Model: The free space propagation model assumes the ideal 

propagation condition that there is only one clear line-of-sight path between the transmitter and receiver. H. 

T. The received signal power in free space at distance _ from the transmitter is estimated as: [25] 

2222
rttr L*d*)4/()*G*G*P(P πλ=  

¾ Pt is the transmitted signal power  

¾ Pr is the received signal power  

¾ G t, G r   are the antenna gains of the transmitter and the receiver respectively. 

¾ L is the system loss, and _ is the wavelength. 



2. Two-ray ground reflection model:  A single line-of-sight path between two mobile nodes is 

seldom the only means of propagation. The two-ray ground reflection model considers both the direct path 

and a ground reflection path. This model gives more accurate prediction at a long distance than the free 

space model. The received power at distance _ is predicted by  

)L*d/()h*h*G*G*P(P 42
r

2
trttr =

 

¾ h t and h r - heights of transmit and receive antennas respectively 

 
The above equation shows a faster power loss than for Free Space Model as distance increases.  

D. Sensor Node Stack:  

The simple module at the highest level of the hierarchy of the Sensor node, namely 

AppLayerSimple, simulates the behavior of the Application Layer. This module communicates with the 

NetLayerBase Module through gates to schedule any messages. New applications can be incorporated to 

this module. The functionality of this module is described in greater detail for the Directed Diffusion 

implementation.  

The Simple Network Module simulates the packets sent and received by the nodes in the network. 

The Network Module initially receives Application Layer Messages from the AppLayer Module and adds 

the Network Header to it. The particular features of this layer depend on the protocol implementation. 

Directed Diffusion with GEAR is implemented at the network layer as described in the next section. The 

packet structure of the Network Layer sent to the MAC layer has the next hop in the route.  

The MAC layer provides the interface between the Physical Layer and  the Routing Layer. It has the basic 

functionality of Media Access and the functionality of this module is described in greater detail for the 

802.11b implementation.  

 Such a modular structure of entities simulated with OMNeT++ makes our simulation more 

flexible than ns2. 

 
5. Implementation Details 
 
 Using the above design for the simulator, we implemented Directed Diffusion at the Network 

Layer and compared the performance with the existing simulator ns2. MAC 802.11b is also implemented at 

the MAC Layer and the performance is compared with ns2 with Directed Diffusion at the Network Layer. 

The implementation is described with a block diagram in Figure 4.  The implementation used a simple pass 



through Physical Layer, a simple WirelessChannel Module with the Application Layer generating query 

packets and forwarding to Network Layer. 
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Figure 4: Implementation Scenario 
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A. Directed Diffusion with GEAR 

We have implemented Directed Diffusion[7] along with Geographic Routing. The Application Layer 

generates interests that specify the region, the kind of data required and rate of delivery of data. Nodes that    

initiate the interest are called subscribers. On receiving the interest message, the network layer       

                        
Query -  attribute 
Query -   rate of data 
Query -   duration 

 

 

 

Figure 5: Structure of a query 

 

broadcasts beacon messages in the network. The immediate neighbors of the node on receiving beacon 

messages reply back with beacon-reply type of message that contains their geographic location and the 

energy left in them. On receiving the beacon-reply messages, the neighbor table of the node that sent the 

beacon is updated. The node waits a fixed duration of time to receive the beacon-reply from all the 

neighbors. The interest message is then forwarded to the node that has a lower estimated cost to the region 

as calculated by the GEAR protocol[17]. The next node follows the same procedure and forwards the 

message towards the region by Geographic Routing. If a node in the path does not have any neighbors or 

all its neighbors are away from the region, then it sends a message to its parent node that it is a dead-end. 

The parent node on updating the cost of the unreachable node, forwards the query in an alternate route 

towards the region. In the target region, the interest is dessiminated by using recursive flooding. The 

interest cache is maintained at each of the nodes in the path with its gradient of interest to each of the 

neighbors. The nodes in the region that have the specified properties of the interest send out data. Nodes 

that send data out are referred to as Publishers.  

The data is marked as Exploratory to reinforce the path that was taken by the interest. On 

receiving the data marked as Exploratory by the subscriber, a positive reinforcement message is sent out by 

the Subscriber node. Each node on the path forwards this message - thus reinforcing the path to the region. 

When a node reinforces a path, its cost to the region is known and this cost is sent back to its source node, 

which updates the cost information of that node to the particular region of interest. Thus the path with the 

lowest cost is always maintained, reinforcing the route.  



The data from the region follows the path established by the reinforced messages. The nodes in the 

region send out data at the rate that is specified in the query. Data caching is implemented in intermediate 

nodes and so the data requested by different subscribers from the same region can be satisfied by the 

common node in the path thus reducing the traffic and redundant messages. The data marked as exploratory 

are sent to identify better paths and reinforce at regular intervals. Also the neighbor- updating procedure is 

carried out, i.e. at regular intervals the beacon messages are broadcast and beacon-reply messages are sent 

by neighbors thus maintaining latest neighbor information. 

C. 802.11 MAC 

  The MAC layer places the network packet on the Wireless Channel. The NetworkPacket maybe a 

broadcast or unicast packet to a specific node (sink node). Any network layer packet received by the MAC-

802-11 [3][15][26] module is encapsulated into MAC frame with the MAC header added to it.  

The Network layer packets have the information whether the packet has to be broadcast or unicast. 

Broadcast packet is encapsulated into Broadcast MAC frame with appropriate MAC Header and is put in 

the Messages-queue of the MAC Layer. If the Network packet is for a particular destination, RTS frame is 

created and is inserted in the Messages-queue of MAC layer. If the Network packet length is more than the 

MAC frame, it is fragmented and the fragments for that Network Packet are created with MAC headers and 

are inserted into the Fragments Queue.  

The MAC layer then waits for the channel to be idle to send its frame from the Messages-queue. 

MAC layer has a NAV Timer, which specifies the busy/idle state of the medium. NAV Timer set for a node 

implies that the channel is busy. When the NAV Timer expires the MAC layer waits for the channel to be 

free for DIFS time and if the channel is still idle after DIFS timer gets expired, it then goes into Exponential 

BackOff. It then waits for a random time set by the BackOff Timer. The BackOff Timer decrements its 

value during the idle period of channel. The node whose BackOff Timer expires earlier will get the chance 

to transmit its next frame. All the intermediate nodes receive this frame, set their NAVTimer to the value 

obtained from the Header field of the received frame. Then the BackOff Timer of the intermediate nodes is 

stopped from decrementing. Once the channel becomes idle (when the NAVTimer expires) all the nodes 

start decrementing their BackOff Timer. The node whose Back Off Timer expired earlier and got the 

channel will send the first message from the Messages Queue. If it is a broadcast message, then all the 

nodes in its region receive it and the MAC layer of those nodes decapsulate the Network packet and send it 

to the Network Layer. If it is a RTS frame, the Destination node checks whether its NAV timer is set or not 



(its transmission region is busy or not) and then responds to it by sending CTS. All the other intermediate 

nodes receiving this RTS update their NAV Timer to the CTS+DATA+ACK duration which implies that 

the channel is busy for that duration and hence refrain from transmitting during this interval. If the 

Destination node receives more than two RTS requests within a time interval then collision occurs and the 

Destination node does not respond (send CTS) to any of these RTS requests. The Source node which is 

sending RTS have an RTSExpired Timer set for RTS frames, when they are sent to the Destination node. 

This timer is scheduled to expire after RTS+CTS duration. If the Source node does not receive CTS within 

this duration, RTSExpired Timer gets expired and retry counter of that RTS frame is incremented. If the 

retry counter is less than ShortRetyLimit (as per the specification), then the Contention Window is doubled 

and the random time set by the BackOff Timer is chosen between 1 and the Contention Window size. If the 

retry counter reaches ShortRetryLimit, then the message (RTS and corresponding Fragment) is dropped by 

the MAC.  

If the Destination node responds to RTS by sending back the CTS, the intermediate nodes for CTS 

will update their NAVTimer obtained from the Header field of CTS frame (Data+Ack duration) and hence 

refrain from transmitting during this interval. Once the Source node gets the CTS, it will send the 

corresponding fragment of the Network Packet to the Destination and waits for an Acknowledgement. The 

Destination node upon receiving the Data frame extracts the Network packet, sends it to the Network layer 

and sends back the Acknowledgement to the Source node. Once the Source node gets the 

Acknowledgement it checks and sends if there are any other fragments to be sent to this node without any 

additional RTS frames. The table shows the standard parameters used for our implementation. 

Property Values 

SIFS 10 µsec 

DIFS 28 µsec 

Slot Time 20 µsec 

Data Rate 1 Mbps 

RTS Length 44 bytes 

CTS length 38 bytes 

ACK Length 38 bytes 

DATA Length Variable 



 

6. Experimental Results:  

 In this section, we present results from three different studies. First, we establish that the 

DirectedDiffusion simulation in our work is consistent with the Diffusion implementation in ns2. Next, we 

compare the performance, with respect to execution time and memory used, between our simulation and 

that of ns2. 

A. Validating DirectedDiffusion Implementation 

In this experiment, we considered Sensor Networks with different number of nodes between 5 and 

200. For each Sensor Network, we identified the maximum size of the sensor field (with respect to grid 

coordinates). Then, we identified a fixed number of query generating nodes and distributed these nodes 

randomly in the sensor field. Next, we determined a target region and specified the boundary of the region 

in terms of the grid coordinate and the number of sensor nodes in the region. We executed the simulation 

for a specified duration and observed the ratio of the number of packets generated in the region and the 

number of packets received by the query generating nodes. 802-11 MAC is being considered at the MAC 

layer with a simple pass through Physical layer for these simulations.  The results for 5-200 nodes are 

shown in Figure 6. The results show that for a similar topology and simulation environment, the delivery 

ratio is comparable with ns2 as seen in Figure 6. 
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Figure 6: Comparison of Delivery Ratio 

 

 



 

We also executed the simulations to verify the Directed Diffusion implementation on our Sensor 

Simulator by observing the changes in Delivery Ratio of Data Packets by region, by varying the number of 

queries as shown in Figure 7. 

Number of Nodes = 500                       Simulation Time = 300 sec 

Network Size = 500-500     Number of nodes in region = 10 nodes  
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B. DirectedDiffusion with SimpleMAC:  

N sensor nodes are randomly placed in a grid of size M ×P. Randomly few nodes send queries 

towards a region of interest. The path taken by queries is decided by first sending interests. We 

implemented attribute list to define the type of interest or data message. When a node receives an interest 

message, it first checks if it has the property list of its neighbors. The property list that the node maintains 

is the distance from the neighboring node to the final destination and the energy level’s of the neighboring 

nodes. If the node has this neighbor list it checks the last updated time of the neighbor list. If this time is 

with in the permissible limit, this information is used to decide the next hop neighbor. If the neighbor list 

does not exist or the last updated time is more than the desired time limit then  

beacon messages are sent out. All the neighboring nodes receive this beacon message. The neighboring 

nodes then send back beacon reply messages, which update these properties in the neighbor list. The next 

hop neighbor decision is based on the GEAR protocol. We give equal weightage to distance and energy 

factors. After the query reaches the region of interest, it is flooded to all the nodes in the region. A visited 



node list is maintained to avoid going into a loop. When a node in the region of interest receives an interest 

it sends back an exploratory message to the source of the interest. The exploratory message follows the 

reverse path taken by the interest message. It gets the reverse path information from the nodes. When this 

exploratory message reaches the source node, the source node reinforces the path by sending back 

reinforcements. The reinforcements might or might not follow the same path as the initial interest message. 

On the arrival of the reinforcements the nodes in the region of interest start sending back data messages at 

the rate specified in the interest. At regular intervals these data messages are marked as exploratory. When 

the source receives a data message marked as exploratory it sends reinforcements to rebuild the path. This 

would repair any holes that might have formed in the path 

In order to test the performance of the simulation we ran the setup with queries generated by 10 

nodes at random locations in the network. A similar test was performed with 100 nodes generating queries. 

The queries follow a multi-hop route to the region following the procedure mentioned above. Once the 

query reaches the region the data is sent back once every 5 seconds for the complete simulation time by all 

the nodes in the region. The objective of this kind of setup is to check whether the simulation framework is 

able to handle the traffic generated and run to completion as well as to check the amount of time required to 

run the simulation. Figures 8 and 9 shows the performance of the two simulators (ns2 Vs. our Simulation) 

for the setup with 10 nodes and 100 nodes generating queries. For these experiments a pass through Simple 

MAC and a simple Physical Layer are being considered. It is can be observed that 

the performance of both the simulators ns2 and SensorSimulator showed similar results at less number of 

nodes in the network. As the number of nodes in the network increases, SensorSimulator is able to handle 

the traffic and the events generated in a better fashion so as to complete the simulation in a reasonable time 

faster than ns2. It has been observed that ns2 ran out of memory for network above 2000 nodes. It can be 

also observed in the figures that the execution time for the simulation run on the SensorSimulator is less 

than that for ns2 for the same simulation results obtained on both the simulators. During the simulation 

runs, we measured the memory allocated before the start of the simulation, i.e it gives the memory usage 

for the initialization and the setup of the objects of the simulation. The memory usage during the simulation 

was also measured. The results for the memory usage are as shown in Figure 10 and Figure 11 when 10 

nodes are sending queries and Figure 12 and Figure 13 show the performance of the simulators for 100 

nodes sending queries to the region. This shows that the data structures used for the simulation are used in a 

scalable manner to represent the different classes and the interaction with the framework. It can also be 



observed that the rate of memory usage increases at a faster rate for ns2 than for SensorSimulator thus 

allowing for large simulation setup and more scalability in SensorSimulator than ns2. 
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Figure 8:  Execution Time for 10 queries – SensorSimulator Vs ns2 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

0
2000
4000
6000
8000

10000
12000
14000
16000

10
0

20
0

30
0

50
0

10
00

20
00

Number of Nodes

T
im

e(
se

c)

SensorSimulator
ns2

Figure 9: Execution Time for 100 queries – SensorSimulator Vs ns2 
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Figure 10: Memory Consumption before Simulation starts– 10 queries 
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Figure 11: Memory Consumption after Simulation ends – 10 queries 
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Figure 12:  Memory Consumption before Simulation starts– 100 queries 
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Figure 13: Memory Consumption after Simulation ends – 100 queries 

 

C. DirectedDiffusion with IEEE 802.11 MAC 

This series of experiments use MAC 802.11b at the MAC Layer and compare the performance of 

SensorSimulator with ns2. A simple pass through Physical Layer is considered. The simulation is run for 

100, 500, 1000 and 2000 nodes. The nodes in the Sensor Network are deployed randomly in various 

locations with the network size being configurable in the omnetpp.ini file. Figure 14 shows the relative 

performance. The set up for them is: 

Number of Queries: 10  Network Dimension – Varies with the number of nodes 

Number of Nodes in Region: 10 Simulation Time = 300 sec 
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Figure 14: Comparison with ns2 – Execution Time 

 

 

Similar scenario was developed in ns2 and the performance of the simulation i.e. the time 

taken by the simulator to complete the application is compared in both of them. The results show that 

SensorSimulator takes less time than ns2 even when the numbers of nodes are increased to 2000. The 

results were validated by confirming that the query nodes are getting back the appropriate data from the 

region.  

    The next simulations are carried on for high traffic scenarios. The number of nodes are varied from 500 

to 2000 with 100 nodes generating queries at random intervals. This result as in Figure 15 shows that 

SensorSimulator is able to perform better than ns2 even for high traffic networks.  

Number of Queries: 100  Network Dimension – Varies with the number of nodes 

Number of Nodes in Region: 15 Simulation Time = 250 sec 
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          Figure 15: Comparison of Execution Time with 100 queries 

The memory used is also compared for both simulators and our observations show that 

SensorSimulator consumes less space than ns2. These results, as in Figure 16 show that the data structures 

used for the simulation are used in a scalable manner to represent the different classes and the interaction 

with the OMNeT++ framework. It can also be observed that the rate of memory usage increases at a faster 

rate for ns2 than for SensorSimulator thus allowing for large simulation setup and more scalability in 

SensorSimulator than ns2. 

Set up:   Number of Queries: 10             Network Dimension – Varies with the number of nodes 



 Number of nodes in region: 5 Simulation Time = 300 sec 
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Figure 16: Comparison of Memory Consumption 

 

7. Conclusions and Future Work 

The results presented in this paper show that OMNeT++ is a viable discrete event simulation 

framework for studying both the networking aspects and the distributed computing aspects of sensor 

networks. We presented the architecture of a sensor node that is used in the simulator and the general 

architecture of the simulator. 

Based on our studies with the IEEE 802.11 MAC and Directed Diffusion integrated with GEAR, 

we conclude that our simulator is at least an order of magnitude faster than ns2 and uses memory more 

efficiently than ns2. The modular structure of compound modules and the ease of configuring simulation 

scenarios via an initialization file offers us a tremendous amount of flexibility to model and study the 

dynamic behaviors of both the sensor network and the application environment such networks are expected 

to operate.  
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