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1. INTRODUCTION

In recent years, the advancement of 3D acquisition technology has greatly enriched the
availability of digital geometric data. A fundamental problem that exists in many data
processing tasks is to correlate these 3D raw acquisitions, so that the analysis, compar-
ison, and integration of different objects or a same object under different modalities can
be done in a unified coordinate system or parametric domain. This article studies the
problem of establishing a bijective map or correspondence between two given geometric
shapes, which is simply referred to as shape mapping in the following.

Specifically, given two 3D objects M0 ⊂ R3 and M1 ⊂ R3, the goal of shape mapping is
to solve a map f : M0 → M1 between them following some geometric and semantic crite-
ria. Desirable geometric properties of a mapping function include the preservation of an-
gles, area/volume, distances, or other metrics under the transformation induced by the
mapping. Desirable semantic properties of a mapping include the modeling/alignment
of various functional, material, or anatomical features/structures/layers of the data.

This work is partially supported by the National Science Foundation IIS-1320959, IIS-1251095, and
CNS-1158701; Louisiana Board of Regents LEQSF(2009-12)-RD-A-06, LEQSF-EPS(2009)-PFUND-133, and
LEQSF-EPS(2013)-PFUND-312; and the National Natural Science Foundation of China No. 61170323.
Authors’ address: X. Li, School of Electrical Engineering and Computer Science, and Center for Computation
and Technology, LSU, Room 2002, Louisiana Digital Media Center, 340 E Parker Blvd, Baton Rouge, LA
70808, USA; S. S. Iyengar, School of Computing and Information Sciences, Room 351, Computing and
Information Sciences (ECS) building, Florida International University MMC Campus, Miami, FL 33199,
USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0360-0300/2014/12-ART34 $15.00

DOI: http://dx.doi.org/10.1145/2668020

ACM Computing Surveys, Vol. 47, No. 2, Article 34, Publication date: December 2014.

http://dx.doi.org/10.1145/2668020
http://dx.doi.org/10.1145/2668020


34:2 X. Li and S. S. Iyengar

The map f : M0 → M1 can usually be represented as scalar fields fx, fy, fz defined on
M0, which minimize an objective function E( f, M0, M1) measuring geometric and/or se-
mantic distortions. We classify and compare different mapping algorithms by analyzing
their optimization models and solving strategies.

In some scenarios, instead of solving the mapping function f in 3D space (in which the
objects embed) explicitly, a convenient implicit way to obtain f is using the parametric
representations of M0 and M1 on a common domain �. A parametric representation or
a parameterization of Mi on � can be defined as a bijective map φi : � → Mi from a
canonical domain � to the 3D shape. With the parameterizations of both shapes onto a
same domain, the shape mapping f : M0 → M1 can be obtained by the composition f =
φ1 ◦φ−1

0 . For example, to map two surface patches M0 and M1 that are topological disks,
one can first parameterize both M0 and M1 onto a unit planar disk D : {(x, y)|x2+y2 ≤ 1}
via φ0 = D → M0 and φ1 = D → M1, then obtain the bijective correspondence between
M0 and M1 by the composition: ∀p ∈ M0, f (p) = φ1 ◦ φ−1

0 (p) ∈ M1.
The shape mapping problem can be generalized to correlate multiple objects. For

n+ 1 objects M0, M1, . . . , Mn, one can either compute n explicit maps fi : M0 → Mi, i =
1, . . . , n, or solve n + 1 implicit parameterizations, φi : � → Mi, i = 0, 1, . . . , n, then
respectively, compose interobject correspondence fi, j : Mi → Mj using either fi, j =
f j ◦ f −1

i or fi, j = φ j ◦ φ−1
i .

Geometric mapping has many applications in tasks involving spatial or spatiotempo-
ral alignment or correlation problems in graphics, vision, medical imaging, computer-
aided design, and other scientific/engineering fields. A few examples are illustrated in
Figure 1: in computer vision and reverse engineering, shape mapping is needed for
digitization of 3D objects during the scan reconstruction stage, as geometric objects
often need to be scanned from multiple angles and the overlapped regions from differ-
ent scans are mapped and then stitched together to compose the complete model (a).
In forensics and archeology, effective mapping among fragmented pieces can be used
to reassemble and restore damaged geometric objects (b). In graphics and animation,
shape mapping can be used to generate a shape-interpolation that animates the mor-
phing from one object to another (c). In medical image analysis, sequential CT/MRI
scans can be correlated to model the deformation of the organs for motion tracking and
prediction (d).

1.1. Classification of Cross-Shape Mapping Algorithms

In general, mapping computation can be formulated as an optimization problem. We
classify mapping algorithms through the way the (a) objective functions and (b) con-
straints are formulated, and (c) optimization strategies are adopted in problem solving.
The classification is elaborated here and illustrated in Table I.

—First, mapping computation can be modeled using different objective functions.
(1) Using the dimensionality of the shape, geometric mapping can be classified as

curve (1D-manifold) mapping, surface (2D-manifold) mapping, volumetric (3D-
manifold) mapping, and so forth. If the input is a sequence of shapes, we call the
mapping function that correlates all these shapes as dynamic (n Dimensional plus
Temporal, or nD+ T ) shape mappings. This article focuses on the mapping of 2D,
3D, and 2D/3D + T data, whose modeling and analysis applications most widely
exists in scientific tasks.

(2) Based on its completeness, mappings can be complete or partial. A complete map-
ping maps an entire object bijectively onto the other. In contrast, a partial map-
ping only correlates some commonly matched subregions from different shapes.
For example, in 3D damaged geometric data restoration (Figure 1(b)), fragmented
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Fig. 1. Several applications of different types of shape mapping.

pieces share only partial geometric similarities with adjacent pieces, and partial
mapping between these overlapping fracture regions is needed to perform correct
reassembly and completion. In contrast, in morphing animation (Figure 1(c)), a
complete map between two entire given models is needed to construct a natural
interpolation between these shapes.

(3) The transformation model is another factor that dictates the formulation of ob-
jective functions in mapping computation. In some tasks, meaningful mappings
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Table I. Classifications of Cross-Shape Mapping Schemes and This Article’s Organization

Shape dimensions Mapping nD manifolds; Mapping nD + T
manifolds

Representation
schemes

Parametric vs. nonparametric representations,
explicit vs. implicit representations

Objective
Functions

Transformation
models

Rigid mapping vs. nonrigid mapping

Distortion Geometric deviation; metric distortion
Completeness Complete mapping vs. partial mapping
Feature alignment With vs. without feature correspondence

Constraints Other constraints Bijectivity, smoothness, regularization
Optimization
Methods

Optimization
strategies

Deterministic optimizations, stochastic
optimization

are restricted to simple global transformations that preserve Euclidean geometric
properties, thus the maps to be solved are simply translations, rotations, or their
combinations. For example, in 3D scan reconstruction (Figure 1(a)), multiple scans
of the same object differ only by coordinate transformations, thus one only needs
to find suitable rigid transformations for their stitching. In some other scenar-
ios, f can be any free-form transformation where the deformation can be locally
different in a free manner. For example, to track the tissue motion from dynamic
medical images (Figure 1(d)), the soft tissues and organs are deforming nonrigidly.
Therefore, one needs to seek a good nonrigid deformation that minimizes some
predetermined geometric and biophysical energies.

— Second, considering different constraints to be enforced in the optimization, we can
classify mapping computation by using different shape representation schemes, by
whether or not certain features are incorporated, or by either representing the map
function explicitly or implicitly.

— Finally, optimization problems can be solved using different strategies according to
the structure of the objective functions and constraints. We classify them as deter-
ministic and stochastic optimization approaches, which are suitable for solving maps
in different scenarios.

1.2. Comparison with Existing Surveys

Shape mapping is related to 2D image registration in computer vision, and 3D geomet-
ric parameterization and correspondence in graphics. There are a few surveys in these
related fields. However, the problem of shape mapping computation discussed in this
article, which aims to establish a bijective map of given geometric data that minimizes
metric or semantic distortions, is different from those problems.

2D image registration, studied in computer vision and medical imaging, seeks a trans-
formation that maps the spatial coordinates (grid pixels) on one image to those on the
second image [Brown 1992; Pluim and Fitzpatrick 2003]. 3D cross-shape mapping has
several fundamental differences from 2D image registration, and many image-based
methods cannot be generalized for mapping 3D shapes. (1) First, due to the funda-
mental principal of imaging, the 3D objects are projected to 2D images, losing depth
information. Under the projective transformations, most Euclidean or Riemannian
geometric properties of 3D shapes—such as their structure and length—are not pre-
served. Therefore, instead of preserving intrinsic geometric properties, image regis-
tration algorithms often seek projective invariants, affine invariants, or illumination
invariants. (2) Also, image registration algorithms are usually formulated as finding the
transformation between the two image spaces. The solved transformation is extrinsic
and deforms the space rather than the object itself. Shape mapping, in contrast, seeks

ACM Computing Surveys, Vol. 47, No. 2, Article 34, Publication date: December 2014.



On Computing Mapping of 3D Objects: A Survey 34:5

an intrinsic deformation of the shape itself. This transformation is determined by the
geometric properties (such as its topology, geometric metrics) of the object, rather than
how the object embeds in the 3D space. Therefore, unlike the image registration—that
has simpler topological structure and whose optimization can be formulated/solved
in the Euclidean spaces directly—a mapping between 3D shapes is often defined on a
curved geometry/manifold, and its optimization can have more complicated constraints
and is more expensive to compute. (3) Finally, 3D shapes possess complete geometric
shape information, but many do not have colors and textures, thus the modeling of
features on images and on 3D shapes is often quite different.

3D shape alignment or registration is another closely related problem to shape map-
ping. An alignment or registration seeks a best transformation (within a certain model
space) to lay a source object onto the target object. Achieving such a transformation is
not always equivalent to computing a mapping between two shapes. For example, when
the goal is to find a global rigid alignment between two given objects, the transforma-
tion is not required (and usually, not possible) to bijectively map the source object M1
onto the target object M2. An alignment T , designed to reduce alignment error, such
as the Hausdorff distance, often does not introduce a map among points of M1 and M2.
Tam et al. [2013] focused on discussing different registration algorithms for the data
fitting application, which can be done through aligning a clean and complete template
to the raw/incomplete data. For applications like this, establishing a one-to-one map is
often not necessary.

The shape correspondence problem attempts to establish either coarse or dense cor-
respondences between 3D shapes. Coarse correspondence focuses on mapping a small
set of feature points on two objects, while dense correspondence aims to map more
densely sampled point sets on the objects. Kaick et al. [2011] conducted a survey on
this topic. Research on the shape correspondence problem mainly focuses on matching
semantically correlated points or regions, and the shapes (or parts of the shapes) are
often assumed to be either perfectly or nearly isometric to each other so that their
global intrinsic structures are relatively stable. Major applications of this research
include shape recognition/retrieval, shape segmentation, and time-varying reconstruc-
tion [Sahillioglu 2012]. The criteria for effective correspondence are often the success-
ful semantic alignment in various domain-specific applications. Therefore, Kaick et al.
[2011] focused on feature point description and matching; although regularization is
also considered in shape correspondence computation, the bijectivity and intrinsic an-
gle/volume distortion is often not thoroughly examined.

The surface or volume parameterization problem, which finds a bijective map be-
tween a given surface/volume and a suitable parameter domain, is another closely
related topic in graphics and geometric processing. Most existing parameterization
surveys [Floater and Hormann 2005; Sheffer et al. 2006; Hormann et al. 2007] dis-
cuss the flattening of 3D shapes onto a planar region. Effective parameterization often
provides a useful computational tool for implicit cross-shape mapping computation.
However, shape parameterization does not directly achieve intershape mapping if the
shapes have nontrivial topology. The parameterization of surfaces or volumes with
nontrivial topologies inevitably contain singularities whose numbers and distributions
may not be easily controllable, and without consistently distributed singularities, two
parameterizations cannot be used to compose a valid intershape mapping.

1.3. Organization

We first introduce the necessary background and terminologies in Section 1.4. Then
following Table I, we will elaborate mapping computation algorithms classified by
different objective functions, constraints, and optimization methods, respectively, in
Sections 2, 3, and 4.
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1.4. Notations and Problem Formulation

Smooth geometries or manifolds are often discretized to polygonal meshes for storage
and computation. 3D surfaces (solids) can be triangulated (tetrahedralized) and adap-
tively refined to approximate the original geometry. The generalized terminology for
geometric primitives—such as points, edges, triangles, and tetrahedra—are referred
to as simplices; a triangular or tetrahedral mesh is defined as a simplicial complex.

Suppose k + 1 points {v0, v1, . . . , vk} are affinely independent in Rn, n ≥ k + 1; the
k-dimensional simplex (also denoted as k-simplex in the following) [v0, v1, . . . , vk] is the
minimal convex set including all of them in other words,

σ = [v0, v1, . . . , vk] =
{

x ∈ Rn|x =
k∑

i=0

λivi,

k∑
i=0

λi = 1, λi ≥ 0

}
. (1)

We call {vi} the vertices of the simplex σ , and all corresponding {λi} the barycentric
coordinates of point x ∈ σ . Following this definition, the points, edges, triangles, and
tetrahedra are 0, 1, 2, and 3-simplices, respectively. If σ is a simplex and τ ⊂ σ is also
a simplex, then τ is called a facet of σ , denoted as τ ≤ σ . Simplexes can be coherently
glued together to form simplicial complexes. A simplicial complex M is the collection
of facets of a finite number of simplices, any two of which either are disjoint or share
a common facet, that is, (1) if a simplex σ belongs to M, then all its facets τ ≤ σ also
belong to M; and (2) if σ1, σ2 ∈ M, then σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 ≤ σ1, σ2. The dimension
of a complex M is the highest dimension of any simplex σ ∈ M. If M’s dimension is
k, we call it a k-complex. Triangular meshes and tetrahedral meshes are 2-complexes
and 3-complexes, respectively.

A piecewise linear mapping function f between two n-complexes M1 and M2 is defined
on vertices of M1, namely, f (v) maps v ∈ M1 to a point x in an n-simplex of M2, and x’s
location is indicated by the (n + 1)-dimension barycentric coordinates (see Equation (1)).
The mapping function f : M1 → M2 between two shapes in 3D can be explicitly
described by three piecewise linear scalar fields (φ1, φ2, φ3) defined on vertices of M1.
These piecewise linear scalar fields have constant gradients (∇φ1,∇φ2,∇φ3) within
each n-simplex of M1.

2. OBJECTIVE FUNCTIONS

Shape mapping algorithms can be classified by the different objective functions to
be optimized. We discuss different mapping algorithms from four major aspects in
Sections 2.1 through 2.4.

2.1. Dimensionality and Representations of Shapes

Shape Dimensions. We can classify the mappings between/among shapes using the
dimensionality of the shapes. Curves, surfaces, and solids can be discretized as 1D,
2D, and 3D simplicial complexes. Higher dimensionality of the shapes increases the
complexity of topology and geometry of the data and their mapping computation.

• Curve mapping has been studied [Sebastian et al. 2003; Pajdla and Gool 1995] and
applied in computer vision for handwriting or signature recognition [Meenakshi
et al. 2004], 2D shape contour recognition [Ferrari et al. 2008], and in computer
graphics for skeleton matching (which can further guide cross-surface [Wang et al.
2009; Li et al. 2006; Li 2008] or cross-volume [Li et al. 2010] mapping) or shape
retrieval [Sundar et al. 2003; Hilaga et al. 2001]). Curve mapping, finding most of its
applications in image analysis, is not the focus of this survey; we refer the readers
to Sebastian et al. [2003] and Glaunes et al. [2008] for more detailed discussion on
its computation.
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• The computation of mapping between two surfaces, deeply rooted in Riemannian
geometry and differential geometry, has been studied in the past decade due to its
broad scientific applications. We will elaborate on intersurface mapping algorithms
in the following sections. Intersurface mapping between general 2D manifolds has
many applications, such as morphing [Lee et al. 1999; Kraevoy and Sheffer 2004;
Schreiner et al. 2004; Li et al. 2008b] and texture mapping/transfer [Li et al. 2008a]
in graphics, data fitting and completion [Kraevoy and Sheffer 2005], detail trans-
fer [Biermann et al. 2002] and surface editing [Lévy 2003] in geometric modeling
and processing; mesh generation [Alliez et al. 2003; Wang et al. 2009] and spline
construction [Wang et al. 2008b, 2012; Cao et al. 2009, 2012] in computer-aided ge-
ometric design, 3D scan reconstruction and object tracking [Wand et al. 2007; Wang
et al. 2008a] in computer vision and medical image analysis.

• The mapping of solid models has attracted great attention in the past few years. Solid
objects have richer contents than their boundary surfaces, especially if material,
intensity, or other structural information of the data should be considered. Volumetric
mapping that correlates geometric solid data has broad applications in physics-based
simulation [Ju et al. 2005; Joshi et al. 2007a], fluid dynamics, material modeling,
trivariate spline construction [Martin et al. 2008; Wang et al. 2012; Li et al. 2013]
and mesh generation [Li et al. 2007; He et al. 2009a; Gregson et al. 2011; Yu et al.
2013; Nieser et al. 2011; Li et al. 2012], medical data fusion and difference analysis
[Wang et al. 2004], and medical tracking [Metz et al. 2011; Xu et al. 2012; Xu and Li
2013a].

Pairwise and Groupwise Mappings. We can classify mapping problems as the pairwise
mapping between two objects and the groupwise mapping among multiple objects.
In some tasks, groupwise mapping reduces to solving many pairwise mappings. One
example is shape comparison: given objects M1, . . . , Mk and a query subject N, to find
N’s most similar object(s) by matching N with each Mj then report the one(s) with
the smallest difference [Sundar et al. 2003]. Groupwise mapping computation in this
case can reduce to k pairwise mappings. In some other scenarios, groupwise mapping
is used to correlate a temporal sequence of deforming objects. Then the coherence of
the deformation in the time dimension becomes an extra guidance or constraint in
groupwise mapping computation, and the resultant nD + T mapping correlates the
entire sequence of deforming n-dimensional manifolds. Its computation then can be
done on an n+1 dimensional space to allow the extra constraint on the time dimension.

Shape Representations. The formulation of shape mapping is dictated by the way that
shapes are represented. The shape representation schemes can be classified into two
main classes: parametric representations and implicit representations. A parametric
representation, such as the polygonal mesh or splines, defines a k-D manifold shape
M by a vector-valued parameterization function φ : � → M, where the parameter
domain � is in Rk (k = 1, 2, 3 for curves, surfaces, and solids, respectively). An implicit
representation defines a shape as the zero set of a scalar-valued function ϕ : Rn → R,
that is, M = {x ∈ Rn|ϕ(x) = 0}. Different representations have their own pros and
cons in modeling different geometric saliency. According to different mapping applica-
tions, choosing desirable shape representation schemes is important. We discuss a few
commonly used representation schemes in mapping computation.

—Polygonal Meshes. A widely used 3D parametric shape representation in graphics
is the polygonal (especially, triangular) mesh. Curves, surfaces, and solids can be
adaptively approximated using piecewise linear simplicial complexes as accurately
as required. Using this representation, mapping computation is often performed
using finite element methods [Schreiner et al. 2004; Kraevoy and Sheffer 2004; Li
et al. 2008a].
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—Spline and Subdivision Representations. The tensor-product spline representation
[Farin 2002] is the standard representation in current CAD systems. Described us-
ing piecewise polynomial or rational basis functions, splines can be considered as
a generalization of piecewise linear mesh representations to the piecewise poly-
nomial/rational scheme. The subdivision representation, which can be considered
as splines with singularities, represents shapes by repeated refinement of control
meshes, where positions of vertices are adjusted following certain local averaging
rules [Zorin et al. 2000]. In mapping computation, if the input shapes are given in
spline or subdivision representations, mapping optimization can be formulated as
solving the control points or the transformation of the control points [Donato and
Belongie 2002].

—Implicit or Volumetric Representations. Widely used in data completion, the implicit
representations [Osher and Fedkiw 2002] describe shapes using a scalar function
to define a shape by classifying each point in the space to either inside, outside, or
on the shape. Common implicit representations include level-set functions, algebraic
surfaces, and discrete voxelization. In mapping computation, implicit representa-
tions have several advantages: flexible description of shapes with multi-component
or complicated/changing topology, natural prevention of self-intersections, and so
forth. But a limitation of implicit representations is the inaccuracy and costliness in
representing and preserving fine geometric details and intrinsic metrics.

—Feature-Based Representations. Shape representation defined on features of the 3D
shape are sometimes effective in shape mapping. For example, Medial Representation
[Siddiqi and Pizer 2009] approximates a shape using radius functions defined on the
medial axis of the shape. This medial axis, together with the associated radius func-
tion, reduce the dimensionality and complexity of the representation of the original
shape, and is suitable for efficient shape matching. The skeleton can provide global
guidance in nonrigid shape matching [Vlasic et al. 2008]. Generalized Cones and
Generalized Cylinders (GC) representations approximate elongated shapes using a
group of cylinders defined on a skeletal graph. The GC representation can be used
in shape mapping due to its efficient representation of intra-subpart relationship
[Chuang et al. 2004]. It is, however, sometimes insufficient in representing general
free-form shapes with convoluted details.

—Spectrum-Based Representations. Spectral representations, such as Laplace-spectra
[Reuter et al. 2005], spherical harmonics [Kazhdan et al. 2003; Huang et al. 2005],
manifold harmonics [Vallet and Lévy 2008], Zernike [Novotni and Klein 2003], often
naturally offer a multiresolutional description of the shape that is often desirable in
improving the efficiency and reliability of mapping computation.

2.2. Transformation Model

By choosing different models, one shape can undergo different transformations to
match the second object. This determines the search space and the “softness” of the
mapping. Based on the transformation model, mapping models can be classified as glob-
ally uniform transformations and globally nonuniform transformations. We examine
the rigidity of an algorithm through the degree-of-freedom (DOF) allowed in describing
the map f :

—Mapping algorithms solving a small (constant) number of DOF for a global transfor-
mation (e.g., global rigid/affine transformations, global free-form deformation [FFD]
[Sederberg and Parry 1986]) are classified as globally uniform transformations.

—Mapping algorithms allowing different subregions to deform differently (thus usually
make the DOF proportional to the mesh element size) are classified as globally
nonuniform transformations.
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2.2.1. Globally Uniform Transformations. Global rigid transformations and other low-
dimensional transformations [Li and Guskov 2005; Gelfand et al. 2005] are often used
in aligning objects that undergo no self-deformations. Given general shapes M1 and
M2, solving f : M1 → M2 with the restriction that f be rigid often leads to no solution.
But finding partial mapping to rigidly align and merge two shapes is important in 3D
scan reconstruction, geometric fragments reassembly, moving object tracking, and the
like. In addition, in the computation of optimal nonrigid cross-shape mapping, effec-
tive rigid mapping can be used as a prealignment or initial estimate, which can greatly
improve the efficiency and robustness of the subsequent optimization of finer mapping.

Under a global rigid transformation, a shape M1 undergoes rotations and trans-
lations to align with M2, and the entire transformation can be represented using a
3 × 3 rotation matrix R and a 3 × 1 translation vector T. The rotation R usually has
3 independent degrees of freedom (rotation angles about the x-, y-, and z- axes); the
translation has 3 as well. The solving of rigid function f : M → N can be decomposed
into two problems: (1) finding the correspondence; and (2) finding the best transforma-
tion f = (R, T) that matches the corresponded elements, where R and T represent the
associated rotation and translation. Solving each subproblem with the other fixed is
much easier than solving either one without information regarding the other.

A class of rigid registration methods solves the second problem without knowing the
correspondence. For example, one can normalize the mass center and principal axes
to place each 3D shape canonically in R3. The mass center or principal axes can be
computed by moment analysis or through eigenvectors of the covariance matrix of the
shape [Bronstein et al. 2008]. Other related algorithms in this category include the
generalized Hough Transform [Ballard 1981; Hecker and Bolle 1994] and geometric
hashing [Hecker and Bolle 1994]. Although these methods work well for solving rigid
transformation that has a small DOF, without knowing the correspondence, they can-
not be easily generalized to solve effective nonrigid transformation between arbitrary
shapes. [Reyes et al. 2007] present an effective noniterative algorithm, which combines
the power of expression of geometric algebra with the robustness of tensor voting, to
rigidly correspond two 3D point sets.

If the point-to-point correspondence is known, solving the optimal rigid transforma-
tion is easy. One can minimize the following least squares with 6 unknown variables:

ε =
∑

pi∈M1,qi∈M2

‖qi − Rpi − T‖2, (2)

where {pi} and {qi} are the corresponding points. It is possible to develop a closed-form
solution for this problem. [Eggert et al. 1997] compared four classic rigid transformation
computation algorithms [Arun et al. 1987; Horn 1987; Horn et al. 1988; Walker et al.
1991] that solve optimal rigid transformations (with given shape correspondence) using
singular value decomposition or eigensystem computation.

A more general approach is to solve the transformation and correspondence simul-
taneously. A widely used approach in registration is the Iterative Closest Point (ICP)
algorithm [Besl and McKay 1992], which is an iterative procedure that assigns corre-
spondence using the nearest neighboring information and refines the transformation
using this correspondence information. The ICP algorithm converges quickly to a local
minimum. The initial guess is important and geometric noise can affect the registra-
tion result. A lot of variant ICP algorithms [Amberg et al. 2007] have been developed
to make it robust against initial guess and noise.

Another common low-dimensional model is the affine transformation. This model
allows that the deformation consists of not only translation and rotation (as rigid-
motion), but also scaling and shearing. It is often used for registering objects with
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gross-overall distortion, such as the registration of MRI data to CT data. More typically,
affine transformation can be used as an approximation for fully nonrigid transfor-
mation. Two other representative low-dimensional representation transformations
are the bilinear and projective transformations, mostly used in image registration.
With homogeneous coordinates, all these four low-dimensional transformations can
be represented as 4 × 4 matrices.

2.2.2. Globally Nonuniform Transformations. When different objects are being matched or
when free-form deformations are substantial, one needs to solve nonrigid transforma-
tions when matching different shapes [Brown and Rusinkiewicz 2007; Pauly et al. 2005;
Sumner and Popović 2004; Li et al. 2008]. Nonrigid transformations are also consid-
ered in some 3D scan reconstruction, as sometimes even very expensive 3D scanners
suffer from calibration problems that need local alignment. Nonrigid transformations
are usually nonlinear, namely, there is no simple matrix representation for them. In
such a case, solving too many degrees of freedom for local transformations may lead to
undesirable results. Therefore, geometric distortion and extra smoothness or regularity
constraints to restrict the nonrigidity should be incorporated in the search of desirable
cross-shape mapping. These distortions, smoothness, and regularity terms, considered
in many mapping optimization algorithms, will be discussed in the following sections.

2.3. Distortion Measurement

Mapping quality can be classified based on the different distortion metrics being used,
which is either extrinsic (Section 2.3.1) or intrinsic (Section 2.3.2).

2.3.1. Extrinsic Mapping. Extrinsic mapping algorithms solve a deformation of the
source shape M1 toward the target shape M2. The deformation is usually represented
using a 3D vector function, often referred to as displacement field, defined on the spa-
tial domain � where M1 ⊂ � ⊂ R3. Physical or geometric energies are usually used
to govern the transformation in mapping computation so that the deformation is spa-
tially smooth or physically natural. Widely used energies include elastic strain energy
[Joshi et al. 2007b], biharmonic energy or thin-plate splines [Bookstein 1989], viscous
fluid model [Christensen et al. 1996], diffeomorphic metric model [Glaunes et al. 2004],
and radial basis functions [Fornefett et al. 2001] Extrinsic mapping usually indicates
a physically intuitive transformation, and its computation reduces to iterative opti-
mizations. One common strategy is to first compute a (weighted) correspondence set
in which each correspondence has a confidence value. These correspondence pairs and
their confidence values are used to remove the outliers. M1 and M2 are first rigidly
aligned, then M1 is nonrigidly deformed to match M2. When the given shapes are simi-
lar, that is, the deformation is near identity, the extrinsic mapping methods are usually
efficient. Therefore, they are widely applied in registering dynamically deforming sur-
face sequences [Wand et al. 2007; Pekelny and Gotsman 2008; Wand et al. 2009; Li
et al. 2009; Allen et al. 2003; Zhang 1994; Rusinkiewicz and Levoy 2001], in which case
one can assume that the adjacent frames do not change drastically. However, when the
geometric shapes have complicated convolutions or differ by a large deformation, an
extrinsic mapping algorithm could fail to produce correct correspondence and easily
get trapped in local minima.

2.3.2. Intrinsic Mapping. When the shapes to map are very different or undergo large
deformation, an alternative mapping strategy is to compose the parameterizations of
these shapes on a common domain while minimizing the intrinsic metric distortion of
the composed mapping function. Two general approaches are adopted in cross-shape
mapping: the parameterizations onto a low-dimensional domain and parameterizations
onto high-dimensional space.
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—A surface is intrinsically a 2D manifold and can be parameterized onto a 2D pla-
nar region, upon which the representation of each surface point needs only a 2D
coordinate. In the optimization of surface mapping, this reduces the DOF on each
vertex from an explicit 3D coordinate to 2D, and it avoids the nonlinear geometric
constraints that enforce the image of each source surface point to be on the target
surface. Two comprehensive surveys about surface parameterization are given in
Floater and Hormann [2005], and Sheffer et al. [2006].

—Another intrinsic approach maps shapes onto a higher-dimensional space. The idea is
to embed the shapes in a space in which the registration can be better approximated
as (near-) rigid alignments. To create an effective intrinsic embedding, one needs
to find an intrinsic representation of the shape invariant to extrinsic deformations,
so that the intrinsic geometry can be encoded using the extrinsic coordinates in
the new metric space in which we embed the shapes. The multidimensional scaling
[Elad and Kimmel 2003; Bronstein et al. 2008] and the spectral transform [Jain et al.
2007; Mateus et al. 2008; Sahillioglu and Yemez 2010] are two popular strategies
to construct the embedding. A comprehensive survey on this topic is given in Zhang
et al. [2010].

Parametric representations preserving intrinsic geometric metrics are desirable
in composing the cross-shape mapping function. We can classify intrinsic mapping/
parameterization methods via distortions that they aim to eliminate/minimize:
distance-preserving, angle-preserving, and area/volume-preserving maps. These three
general types of maps are referred to as the isometry, conformal mapping, and equiareal
mapping. We start with the conformal mapping, as most effective surface mappings
should restrict the distortion of the local shape, that is, angles between intersecting
curves, and usually incorporate conformality as an important criterion. Conformal
mappings have many desirable properties due to their connection to the Riemannian
geometry and complex function theory. We briefly review the mathematic background
for Riemann surface, conformal and harmonic mappings, and refer interested readers
to Gu and Yau [2007] for more details.

Planar Conformal Mapping. Suppose f : D → R is a real valued function defined
on a domain D ⊂ C and has continuous derivatives up to order 2, where C is the
complex plane. We say f is a harmonic function if for any z = (x, y) ∈ D, we have
	 f (z) = ∇ ·∇ f (z) = ∂2 f (z)

∂x2 + ∂2 f (z)
∂y2 = 0, where 	 = ∂2

∂x2 + ∂2

∂y2 . Consider a complex function
F = ( f u, f v) composed of two real valued functions, F : C → C, (x, y) → (u, v). We say
f u and f v are conjugate if the complex function f u + i f v satisfies the Cauchy-Riemann
equation, namely, ∂ f u

∂x = ∂ f v

∂y , and ∂ f u

∂y = − ∂ f v

∂x . A holomorphic function F has its two
components f u and f v conjugate and harmonic. F is biholomorphic, or a conformal
mapping, if F is bijective and F−1 is also holomorphic.

Harmonic and Conformal Maps of Surface. Consider two general Riemann surfaces
M0 and M1, solving mapping φ : M0 → M1 reduces to solving scalar fields defined on
M0. The generalized Laplace’s equation on surfaces is:

	S f = 0, (3)

where 	S f = div(gradf ), namely, the divergence of the gradient of a scalar field f on
the surface, is called the Laplace-Beltrami operator. A scalar field with vanishing 	S is
called a harmonic scalar field. If we define the Dirichlet energy ED(φ) = 1

2

∫
S ||gradφ||2

for each bijective map φ : M0 → M1, then the minimizers of ED, whose each component
satisfies eqn (3), are called harmonic maps from M0 to M1.

Furthermore, consider ∀p ∈ M0, and p̃ = φ(p) ∈ M1, and for any local parameter
chart (U, ψ) covering p and local chart (Ũ , ψ̃) of M1 covering p̃ (namely, ψ and ψ̃ are
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local parameterization from patches of M0 and M1 to 2D coordinate disks U and Ũ ,
respectively), if the transformation between the two coordinate systems, ψ̃ ◦ φ ◦ ψ−1,
is holomorphic, then φ is a conformal map. Under this mapping, the first fundamental
form ds2 of M0 scales isotropically, and does not introduce any angle distortion. Thus,
a conformal mapping is always harmonic.

In mathematics, the existence and bijectivity of harmonic maps are guaranteed
on convex regions, given by Radó’s theorem [Schoen and Yau 1997]; the existence of
bijective conformal maps on surfaces is guaranteed by the uniformization theorem.
They can be computed effectively on discrete triangle meshes [Gu and Yau 2007].
Variations of the approximation to harmonic energies are optimized using discrete
Laplace-Beltrami operators in order to construct such maps. Most linear methods work
well on a convex Dirichlet boundary condition, where both uand v are solutions to linear
elliptic partial differential equations. The harmonic mapping is physically natural,
since it minimizes the stretching in the sense that it reduces the Dirichlet energy as
much as possible over the surface S. Therefore, it is often used as an effective map
between surfaces. However, a harmonic map is not necessarily conformal. And also, it
is “one-sided,” meaning that the inverse of a harmonic map may not be harmonic, while
the inverse of a conformal mapping is still conformal.

Equiareal Mapping. In many medical image analysis problems, since many soft tis-
sues deform nonrigidly with area- and volume-preserving behaviors, people compute
equiareal or volume-preserving maps between data to model their change. While con-
formal mapping preserves the shape and allows only isotropic scaling locally, equiareal
mapping, in contrast, allows rotation and shear locally, but prevents scaling transfor-
mations. Equiareal maps usually have infinite degrees of freedom. For example, the
conformal mapping from a topological disk to a planar disk is unique up to 3 degrees of
freedom (thus 1.5 markers uniquely determines a conformal map) between topological
sphere surfaces, conformal mapping has 6 degrees of freedom (thus 3 markers uniquely
determines a conformal map) [Gu and Yau 2003]. In contrast, equiareal mappings be-
tween two given surfaces cannot be determined using a finite number of markers. An
infinite amount of equiareal mappings can be obtained under a given boundary map-
ping condition, and a solution may exhibit extremely large shear and may be highly
undesirable. Recently, the technique of Optimal Mass Transport has been used as an
effective approach in solving equiareal mapping while maximally preserving angle and
local shape of the surface [Dominitz and Tannenbaum 2010; Zhao et al. 2013].

Isometric or Metric-Preserving Mapping. If a map is conformal and also area-
preserving, then it is length-preserving or isometric. Geodesic distances on the manifold
will not change after the transformation inferred by isometric mapping. Considering
the local Jacobian matrix J of an isometric mapping, the two nonzero singular values
σ1, σ2 of J should both be 1 everywhere. Hence, Hormann and Greiner [2000] measure
the isometric distortion using an objective function: E = ∑

f ∈�( σ f,1

σ f,2
+ σ f,2

σ f,1
), where each

f is a triangle facet (2-simplex) upon which the piecewise linear mapping function’s
Jacobian has the singular values σ f,1 and σ f,2. In Degener et al. [2003], the isometric
distortion is measured using a combined angle and area distortions as E = Eangle · En

area,
where Eangle and Earea are the angle and area distortions measured on each triangle,
respectively, and n is a weighting factor to balance these two terms.

Quasiconformal Mapping. Quasiconformal map is another emerging technique that
allows extra geometric or metric (or area-preserving) constraints. The exact conformal
maps between high-genus surfaces rarely exist, unless the two surfaces share the
same conformal structure. Therefore, one considers the natural extension of the space
of conformal maps to the richer space of quasiconformal maps. Quasiconformal maps
with bounded angle distortion and guaranteed local bijectivity can be computed [Weber
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et al. 2012; Lui et al. 2012] for solutions of problems with more complicated boundary
constraints.

Biharmonic Mapping. Another approach to support the handling of higher-order
boundary constraints in mapping design is to solve higher-order partial differential
equations in mapping computation. For example, instead of using harmonic scalar
fields, biharmonic scalar fields can be used to compose the maps. With biharmonic
functions, the continuity of the map on the boundary can be better controlled. Xu et al.
[2013a] solve biharmonic volumetric maps using fundamental solution methods, and
use them to enforce smooth transitions of the mapping functions along the partitioning
boundary of the adjacent subregions.

2.3.3. Classification of Mapping Models Using Surface Topology. To solve the bijective and
low-distortion map, different mapping strategies are often adopted when the given
shapes have different topologies. Mapping shapes with complicated topology is often
much more difficult, and need to be converted to the mapping of shapes with sim-
plified/trivial topology. We classify mapping computation strategies into the following
three types:

—Topological-Disk Surface Mapping: to map surface patches that are topological disks
(genus-0, open).

—Spherical Surface Mapping: to map surfaces that are topological spheres (genus-0,
closed).

—High-Genus Surface Mapping: to map surfaces that have complicated topology
(genus-g, g ≥ 1).

Mapping Topological Disk Surfaces. When given objects are topological disks (have
no handles and are homeomorphic to a planar region), they both can be parameter-
ized onto a common 2D planar region � ⊂ R

2 for shape mapping. The basic idea is to
construct f1 : M1 → � and f2 : M2 → �, then compose the map using f : f −1

2 ◦ f1
on �. The flattening of topological disks has been extensively studied in the parame-
terization literature [Floater and Hormann 2005; Sheffer et al. 2006; Hormann et al.
2007]. To avoid unnecessary overlaps, we skip extensive discussions but briefly recap
a classic pipeline for disc parameterization here and illustrate a comparison of a few
representative approaches in Table II.

Mapping with Fixed Boundary. One typical flattening strategy maps topological disks
onto a planar region with a predetermined boundary shape. The parameterization is
formulated into a problem with two stages: (1) boundary parameterization and (2) in-
terior parameterization. Given the input triangle mesh M and 2D domain �, first,
compute the mapping from the boundary curve loop ∂M to the domain boundary ∂�.
Then, solve interior mapping by minimizing some discretized quadratic smoothness
energy. Its minimization reduces to solving a sparse linear system, which intuitively
enforces the vertex to be mapped to the weighted average of the images of its surround-
ing vertices: ui = ∑

j∈Ni
wi juj , where Ni denotes the set of one-ring neighboring vertices

of vertex-i.
Tutte [1963] shows that if the target domain is convex, and all the weights ωi j

are positive, then the obtained parameterization is bijective. He uses the constant
unit weights wi j = 1 to construct valid flattening for topological disk surface patches.
Later, different weights have been developed to minimize different distortions; many
of them can be considered as minimizing various potential energies of a string system.
For example, the well known cotangent weight [Eck et al. 1995; Pinkall and Polthier
1993] is a discretization of Dirichlet energy using the finite element method, and
results in a discrete harmonic map. The weight is ωi j = (cot αi j + cot βi j)/2, where αi j
and βi j , as shown in Figure 2, are the opposite angles in the two faces sharing the
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Fig. 2. Notations of angles and weights.

edge (i, j). However, if the mesh contains skinny triangles (hence, big obtuse angles
exist), some ωi j could be negative, and the parameterization can be nonbijective in this
local region. The shape preserving parameterization [Floater 1997] and its variance
[Guskov 2004], and the mean-value weights [Floater 2003] design the positive weights
in the meantime of approximating vanishing Laplacian. The mean-value coordinate
[Floater 2003] approximates harmonic functions using their mean-value property, with
guaranteed positive weights and bijective functions. The proposed weight is ωi j =
(tan(γi j/2) + tan(δi j/2)/||x j − xi||, where xi and x j are vertex-i and vertex- j’s the
original 3D positions, and γi j and δi j are the angles in the two triangles sharing the
edge (i, j), as shown in Figure 2.

Mapping with fixed boundary condition can usually be computed efficiently since
solving only sparse linear systems is required. However, the mapping quality relies
on the domain boundary shape. When surfaces have complicated geometries, a pre-
determined boundary shape may result in parameterizations with large distortion.
The virtual boundary strategy has been developed [Lee et al. 2002; Zhang et al. 2005]
to partly remedy this problem. The virtual boundary is one or several layers away
from the real surface boundary so that vertices on the original boundary have better
flexibility to move inside this virtual “buffer” zone and reduce the distortion.

Free boundary mapping. Flattening the surface to a domain without predetermining
its boundary shape may better reduce the metric distortion near the boundary. Lévy
et al. [2002] and Desbrun et al. [2002] derive the free-boundary linear parameterization
scheme based on different formulations of conformal energy and end up minimizing
the same energy. The Most Isometric Parameterizations (MIPS) method [Hormann
and Greiner 2000] optimizes a nonlinear function that measures the mesh conformal-
ity and area distortion. It starts from a fixed-boundary harmonic parameterization
and iteratively moves the vertex locally to reduce metric distortion. Free-boundary
parameterizations often result in less distorted mapping at the cost of using higher-
order nonlinear objective functions. In addition, local bijectivity is usually enforced
in various free-boundary mapping algorithms, but without enforcing the geometry of
the flattened-boundary contours, many such algorithms fail to prevent global self-
intersection.

Mapping Surfaces with the Sphere Topology. The boundary surfaces of all solid ob-
jects with no handles or voids are closed genus-0 surfaces, which are homeomorphic to
a sphere. The sphere domain naturally produces seamless parameterizations [Alexa
1999; Asirvatham et al. 2005; Kobbelt et al. 1999] for closed genus-0 surfaces. A spher-
ical parameterization f : M → S2 can serve as a key enabling tool to compose mapping
between these surfaces.
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In Haker et al. [2000], the unit sphere S2, after removing one triangle bounding the
north pole, is projected to the 2D complex plane using stereographic projection. The
surface M, with one triangle removed, becomes a topological disk and is flattened. The
two planar embeddings are merged to compose f : M → S2. Kobbelt et al. [1999] and
Alexa [1999] extend the planar discrete harmonic map to spheres, and directly use
Gauss-Seidel iterations to update the mapping of each vertex on the tangent plane on
the sphere before normalizing f (vi) to a unit vector. Isenburg et al. [2001] partition
the surface into two parts, then map each of them onto a hemisphere. The partition-
ing boundary is mapped onto the equator and the interior region is mapped using
a barycentric weight [Tutte 1963]. Gu and Yau [2003] solve the conformal spherical
harmonic mapping based on the fact that the spherical harmonic map is also confor-
mal, where the 6 degrees of freedom of the Möbius transformation ambiguity can be
eliminated by restricting the alignment of 3 feature points. Gotsman et al. [2003] for-
mulate the spherical barycentric formulation based on spectral graph theory; solving
a spherical map reduces to solving a quadratic system of equations, which is relatively
expensive. [Saba et al. 2005] improve the algorithm numerically so that this system
can be solved with better efficiency and stability. Friedel et al. [2005] derive the spher-
ical Dirichlet energy and use it to compute spherical mapping balancing the area and
angle distortion. Zayer et al. [2006] compute the spherical mapping using curvilin-
ear coordinates. First, they slice the surface using a “date line” and obtain an initial
map that distorts both angles and areas by solving the Laplace equations of the polar
coordinates; they then optimize the spherical map using a modified mean-value coor-
dinate algorithm that incorporates both stretching and area distortion. Finally, a local
smoothing is performed along the cutting boundary to remove the artifact. Stephenson
[2005] uses a circle packing method to construct conformal brain mapping. Jin et al.
[2008] use discrete surface Ricci flow to compute spherical metric and embedding
for genus-0 closed surfaces. Sheffer et al. [2004] developed a spherical angle-based-
flattening (ABF) algorithm that first solves a valid metric (edge lengths) on a sphere
using the spherical cosine and sine laws, then embeds the mesh on the sphere. Lee
et al. [2006] map genus-g surfaces to a set of g + 1 spherical domains, where each
handle glued through its tunnel loop is mapped to a sphere: the base domain is called a
positive surface while the remaining g handle patches are referred to as negative sur-
faces. Yu et al. [2010] parameterize general genus-g surfaces M onto the unit sphere
by first slicing all the topological handles through their handle or tunnel loops [Dey
et al. 2007], then mapping the resultant genus-0 surface with g filled boundaries onto
a sphere. With such a topological operation, M is parameterized onto a unit S2 with
g small regions removed. Zeng et al. [2007] solve the spherical parameterization of
high-genus surfaces using the meromorphic function defined on the surface. They con-
formally wrap a genus-g surface onto a sphere by several layers through 2g + 2 branch
points, which are singularities shared by two adjacent layers.

Multi-resolution techniques have been used in spherical parameterization to improve
its efficiency. Shapiro and Tal [1998] embed meshes onto a spherical domain with pure
topological operations without distortion minimization, and Praun and Hoppe [2003]
start from a multiresolution decomposition, then alternatively add each vertex and
refine their positions inside their neighborhood. The stretch metric is minimized in
this process. Asirvatham et al. [2005] also solve a constrained spherical parameteriza-
tion using the progressive mesh; feature point alignment is enforced on the coarsest
resolution on the sphere. Wan et al. [2012, 2013] further develop an improved hierar-
chal optimization scheme using progressive meshes to optimize the metric, combining
the energy of Asirvathan et al. [2005] and Praun and Hoppe [2003]; their adaptive
node selection and great circle searching approach result in a more efficient and lower-
distorted mapping computation.
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Mapping High-Genus Surfaces. For high-genus surfaces, finding a simple canonical
domain such as spheres or planar disks becomes nontrivial. There are two general
approaches to computing their cross-surface parameterization.

The local approach is to first segment surfaces Mi, i = 1, 2 into two consistent sets of
subregions, Mi = ⋃m

j=1 M̃i, j , then obtain global mapping by composing local maps be-
tween corresponding subregions: fk : M̃1,k → M̃2,k. To enable such a divide-and-conquer
strategy, the decomposition should satisfy these conditions: that (1) each subregion has
simple topology (e.g., topological disks) and geometry (e.g., flat, convex, and so on), so
that the subregion mapping can be computed efficiently; and (2) the partitioning is
topologically consistent, that is, the dual graphs of the two decompositions are isomor-
phic to each other. This decomposition is referred to as consistent decomposition (see
Section 3.1.2).

Earlier divide-and-conquer techniques perform consistent decomposition manually.
In the algorithm of DeCarlo and Gallier [1996], users specify a base mesh manually.
With consistently designed base meshes between given surfaces, cross-surface map-
ping can be composed directly. However, this approach requires tedious and careful
user specification. In addition, when the input surfaces have complicated topology or
geometry, the design can become nonintuitive and difficult. Gregory et al. [1998] and
Zöckler et al. [2000] also construct cross-shape mapping based on manually constructed
base meshes. After the common base mesh is labeled by the user, corresponding sub-
regions are matched via harmonic maps or barycentric maps. There are a few more
algorithms relying on such manual base mesh construction, mainly with applications
in morphing construction, as discussed in the survey article of Lazarus and Verroust
[1998].

More recently, a few semi-automatic or automatic consistent decomposition algo-
rithms have been developed [Kraevoy and Sheffer 2004; Schreiner et al. 2004; Li et al.
2008b, 2009; Kwok et al. 2012; Zhang and Li 2012; Shalom et al. 2008; Kraevoy et al.
2007; Zhang et al. 2014; He et al. 2009a]. Kraevoy and Sheffer [2004] and Kwok
et al. [2012] construct the consistent partitioning of multiple surfaces following user-
specified feature points. Their limitations are that a large amount of features need to
be carefully specified for robust tracing. Praun et al. [2001] developed an algorithm to
trace consistent partitioning boundaries on different triangle meshes; it can transfer
an existing mesh partitioning to another topologically equivalent surface. Schreiner
et al. [2004] first trace consistent sets of triangular patches on multiple surfaces using
progressive mesh representations, having feature points as endpoints of these tracing
paths; then, starting with the map of the coarse base mesh, it iteratively refines the
map to higher resolutions together with the vertex split. These algorithms are semi-
automatic as consistently specified features are necessary input from the user. Li et al.
[2008b] and Zhang and Li [2012] develop automatic consistent surface decomposition
frameworks by using the so-called canonical pants decomposition. Such a pants de-
composition scheme can partition surfaces with nontrivial topology into topologically
simple patches (also with a simple adjacency relationship). Furthermore, it can flexi-
bly compute the consistent decomposition of two surfaces that have different topology.
Bennett et al. [2008] also introduce a robust topological approach to construct maps
between two surfaces (triangle meshes) with possibly different genuses.

Mapping computation through divide-and-conquer is efficient, and locally the map-
ping quality can be good. However, distortion and discontinuity across the partitioning
boundary could be significantly larger than the interior regions; certain smoothing or
relaxation operations are needed to remove these artifacts. In addition, the effective
partitioning for shapes of arbitrary topology/geometry is very challenging, and the
mapping result is greatly affected by the quality of this problem decomposition.
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The global approach, in contrast, is to directly compute global mapping through one
global domain with certain desirable Riemannian metrics. For example, the domain �
for high-genus surfaces can be Riemannian surfaces of nonpositive constant curvature
[Schoen and Yau 1997] by deforming the target surface N2 to tile the complex plane C2

(if surface N2 is genus-1) or tile the unit hyperbolic disk H2 (if N2 is genus-n, n > 1).
Upon such a �, a harmonic map can be computed through a global optimization. A
key advantage of using such a uniformization metric is that the objective function
does not have local minima and one can obtain a globally optimal solution [Li et al.
2008a]. Other types of canonical domain � with good geometric regularity/simplicity,
such as polycubes [Wan et al. 2011; Yu et al. 2013; Yu and Li 2014] or N-hole tori
[Grimm and Hughes 2003], can also be used to compose cross-surface mapping. Note
that, again, the global mapping of a high-genus surface onto a canonical domain can
be obtained through both direct and indirect approaches. The direct algorithms [Boier-
Martin et al. 2004; Dong et al. 2005] solve the mapping directly by finding the scalar
values u, v defined on surfaces. The indirect algorithms first solve the derivatives [Gu
and Yau 2003; Gortler et al. 2006; Tong et al. 2006; Ray et al. 2006] of the map or solve
the flat Riemannian metric [Collins and Stephenson 2003; Kharevych et al. 2006; Jin
et al. 2008] before obtaining the map through integration or embedding. Another global
mapping computation approach is to solve an energy-minimized diffeomorphism in a
metric shape space. The idea is to model the mapping of one shape from the other via a
dynamic flow of diffeomorphisms (namely, time-dependent deformation) t ∈ [0, 1] of the
embedded ambient space Rd. The Large Deformation Diffeomorphic Metric Mapping
(LDDMM) [Beg et al. 2005] is this kind of approach, which solves not only a bijective
map between shapes but also define a metric distance in this constructed space.

For geometric shapes with nontrivial topologies, many recent parameterization al-
gorithms can flatten them onto canonical parametric domains [Gu and Yau 2003; Ray
et al. 2006; Bommes et al. 2013], however, they inevitably introduce singularity points
that are determined by both surface topology and geometry. Due to the inconsistent
existence of these singularities, many cannot be easily adopted directly to compose a
bijective intersurface map between given high-genus shapes.

Global approaches solve a smooth mapping between shapes. However, global ap-
proaches are usually sensitive to the topology of the data, less flexible in incorporating
semantic landmarks, and often computationally expensive.

A list of shape parameterization algorithms that map surfaces onto canonical geomet-
ric domains is given in Table II. In the column of Robustness, we discuss the algorithm’s
robustness against Mesh quality, Topological noise, and Geometric perturbations. The
notation, for example, YM NT NG means that the algorithms are robust against mesh
quality, but sensitive to topological noise and geometric perturbation. Note that most
fixed-boundary mapping techniques are sensitive to the boundary geometry missing,
thus they are considered to be NG.

2.3.4. Mapping Volumetric Shapes. Many real-world data are volumetric and have both
boundary surface geometry and interior texture or material attributes. To model such
volumetric data, their interior material, intensity, or other structural information
should be considered, and volumetric parameterization needs to be studied. Inter-
volume mapping can be extended from the boundary surface mapping. Given two solid
regions M1 and M2, the volumetric mapping f : M1 → M2 consists of three scalar
fields (φ1, φ2, φ3) defined on M1. To measure the quality of �, we consider two crite-
ria: (1) Geometric distortion. Similar to the surface map, it is also desirable to reduce
metric distortion and to have the geodesic distances, angles, and volumes preserved
under the mapping. (2) Feature alignment. The volumetric data usually possess nonuni-
form interior materials/layers, and their mapping should incorporate these nonuniform
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Table II. Classification of Algorithms that Map Surfaces onto Canonical Domains

Method Distortion Generality Boundary B C R
Graph embedding [Tutte 1963] None Disk Fixed Y L YM NT NG

Discrete harmonic map [Eck et al.
1995]

Angle Disk Fixed N L NM NT NG

Shape preserving [Floater 1997] Angle Disk Fixed Y L YM NT NG

Mean-value [Floater 2003] Angle Disk Fixed Y L YM NT NG

LSCM/DCP [Lévy et al. 2002; Desbrun
et al. 2002]

Angle Disk Free N L NMYT YG

MIPS [Hormann and Greiner 2000] Angle Disk Free G N YMYT YG

ABF [De Sturler and Sturler 2000; De
Sheffer et al. 2005]

Angle Disk,
sphere

Free L N NMYT YG

Circle packing [Bowers and Hurdal
2003]

Angle Disk Free L N NM NT YG

Stretch minimizing [Sander et al.
2001]

Distance Disk Free G N NM NT YG

Stereographic projection [Haker et al.
2000]

Angle Sphere Fixed N L NM NT YG

Spherical discrete harmonic map [Gu
and Yau 2003]

Angle Sphere Free N N NM NT YG

Spherical barycentric map [Gotsman
et al. 2003; Saba et al. 2005]

Angle Sphere Free N N YM NT YG

Progressive mapping [Praun and
Hoppe 2003; Wan et al. 2012]

Stretch Sphere Free N N YM NT YG

Curvilinear coordinates [Zayer et al.
2006]

Angle Sphere Fixed N N NM NT YG

Optimal mass transport [Dominitz and
Tannenbaum 2010; Zhao et al. 2013]

Area Disk,
sphere

Free G N YM NT YG

Progressive mapping [Khodakovsky
et al. 2003]

Angle General Free Y N YM NT YG

Each column indicates the categories they belong to: Distortion to minimize, Generality, Boundary shape,
Bijectivity (besides the absolute Yes, and No, some methods only guarantee Local bijectivity and others have
only Global bijectivity), Complexity (Linear or Nonlinear), Robustness against mesh quality, topological
noise, and geometric perturbation.

structures. For example, feature curves, feature surfaces, and other substructures (such
as local landmarks or global symmetry pattern) often encode important information.
Therefore, the scalar fields {φ j, j = 1, 2, 3} may need to satisfy some extra constraints,
and their gradients {∇φ j} should align with (be parallel or perpendicular to) some given
directions.

Wang et al. [2004] discretize the volumetric harmonic energy over tetrahedral mesh,
and generalize the surface spherical parameterization to the harmonic volumetric
spherical parameterization. Such a discrete Laplacian discretization was also used
for extending polycube surface parameterization to the mapping of a given model’s
entire volume space [Han et al. 2010; Xia et al. 2010]. Li et al. [2007, 2010] and Xu
et al. [2013a] use surface mapping as the boundary condition and extend the cross-
surface map to a cross-volume map using the method of fundamental solutions. Martin
et al. [2008] parameterize the surface model onto a cylinder, then extend the parame-
terization into the interior volume using the finite element method (FEM); then, they
generalize this FEM solver to more complicated models that can be approximated as
shapes with medial surfaces [Martin et al. 2012]. There are also quite a few volumetric
parameterization algorithms that directly solve the mapping between two volume re-
gions without first computing boundary surface mapping. Such an approach, avoiding
precomputing a boundary condition, can usually result in smaller mapping distortion.
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However, the problem reduces to a big nonlinear optimization problem with both inte-
ger and certain linear/nonlinear constraints, thus is much more costly to solve [Nieser
et al. 2011; Huang et al. 2011; Li et al. 2012]. More importantly, these mapping algo-
rithms [Nieser et al. 2011; Li et al. 2012] allow the insertion of singularities during the
mapping computation. But freely distributed singularities (that are not consistent) are
usually not permitted in a valid inter-shape correspondence, therefore, these param-
eterizations are usually used in volumetric remeshing and not directly applicable for
cross-shape mapping.

2.4. Completeness of Mapping Domain

Cross-shape mapping can be classified by the completeness of the mapping domains.
The complete mapping between the given shapes M1 and M2 seeks for a bijective map
f : M1 → M2 that corresponds M1 and M2 completely, as defined earlier; while the
partial mapping between M1 and M2, finds a common region under the map, that
is, f : N1 → N2, N1 ⊂ M1, N2 ⊂ M2. Partial mapping is useful in pattern/template
detection, fusing/stitching partially created/obtained data [Li et al. 2008], and so on.
Due to the freedom allowed in partial mapping, one usually needs to restrict the
transformation with certain rigidness/smoothness [Li et al. 2008, 2009; Hou and Qin
2010] or utilize feature correspondence constraints [Allen et al. 2003] to control the
map. More about feature modeling and correspondence will be discussed in Section 3.

3. CONSTRAINTS: FEATURE MODELING AND ALIGNMENT

To map two given geometric regions M1 and M2 with the same topology, one can choose
suitable shape representations and directly solve a mapping with minimized metric
distortion/geometric deviation/smoothness energy. In some scenarios, the given shapes
are incomplete (so that a partial mapping is needed) or geometrically complex (so that
a global mapping is difficult or costly to solve); effective mapping computation algo-
rithms often use the guidance of shape features. Shape features can be generally defined
as certain salient structures, points, or subregions of the shapes that are prominent
according to a particular definition of interestingness or saliency. They encode impor-
tant geometric invariants or properties of shapes for efficient matching computation. A
common pipeline for feature-guided mapping computation first extracts these features
on both models, then establishes correspondence between features of M1 and M2, and
finally enforces such feature correspondence in mapping computation.

Effective geometric features, incorporating various global and local invariants, struc-
tures, and saliency, can facilitate shape mapping. We generally classify 3D shape fea-
tures according to the scale they encode the shapes as summarized in Table III.

—Global Structure or Quantities. Global topological and geometric invariants are im-
portant shape indicators. Basic geometric properties, such as mass center, shape
volume, and principal axes, are usually extracted and used to normalize shapes for
their mapping. Other global properties, such as moments, topologies, media axes,
and segmented subparts, are also effective global features to incorporate in mapping
computation.

—Local Features. Local geometric properties encode local shape saliency. Widely used
local features include semantic landmarks, geometric derivatives such as curvature,
convexity/concaveness, crest lines, and tips/extremal points. With local feature cor-
respondence, mapping can be computed following a coarse-to-dense matching refine-
ment scheme: first extract and match local features to roughly correlate the shapes,
then extend such coarse correspondence to pointwise dense matching.
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Table III. Feature-Based Shape Representation

Global-Scale Features Global Invariants Section 3.1
Medial-Axis Representation Section 3.1.1

Segmentation & Intersubpart Relationship Section 3.1.2
Local-scale features Local geometricsaliency Section 3.2
Multi-scale features Features in scale-space Section 3.3

—Multiscale or multiresolutional features. Features can be defined in a multiscale
manner to encode both local and global properties. Various spectrum-based and
wavelet-based shape representations are defined on multiscale features.

3.1. Global Geometric Invariants

Many basic geometric invariants can be used as effective parameters of 3D shapes to
correlate shapes undergoing specific deformations. These global geometric invariants
can be utilized with other shape properties to facilitate the shape matching.

—Topological Invariants. Topological invariants are properties of a shape that is in-
variant under homeomorphism, or continuous deformations. One can use the Betti
number [Hatcher 2002] to encode the topology of the shape. For a nonnegative inte-
ger k, the kth Betti number bk(M) of the manifold M is the rank of the kth homology
group of M. Intuitively, b0 indicates the number of connected components; b1 indi-
cates the number of handles, and b2 indicates the number of voids. For example, for
a connected surface M, the first Betti number b1(M) is also the well known Euler
Characteristic number χ . If M is represented using a simplicial complex (triangle
mesh), χ = F − E + V where F, E, V are numbers of faces, edges, and vertices, and
it encodes the topology of this surface χ = 2 − 2g − b where g is the genus (i.e., the
number of topological handles) and b is the number of boundary loops. These topo-
logical indices encode the lowest-level fundamental properties of shapes, but they
are sensitive to topological noise such as boundaries and topological shortcuts.

—Geometric Invariants. A few geometric invariants are basic global properties of 3D
shapes. These invariants, rather than being adopted directly as complete shape
descriptor, are often integrated into other shape features for shape matching or used
to normalize or pre-align 3D shapes before mapping computation. These global shape
properties are usually not sensitive to local noise and geometric perturbations.
—Mass Center. The mass center of a shape is also called the centroid or center of

gravity. For uniformly sampled point clouds, it can be simply computed by the
average of all the point coordinates; for non-uniformly sampled points, the density
or area/volumes of regions surrounding points should be incorporated as weights in
the computation. The mass center is generally invariant under rotation, and robust
against sampling and noise. To make the shape matching algorithm translation-
invariant, we may pre-normalize the given shape by moving its mass center to the
origin.

—Principal Axes, Axes of Least Inertia. The axis of least inertia (ALI) is a reference
line describing the orientation of the geometry. It can be defined as an optimal
line from where the integral of the square of the distances to all the points on
the shape boundary is minimized. Since the ALI passes through the centroid,
one can normalize the shape [Horn 1987] by rotating ALI to a coordinate axis.
Shapes can be rigidly prealigned using principal component analysis (PCA): the
three principal axes of the centroid-normalized shape are the eigenvectors of the
covariance matrix composed of point coordinates.

—Bounding Volume. The 3D shape can also be approximated using a bounding vol-
ume with relatively simple geometry. From simple to complex, effective bounding
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volumes include bounding spheres, bounding ellipsoids, bounding boxes, discrete
oriented polytopes (DOPs) [Held et al. 1996], and convex hulls. Besides the bound-
ing volume itself, the integrated geometric variance from the shape to its bounding
volume is also a global shape descriptor.

—Geometric shape factor. Various geometric aspect ratios of a shape’s bounding vol-
umes can serve as global geometric invariants. For example, the eccentricity en-
codes the ratios of the lengths of principal axes; the circularity ratio is the ratio
of volume (or boundary area) of the shape to the volume (or boundary area) of
its bounding sphere; the cuboid ratio is the ratio of volume (or boundary area)
of the shape to the volume (or boundary area) of its bounding box. These ratios
characterize the degree of variation of the shape from its fitted bounding volume.

—Shape Spectra. The shape’s spectrum can be used as a global shape feature. The
spectra can be calculated on any representation of the geometric shapes from param-
eterized representations such as NURBS/meshes to implicit functions. Reuter et al.
[2005] used the Laplace-spectra for 3D shape matching. The spectrum is often intrin-
sic (location independent) and isometry-invariant. The Global Point Signature (GPS)
[Rustamov 2007; Ovsjanikov et al. 2008] is another spectral descriptor that captures
the global geometric properties. It uses the eigenvalues of the Laplace-Beltrami
operator together with the corresponding eigenfunctions to encode the geometric
shapes. Spherical harmonics provide a rotation-invariant representation [Kazhdan
et al. 2003] for solid shapes. With spherical parameterization, the coefficients of the
spherical harmonic basis functions form an intrinsic shape descriptor for genus-0
surfaces [Huang et al. 2005; Wan et al. 2012]. The manifold harmonics [Vallet and
Lévy 2008] is discrete generalization of the Fourier transform on a surface mesh.
Likewise, 3D Zernike descriptor [Novotni and Klein 2003] converts the shapes to a
multiresolutional representation using the functional spaces for efficient shape anal-
ysis and matching. Jain and Zhang [2006] construct an affinity matrix of a shape
using its geodesics, then find the spectral embedding of the matrix so that the 3D
mesh is transformed from the spatial domain to the spectral domain for matching
purposes. Spectrum-based shape representation is often sensitive to geometric and
topological noise.

—Geodesic Distances. The geodesic distances measure the length of the shortest path
along each pair of points on the surface; as fundamental properties related to the
surface metric, they can be used as an effective global feature in shape analysis and
matching [Hilaga et al. 2001; Schmidt et al. 2006; Bronstein et al. 2007; Tevs et al.
2009; Tung and Matsuyama 2010; Ying et al. 2013]. However, geodesics are usually
sensitive to topological noise: a small topological shortcut may result in a significantly
large change of geodesic distance and path. Most of the existing discrete geodesic al-
gorithms can be applied only to noise-free meshes. Geodesic computation algorithms
[Quynh et al. 2012] are also developed to compute meaningful approximate geodesics
on polygonal meshes with holes without explicit hole filling.

—Other Intrinsic Distances. A few other intrinsic diffusion distances based on diffusion
geometry, such as heat diffusion [Sun et al. 2009; Bronstein and Kokkinos 2010], dif-
fusion distance [Coifman and Lafon 2006], random-walk distance [Fouss et al. 2007],
and biharmonic distance [Lipman et al. 2010], have also been proposed. Diffusion
geometry appears to be more robust to topological noise [Bronstein et al. 2010],
which does not change significantly with the addition of geometric noise or topolog-
ical changes. Also, it allows definition of intrinsic shape similarity that is invariant
to inelastic deformations, which is desirable for nonrigid shape registration between
different models.

Besides these global invariants and features, two other widely used global geomet-
ric features are medial axes and intersubpart structures from shape decomposition;
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Fig. 3. Skeletons of a few 2D and 3D surfaces. The Greek sculpture model in (b) is provided courtesy of
IMATI by the AIMSHAPE-VISIONAIR Shape Repository.

both can often effectively facilitate mapping computation. We elaborate on them in
Sections 3.1.1 and 3.1.2.

3.1.1. Geometric Structure from Medial Axis. The medial axis [Blum 1967], sometimes
intuitively referred to as the shape skeleton, is a 1D graph representation for 2D or 3D
models (Figure 3). It is an effective global feature to encode the shape’s topological and
geometric characteristics and to guide shape mapping.

A medial axis of an n-D shape is the locus of points that have two or more closest
points on the shape boundary (e.g., boundary contour for a 2D region or boundary
surface for a 3D solid object). In 3D, such a locus may become a surface, which is then
also referred to as a medial surface [Gong and Bertrand 1990]. A classic approach for
computing the medial axis or medial surface is the grassfire algorithm: (1) Plant dry
grass all over the 2D/3D region M, which is bounded by contour curves/surfaces ∂M; (2)
Start a grass file on ∂M at the same time and propagate with a same speed; (3) The loci
of points where the fire fronts meet is the medial axis/surface. Such a process conducted
in a geometric region in Rn generally results in a medial axis of dimension n − 1, in
other words, this grassfire algorithm can result in getting a “surface-like” skeleton of
a 3D shape. But a one-dimensional curve feature is a more efficient encoding for shape
mapping [Svensson et al. 2002] and is preferred. Variants of the medial axis definition
have been used to obtain curve skeletons. For example, Dey and Sun [2006] define the
curve skeleton for 3D shapes as a subset of the medial surface using the extreme values
of a medial geodesic function on the medial surfaces.

The process to extract the spatial skeleton of a given 3D shape, often referred to
as skeletonization, should preserve different criteria for different applications. The
following are a few criteria that are often considered in shape mapping. More detailed
discussions on general criteria of skeletonization can be found in Siddiqi and Pizer
[2009] and Cornea et al. [2007].

—Homotopy. A skeleton K(M) is homotopic (Figure 3(a)) if M can contiguously de-
form (shrink) to K(M) without tearing (see its formal definition in Hatcher [2002]).
A homotopic skeleton can correctly encode the topology (specifically, connected
components, tunnels, and cavities) of the shape, thus it is desirable to extract ho-
motopic skeleton features in shape mapping. Following this definition, a homotopic
skeleton can be extracted from such a continuous shrinking of the given shape.

—Invariance under isometry or other transformations. When the given shape M deforms
under some basic geometric transformation T , if the skeleton of the deformed object
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T (M), denoted as K(T (M)), also differs from the original skeleton K(M) by the same
transformation, namely, K(T (M)) = T (K(M)), then the skeleton is invariant under
this transformation T . When tracking spatial and temporal deforming 3D objects,
this is necessary in order for the skeleton to preserve the intrinsic structure of the
object, regardless of where and how the object embeds in the space.

—Reconstruction. If we can recover M from the skeleton K, we say K has the capability
of reconstruction. For example, by recording radii of maximal inscribed balls on K
skeletal nodes, M might be reconstructed from K [Blum 1967]. It characterizes with
how much detail the skeleton captures the geometry of the shape.

—Centeredness. It is important for the skeleton to be in the center of the object. Cen-
teredness is important in applications such as shape compression, vortex core extrac-
tion, virtual navigation, and morphing animation. However, perfect centeredness re-
quires the skeleton to completely lie on the medial surface, which makes it sensitive
to noise. Therefore, approximate centeredness is often preferred in guiding shape
mapping.

—Component-wise differentiation. Skeletonization is closely related to shape decom-
position, and should distinguish different components and reflect the shape’s part
structure; for example, logical components correspond one-to-one to skeletal nodes
or arcs. With this property, the mapped skeletons can infer the mapping of corre-
sponding subparts.

—Robustness against noise. A skeleton should be robust against noise so that when
shapes undergo deformations that cause local geometric variance, its skeletons can
remain stable and can guide the mapping computation.

We briefly recap the extraction of skeleton features for shape mapping computation
in the following.

—Thinning Approaches. Following the definition of medial axis, this approach simu-
lates the grassfire flow to contract the shape using various advanced principles. Its
advantage is that it is efficient and parallelizable, but different propagation schemes
may lead to different skeletonization results.

—Distance-Field Approaches. The distance field of a 3D object M encodes the small-
est distance from each interior point to the shape boundary ∂M. Various distances
such as Euclidean 2-norm [Malandain and Fernandez-Vidal 1998] or other metrics
[Borgefors 1996; Dey and Sun 2006] can be used to construct the distance fields.
The “ridges” of each distance field identify points on local maximal ball loci,that is,
potential skeletal nodes. Ridge points can be extracted, pruned, then connected to
form the final skeleton.

—Potential-Field Approaches. Instead of using the distance function, other fields can
be used for skeletonization. The basic idea is to construct a field where the potential
at a point x is approximated by a weighted sum of potential functions determined
by both the shape boundary and x. The potential kernel functions could be various
radial basis functions [Ma et al. 2003] or fundamental solutions [Li et al. 2007].
Similar postprocessing is needed to extract skeletons from these fields.

—Reeb Graph Methods. Reeb graph methods are topological methods rooted in Morse
theory [Milnor 1963]. A Reeb graph is a 1D structure whose vertices are critical
points of a real-value, level-set function defined on the model. The connectivity of
this graph encodes the topology of the original shape by following the evolution
of the level sets of this function. Hilaga et al. [2001] compute a Multiresolutional
Reeb Graph (MRG) on surfaces using normalized geodesic distances and suggest
a shape-matching scheme through the matching of the graph structure. Tung and
Schmitt [2005] improve this method in an Augmented Reeb Graph by suggesting
a new topological coherence condition to improve graph matching. Pascucci et al.
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Table IV. Skeleton Extraction Algorithms and Skeleton Properties (Homotopy, Transformation Invariance,
Reconstruction, Component-wise Differentiation, Robustness against Noise, Efficiency)

H I R C N E
Thinning G F B B F/B G/F
Distance Field B G B B F G
Potential Field B G B B G/F B
Reeb Graph G F B B F/B G
Decomposition G F F B Y/F F/B

G, F, and B represent whether the algorithms are
good, fair, or bad in preserving such properties.

[2007] developed an efficient online algorithm that constructs a Reeb graph for large
simplicial meshes using a stream of local updates. The height function, despite its
simplicity, often leads to many local minima that complicate the Reeb graph; in
contrast, smooth scalars such as harmonic functions [Patane et al. 2008; Wang et al.
2009] can be used to construct a Reeb graph. Due to the maximum principle, the
harmonic scalar field has very few critical points and leads to simple Reeb graphs,
which could help ease the Reeb graph matching [He et al. 2009b].

—Shape-Decomposition Methods. Shape decomposition can extract the intersubparts
relationship and whose dual structure infers a skeletal graph. Katz and Tal [2003]
decompose the shape and link the components to construct the skeleton; Dey and
Zhao [2002] and Attali et al. [2009] extract the skeleton from Voronoi diagrams.

Table IV compares these five common skeletonization algorithms on how well they
possess the common properties desirable for shape mapping.

3.1.2. Geometric Structure from Shape Decomposition. The decomposition of a geometric ob-
ject encodes the spatial relationship among salient subparts of the object. In computer
vision, many recognition algorithms identify objects through matching recognizable
subparts and their spatial interrelationship.

Suppose M is a k-complex, and S contains k-dimensional subcomplexes of M. A
decomposition � of M is a partition � = {M1, . . . , Mn}, Mi ∈ S, such that M =⋃i=n

i=1 Mi, Mi ⊂ M, and Mi
⋂

Mj = ∅ if i = j,∀i, j = 1, . . . , n.
The minima rule proposed by Hoffman et al. [1984] states that human perception

intuitively partitions objects at areas of concavity. Therefore, such a partitioning infers
an intrinsic structure of the shape and can sometimes benefit shape-mapping computa-
tion. Thorough surveys on shape segmentation techniques are given in Shamir [2008]
and Agathos et al. [2007], and data benchmarks [Chen et al. 2009] were built up for
evaluating different segmentation methods.

We classify the shape decomposition algorithms into five general categories accord-
ing to their computation strategies, and briefly discuss their properties in facilitat-
ing shape mapping: (1) Many decomposition algorithms adopt the bottom-up scheme,
which simultaneously grows preselected subparts while preserving local properties;
these methods are also referred to as region growing approaches. (2) In contrast, some
other algorithms decompose models through a top-down strategy, which iteratively
or hierarchically partitions complex models into subparts. (3) Besides direct domain
partitioning methods, shape decomposition can also be obtained from other geometric
features such as skeletons or using other implicit methods. (4) More closely related to
3D shape mapping, we also discuss consistent segmentation, which partitions multiple
models into subparts with coherent adjacency relationships.

Decompositions through Bottom-Up Approaches. A classic approach for partitioning
discrete data is through a bottom-up and locally greedy strategy, which starts from
several seeds and continuously grows their associate patches/subparts outward until
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Fig. 4. Segmenting a surface (a) using different strategies: (b) Bottom-up, region-growing (e.g., Lavoue et al.
[2005]), (c) Top-down, hierarchical partitioning (e.g., Katz and Tal [2003] and Lien and Amato [2006]), (d)
Feature contours tracing (e.g., Lee et al. [2005a]).

all elements of the shape are clustered. This strategy is usually also referred to as
region growing. Figure 4(b) illustrates this idea on a simple shape (a). Different region-
growing algorithms adopt different strategies in (1) seed selection and (2) criteria for
determining whether or not neighboring elements should merge into the current cluster
(i.e., when to permit growing and when to terminate growing).

Vieira and Shimada [2005] select seeds by noisy levels and Gaussian/mean curva-
tures of mesh points, and grow subpatches via fitting neighboring regions to bivariate
Bézier surfaces. Lavoue et al. [2005] segment surfaces by randomly picking seeds and
then clustering constant curvature regions. Zuckerberger et al. [2002] compute the de-
composition with a flooding of the dual graph using breadth-first or depth-first search.
Faces are consistently collected unless the convexity of a subregion is violated. A po-
tential oversegmentation problem is then tackled by merging smaller subregions to
neighboring larger ones. These ideas were generally described in Chazelle et al. [1997]
as randomly selecting starting faces and then imposing convexity during the growing,
and it is improved in Kreavoy et al. [2007] by starting the region growing process with
a set of approximately convex parts. Krayevoy and Sheffer [2006] measure convexity of
subregions, and stop the growing when a combined threshold of convexity and compact-
ness is reached; while Yamauchi et al. [2005a] use Gaussian curvature as the criterion.
Lai et al. [2009] grow the seeded subregions using random walks, which is extended
from Grady [2006], guided by a probability model that indicates the probability of a
random walk starting from a point (faces) that hits each seed before reaching other
seeds.

Watershed Algorithms. The well-known watershed algorithm, widely used for image
segmentation at first and extended to 3D meshes in Mangan and Whitaker [1999],
can also be considered as a region-growing approach. The watershed algorithm often
determines the seeds using the local minima of a specific height function on the mesh,
then grows the regions around seeds (flooded basins) incrementally until they reach
ridges or maxima of the function. This flooding can be conducted on various height
functions (e.g., the Gaussian, mean, or other curvatures, the average geodesic distance
[Zhou and Huang 2004], electrical charge distribution [Wu and Levine 1996], and many
others [Mangan and Whitaker 1999]).

Region Clustering. Another region-growing strategy is called region clustering, whose
computation is through iterative clustering. Garland et al. [2001] use hierarchical clus-
tering to segment shapes with close-to-plane subregions, judging the planarity, orien-
tation bias, and shape bias measures. Inoue et al. [2001] propose a similar approach
that clusters subregions based on area size, boundary smoothness, and region flatness.
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Attene et al. [2006] use the similar pipeline to cluster approximated plane, sphere, or
cylinder primitives. Shlafman et al. [2002] cluster dihedral angles and geodesic dis-
tance of the barycenters using k-means clustering. Yamauchi et al. [2005b] apply mean
shift clustering to surface normals, which could oversegment a model. Gelfand and
Guibas [2004] use “slippable motions” to guide their clustering, and the algorithm is
suitable to extract standard linear or quadric patch templates.

Bottom-up algorithms can produce geometrically desirable local subparts but often
lack effective control on the global partitioning structure. The adjacency relationship of
an intersubpart is difficult to control or predict during the growing process. Therefore,
when applying this algorithm on multiple models, the layouts of computed decompo-
sition on two different objects are usually not consistent. But to use decomposition to
partition the mapping problem, a consistent decomposition layout for multiple objects,
with preferably simple topological adjacency relationship among neighboring subre-
gions, is usually needed. Therefore, in shape mapping, global control of the partitioning
structure is preferable.

Decompositions through Top-Down Approaches. A top-down strategy in shape decom-
position may offer better control of the global structure of the decomposition. Starting
from one root representation of the whole object, it constructs a tree and recursively
partitions it into parts until every part meets a certain tolerance. Figure 4(c) illustrates
the idea of top-down partitioning.

Katz and Tal [2003] decompose shapes by a hierarchical fuzzy k-means algorithm,
based on criteria similar to Shlafman et al. [2002]; the partition algorithm deter-
mines the cutting along the fuzzy areas by a minimum cut algorithm guided by deep
concavities, conforming to the minima rule previously mentioned. The Approximate
Convex Decomposition (ACD) algorithm [Lien and Amato 2006] conducts a top-down
approach to decompose a given region to approximated convex domains. ACD mea-
sures the convexity as the cutting criterion and splits apart when the convexity does
not meet the criterion. With a similar processing pipeline, Lien et al. [2006] integrated
the measurement of skeleton quality to simultaneously compute shape decomposition
and skeletonization. Benkó and Várady [2002] segment point clouds using sequential
top-down recursive tests. Lai et al. [2006] combine integral and statistical quantities
derived from local surface geometry and develop a segmentation algorithm that has
better robustness on meshes with noise. Podolak et al. [2006] present a hybrid algo-
rithm of iterative clustering and graph cut to extract the segmentation suitable for
shape matching and automatic viewpoint selection.

Spectrum Based algorithms. We classify another category of segmentation algorithms
that are based on spectral graph analysis as another top-down approach. Spectrum-
based segmentation methods also start with analyzing the global structure of a shape
by correlating the characteristics of a graph and algebraic properties of the Laplacian
of the shape. Liu and Zhang [2004] use a symmetric affinity matrix W ∈ Rn×n,∀i, j,
0 ≤ Wij ≤ 1 to encode the probability that faces i and j can be clustered in the
same path. The spectral analysis of this matrix then suggests a partitioning of the
mesh. Liu et al. [2006] use an approximation method [Fowlkes et al. 2004] to improve
the performance. Zhang and Liu [2005] adopt a different optimization criterion based
on part salience [Hoffman and Singh 1997] for mesh segmentation. Liu and Zhang
[2007] use spectral embedding to transform 3D problems to 2D and 1D domains for
segmentation.

Implicit Methods. We classify other methods that do not directly extract subregions
locally or globally as implicit methods. Two general approaches have been developed in
literature for surface decomposition in shape-mapping computation: feature/integral
contour tracing methods and skeleton-guided partitioning methods.
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Fig. 5. Skeleton-driven decomposition [Yu and Li 2011] and its extension to consistent decomposition.

Feature Contour Tracing. Lee et al. [2005a] trace closed loops that are minimum
curvature feature contours on triangle meshes for an intelligent scissoring, and then
apply snakes [Kass et al. 1988] to smooth these cutting boundaries. Lévy et al. [2002]
seek feature lines via sharp edges of the shape and grow the texture atlas charts
inward from these boundaries. Similarly, Mitani and Suzuki [2004] extract feature
lines and close them to form subregion boundaries. Wu and Levine [1997] segment the
shape by distributing electrical charges on the surface; intuitively, the density charge
is very low at concave areas while high at convex areas. The minima rule is followed by
tracing contours along regions with local minima of density charge. Edelsbrunner et al.
[2001] segment meshes based on the Morse-Smale decomposition, which is extended
by Várady et al. [2007] for segmenting CAD models.

Skeleton and Reeb Graph-Based Methods. The skeleton curve concisely encodes the
geometry and topology of a 3D object so that it can be used for part decomposition. Li
et al. [2001] suggest a partitioning of the object based on skeleton partition. With an
extracted skeleton, a plane perpendicular to the skeleton branch sweeps over the mesh
and identifies critical points, which then define cuts to segment the mesh to different
parts. Berretti et al. [2006] use topological skeletons Biasotti et al. [2003], defined by
a geodesic-based mapping function for segmentation. Reniers and Telea [2007] use
skeletons to guide the hierarchical mesh segmentation. Raab et al. [2004] extract a
voxelized skeleton and partition it to generate an approximated object using bead-
like primitives. Lien et al. [2006] simultaneously measure the quality of a centroid or
principal axis skeleton and refine the corresponding decomposition together with the
guiding skeleton. Yu and Li [2011] compute the guarding skeleton and use it to guide
the computation of volumetric star decomposition (Figure 5).

The Reeb graph captures the topology of a geometric region. Based on Morse the-
ory [Milnor 1963], given a n-dimensional compact manifold M, a Reeb graph depicts
the relationship among critical points of a smooth real function f : M → R defined
on M, so that it reveals the topology of M. A thorough discussion on computations
and applications of Reeb graphs is given in Biasotti et al. [2008]. Antini et al. [2005]
construct a discrete Reeb graph and construct perceptually meaningful segmentation
based on it. The Reeb graph is simplified to cope with oversegmentation. Tierny et al.
[2007] use an enhanced Reeb graph based on the harmonic function to guide a hier-
archical segmentation procedure. Wang et al. [2009] integrate a Reeb graph (based on
harmonic one-form) with topological decomposition to mimic the geometric structure
of the shape, in order to get a geometry-adaptive decomposition in which subregions
can be parameterized with low distortion.

Consistent Decomposition of Multiple Objects. Shape mapping aims to establish the
relationship between decomposed subregions of given objects. Therefore, simultane-
ously segmenting a set of models into subparts in a coherent manner is often desir-
able for the divide-and-conquer mapping method. Such a decomposition is referred to
as consistent decomposition. Specifically, models should be partitioned into the same
numbers of subparts. Furthermore, if we construct their dual graphs (each node of
the dual graph corresponds to a subpart while each edge of the dual graph connects
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each pair of adjacent subparts), the dual graphs should be isomorphic. Intersurface
mapping algorithms such as Praun et al. [2001], Schreiner et al. [2004], Kraevoy and
Sheffer [2004], and Kwok et al. [2012] trace shortest paths between corresponding
feature markers on surfaces to partition both M1 and M2 into consistent subregions
before mapping each pair of corresponding subregions. The segmentation algorithms
in these methods rely on the manually labeled landmarks, and may fail to robustly
handle surfaces with nontrivial topology or complex geometry. Shapira et al. [2008] use
the normalized Shape-Diameter Function (SDF) [Gal et al. 2007] as a pose-oblivious
shape descriptor for consistent segmentation among shapes with similar metric. The
iso-contours of the SDF function are traced to separate different parts, with iso-values
determined using an Expectation-Maximization (EM) algorithm. The SDF function is
suitable to consistently segment surfaces that differ by near-isometry deformation. In
Shalom et al. [2008], different shapes are first segmented into parts independently,
then a distance measure is created to measure similarities among parts. The distance
evaluates both local shape signatures and “the context of the parts within the de-
composition” hierarchically. A consistent segmentation is then created based on this
catalog of parts with interpart distances. Golovinskiy and Funkhouser [2009] compute
the dual graph and apply a clustering based on the inner/interpart connectivity. The
segmentation was first used to create a symmetry-respecting segmentation of a single
model, then used to transfer segmentations among multiple similar models. Kraevoy
et al. [2007] developed a modeling tool that partitions two meshes into subpatches
consistently; these corresponding subpatches can be transplanted from one model onto
the other. Li et al. [2008b] present a canonical “pants” decomposition algorithm for
general surfaces with nontrivial topology. The algorithm partitions a genus-g surface
with b boundaries into 2g + b − 2 canonical topological spheres with three boundaries,
called the pants patches. When the decomposition is applied on multiple surfaces,
the topological coherency of the decomposition is guaranteed, thus it is suitable for the
automatic mapping computation between matching high-genus surfaces. The computa-
tion of pants decomposition is generalized [Zhang and Li 2012] to better accommodate
geometric properties by enumerating homotopic classes in the decomposition space.
Consistent shape skeletonization can be used to construct consistent decomposition.
Figure 5 shows an example of consistent star decomposition of shapes from consistent
guarding skeletons [Yu and Li 2011].

3.2. Local Geometric Features

While global features guide the mapping globally, local geometric features [Tombari
et al. 2013], often defined on local points or regions, often effectively indicate potential
local correspondence between shapes in mapping computation.

Local curvature and normal information are classic descriptors in 3D object matching
[Stein and Medioni 1992; Ruiz-Correa et al. 2001]. These descriptors are typically easy
to compute and compare. However, the curvatures and derivatives are very local. Many
points possess the same curvature values, and are sensitive to the geometric noise.
Dorai and Jain [1997] propose the Shape-Index (SI) using the maximum and minimum
principal curvatures,

SI(x) = 1
2

− 1
π

tan−1
(

CM(x) + Cm(x)
CM(x) − Cm(x)

)
, (4)

where CM(x) and Cm(x) are maximum and minimum principal curvatures at a point
x ∈ M. This is generalized in Chen and Bhanu [2007] to the Local Surface Patches
(LSP) feature. A salient point is a vertex whose SI value is significantly bigger or
smaller than the local average value of its neighboring region. The Intrinsic Shape
Signature (ISS) feature [Zhong 2009] uses the Eigenvalue decomposition of the scatter
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matrix �(x) of the points in the neighboring regions Nx of a point x,

�(x) = 1
N

∑
p∈Nx

(p − μx)(p − μx)T , (5)

where μx =
∑

p∈Nx p
N . The KeyPoint Quality (KPQ) feature [Mian et al. 2010] extracts

feature points by analyzing the first two principal eigenvalues of �(x). The slippage
feature [Bokeloh et al. 2008] extracts regions that have the maximal stability under
the rigid matching of the surface with itself. A few image descriptors [Lowe 2004;
Mikolajczyk and Schmid 2005] can be effectively generalized to surfaces. For example,
the 3D Harris descriptor [Sipiran and Bustos 2010] extends the well-known Harris
corner detector in image processing to surfaces. The algorithm fits a vertex’s local
neighboring region using a quadratic patch, which is treated as an image. After Gaus-
sian smoothing, the derivatives are used to identify geometric corners/edges.

3.3. Multiscale Shape Features

Multiscale shape features first build a scale space, then extract extremals across dif-
ferent scales. The multiscale feature detectors are widely used in describing 2D images
[Lindeberg 1998]. In 3D shape mapping, one can either extend the scale-space the-
ory to 3D shapes or parameterize the 3D shapes onto planar domains, then apply the
multiscale analysis in 2D. We recap a few popular multiscale features as follows.

—Laplace-Beltrami Scale-space. Unnikrishnan and Hebert [2008] build a scale space
using the Laplace-Beltrami operator 	M, employing increasing support regions
around points on the 3D mesh.

—Heat Kernel. Closely related to Laplace-Beltrami, the Heat Kernel function follows
the heat diffusion process to describe geometric information around a point. Specifi-
cally, the dissipating time t of heat is an intrinsic scale to describe the neighborhood
of a point. Local shape properties are encoded by this function within a small time
range, while global properties are encoded in a larger time range. The kernel function
of solutions to the heat diffusion on the shape is used as the heat kernel signature
(HKS) [Sun et al. 2009]. Using HKS, salient points are extracted as the local maxima
of the neighborhood within a certain range of time t. This method can detect a very
limited number of keypoints that are highly repeatable and isometry invariant.

—MeshDoG. The MeshDoG feature builds a scale-space using the difference of Gaus-
sian (DoG) operator on a scalar function of the mesh. The scalar function can either
be extrinsic like coordinates [Castellani et al. 2008] or intrinsic such as mean curva-
ture or Gaussian curvature [Zaharescu et al. 2009]. Geometric saliency is determined
within its neighborhood on the current and adjacent scales.

—Normal/Curvature Map of the Flattened Surface. Akagunduz and Ulusoy [2007] and
Novatnack and Nishino [2008] construct the scale space using the 2D parameteriza-
tion of the 3D surface. The flattened geometry is resampled regularly; upon the flat
region the interpolated normal map and mean/Guassian curvature maps are used
for saliency detection.

—3D SURF. Knopp et al. [2010] builds a scalespace for surface M using its voxelization.
With this representation, box filtering can be computed efficiently for saliency extrac-
tion. Saliency is measured using the Hessian of second-order Gaussian derivatives
and computed for each grid bin and for each octave.

—Mesh Saliency. Lee et al. [2005b] define the mesh saliency detector using a perception-
based metric that extract regions that are different from their surrounding context.
The descriptor uses the Gaussian-weighted enter-surround evaluation of surface
curvatures.
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3.4. Solving Feature Correspondence

When geometric features of shapes are extracted and described using descriptors,
their correspondence can be formulated as an assignment problem on a graph. Let
P = {p1, p2, . . . , pn1} and Q = {q1, q2, . . . , qn2} be the sets of features on objects M1 and
M2, respectively. An optimal assignment f̂ maps a feature on the source object to a
feature on the target object, so that it maximizes the following matching score:

f̂ = argmax f

⎛⎝∑
p∈P

c(p, f (p)) + λ
∑

(p,p′)∈P

g((p, p′), ( f (p), f (p′)))

⎞⎠ , (6)

where c(p, q) is a cost function measuring feature similarity between features p and
q, and g((p, p′), (q, q′)) is another function measuring the inherent mutual consistency
between the assignment (p, q) and assignment (p′, q′). If one uses an association graph
G to encode feature correspondence, where each node of G is a potential assignment
(p, q) ∈ P × Q and each edge of G indicates a pair of assignments ((p, q), (p′, q′)), whose
mutual consistency can be measured by function g, then these similarity measures
c and g define weights on nodes and edges of G, respectively. The solving of optimal
assignment is then often formulated as an integer quadratic program (IQP) that finds
a permutation matrix (or its column vector replica) x̂ such that:

x̂ = argmaxx(xT Mx)

s.t. x ∈ {0, 1}n1n2 ,∀i
n2∑

a=1

xia ≤ 1,∀a
n1∑

i=1

xia ≤ 1,
(7)

where element xia = 1 indicates that pi is mapped to qa and xia = 0 indicates other-
wise, and the second and third constraints enforce the assignment to be one to one.
This IQP algorithm is NP-complete, and effectively finding its general approximate so-
lutions have been proposed in many fields of computer science research. A few classic
algorithms, such as the Hungarian algorithm [Munkres 1957], voting algorithm [Lowe
2004], or RANSAC [Fischler and Bolles 1981] algorithm, despite their effectiveness in
many applications, do not actually solve this optimization problem. More recently, al-
gorithms that seek for better approximate solution to this IQP problem have been more
systematically studied. For example, Leordeanu and Hebert [2005] suggest a spectral
relaxation algorithm by greedily selecting the leading eigenvector of the affinity ma-
trix M. Beg et al. [2005] approximate the quadratic function using linear programming
problems, which were solved through local gradient descent approaches. More detailed
discussion on solving IQP problems can be found in Loiola et al. [2007]. Although IQP is
a combinatorial integer problem, an effective approach is to relax its integer constraint
and solve it as a continuous optimization problem (to be discussed in Section 4), then
project/round such an approximate solution to the space defined by the integer and
linear bound constraints.

4. OPTIMIZATION METHODS

With the objective functions and constraints formulated in mapping computation, ef-
fective numerical optimization algorithms are needed to solve them. We classify the
optimization methods into deterministic and stochastic strategies.

4.1. Deterministic Optimization Algorithms

Given the nonlinear optimization problem

x̂ = arg minxE(x), (8)
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we want to find the solution x̂ that minimizes the objective function E(x) subject to
certain constraints. We can classify deterministic numerical algorithms following the
orders of derivatives used in optimization: (1) zero-order or derivative-free algorithms;
(2) first-order algorithms, such as gradient descent or conjugate gradients approaches;
and (3) second-order algorithms, such as Newton methods. Generally, an iterative
strategy is employed to optimize the variable x:

xk+1 = xk + λkdk, k = 0, 1, . . . , K, (9)

where dk is the search direction at k-th iteration and λk is the scalar parameter that
determines the step size along the search direction. Different λk and dk have been
designed to make the sequence {xk} to converge to a (local) minimum of the objective
function as fast as possible.

4.1.1. Zero-order or Derivative-Free Algorithms. We first consider optimization algorithms
that do not require derivatives to be explicitly provided. Typical algorithms of this type
include various combinatorial enumerations [Loiola et al. 2007] and greedy selection
[Leordeanu and Hebert 2005]. In many such problems, objective functions are not
smooth and derivatives are unavailable. Sometimes, derivatives do exist but are too
expensive to evaluate. Derivative-free approaches that approximate gradients locally
without explicitly evaluating them could be effective. For example, in Wan et al. [2011],
the mapping distortion needs to be measured after composing a few discrete tracings
of integral lines, causing derivative information to be unavailable. A derivative-free
optimization algorithm based on active-set gradient estimation is used to solve the
nonlinear optimization problem.

4.1.2. Gradient Descent and Conjugate Gradients Methods. Objective functions with gradi-
ent information available can usually be solved efficiently using first-order derivatives.
The standard gradient descent (GD) approach reduces the function value E(x) by mov-
ing toward the negative of the gradient, −λ∇E(x), that is,

xk+1 = xk − λkg(xk), (10)

where g(xk) is the derivative of E and λk is either some constant, decaying function of
k, or obtained by a line search.

The conjugate gradient (CG) method is usually more efficient than GD. The search
direction dk is designed as a linear combination of the previous search direction dk−1
and the current gradient g(xk):

dk = −gk + βdk−1, (11)

where d0 = −g0. Different choices of scalar β can influence how the optimization
converges globally.

4.1.3. Newton, Quasi-Newton, L-M Methods. The classic Newton method is a second-order
optimization algorithm:

xk+1 = xk − [H(xk)]−1g(xk), (12)

where H(xk) is the Hessian matrix of the objective function at xk. This second-order
information improves the convergence of the optimization algorithm. But the computa-
tion of the Hessian matrix and its inverse can be computationally expensive, especially
for large amounts of data.

The Quasi-Newton methods, in contrast, use an approximation to the inverse of
the Hessian, Lk ≈ [H(xk)]−1. During each iteration, the update actually uses only the
first-order derivatives, without computing the second-order derivatives. In this sense,
rigorously speaking the Quasi-Newton method is a first-order algorithm. The step-size
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λk is determined by an inexact line search:

xk+1 = xk − λkLkg(xk). (13)

With certain conditions, Quasi-Newton methods often have superlinear convergence.
Many methods to construct the series Lk have been developed. Notable ones include
the Symmetric-Rank-1 (SR1), Davidon-Fletcher-Powell (DFP), and Broyden-Fletcher-
Goldfarb-Shanno (BFGS). The BFGS is widely used and demonstrates very good
numerical efficiency in many applications. Its update rule is

Lk+1 =
(

I − skyT
k

sT
k yk

)
Lk

(
I − yksT

k

sT
k yk

)
+ sksT

k

sT
k yk

, (14)

where I is the identity matrix, sk = xk+1 − xk, and yk = gk+1 − gk. The step-size λk
is determined by the strong Wolfe conditions [Moré and Thuente 1994]. The limited-
memory version of BFGS method, LBFGS, is a practical variant of BFGS. It avoids
storing the matrix Lk in memory, resulting in great efficiency for large optimization
problems. But the LBFGS method sometimes requires a larger number of function
evaluations, and may be inefficient when the problem is ill-conditioned (e.g., when
the Hessian matrix contains a wide distribution of eigenvalues). Another limitation
of LBFGS is that it needs accurate gradient evaluation, which is sometimes not easy
when mapping shapes with noise geometry or material.

4.1.4. Deterministic Approaches to Overcome Local Minima. When the nonlinear objective
function is nonconvex, deterministic optimization often converges to local minima. A
few approaches have been developed to overcome local minima and obtain a desirable
global solution.

Branch and Bound and Tree-based Search. A branch-and-bound algorithm first starts
with the original problem (root problem) with the complete feasible region. It termi-
nates if the solution matches the estimated lower bound; otherwise, it partitions the
feasible region into subregions and recursively solves the subproblems. Each subprob-
lem’s solution is also a solution (not necessarily a global optimum) to the original
problem, and is used to prune the expansion of the partitioning tree: branches with
worse lower bound than an existing solution need not be expanded further. The search-
ing proceeds until all nodes are examined or until the existing solution is within a
threshold range of the lower bounds of all unexpanded nodes. Through branch and
bound, feature modeling or shape mapping algorithms reduced to integer [Yu and Li
2011] or mix-integer [Bommes et al. 2009; Yu et al. 2013] problems are converted
to continuous problems to get good approximate solutions before being rounded and
reoptimized. Beam search is another tree search approach to reduce the exponential
expansion of branches. For example, McBride and Kimia [2003] grow each node up to
only k children nodes each time and preserve at most m branches in each level in their
tree search.

Graph-based Search. To determine the optimal combinatorial or integer variables
often requires a thorough search on some structure/state graphs. A state graph is used
to represent the combinatorial states of different variables where each node indicates a
configuration. The optimization then explores all reachable nodes and seeks for the best
solution. Zhang and Li [2012] enumerate pants decompositions of different homotopic
classes on the decomposition’s dual graph to obtain an optimal partitioning. Huber
[2002] registers multiple-range scans simultaneously by growing a minimum span-
ning tree on a configuration graph, where each edge represents a pairwise alignment.
Huang et al. [2006] and Zhang and Li [2014] refine a groupwise partial matching by
finding a “maximal compatible edge set” on a graph, which improves the initial solution
computed by iterative pairwise matching.
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Hierarchical Optimization. Solving optimization in a hierarchical scheme is a tradi-
tional approach to circumvent local minima. Geometries can be tessellated hierarchi-
cally so that their mapping can be first solved using coarser resolutions, then refined
in denser resolutions. These strategies have been adopted in regular mesh structure
(multiresolutional grids [Metz et al. 2011]) and irregular mesh structures (progressive
meshes [Schreiner et al. 2004; Kwok et al. 2012; Wan et al. 2012, 2013]). Another type of
hierarchical algorithm is conducted on frequency domain. Shapes are described using
different coefficients, where low-frequency coefficients encode the shape’s rough ge-
ometry and high-frequency coefficients capture the geometric details. Spectrum-based
matching techniques such as Laplacian eigenfunctions [Jain et al. 2007; Mateus et al.
2008], diffusion kernel [Bronstein et al. 2010], manifold harmonics [Zhong et al. 2012;
Vallet and Lévy 2008], Zernike decomposition [Novotni and Klein 2003], and so forth,
have been used in various 3D shape mapping and registration problems.

Function Convexification. Shape mapping generally reduces to minimizing a noncon-
vex function E(x). A convex function E′(x) = E(x)+βER(x) can be used to approximate
E(x), where ER(x) is the regularization term and β is the weighting factor that bal-
ances the convexity of E′ and its approximation accuracy to E. Chui and Rangarajan
[2003] model transformations using thin plate splines and employ graduated assign-
ment [Gold and Rangarajan 1996] for nonrigid shape registration. Liu [2007] uses a
mean field annealing algorithm, which is a deterministic approximation to simulated
annealing, in solving nonrigid shape matching.

4.2. Stochastic Optimization Algorithms

When the geometric data have many noises, outliers, or local optima, statistics or
probabilistic approaches can be used to develop more robust optimization. Similarly,
we classify the stochastic optimization algorithms through the derivative information
they require: (1) voting and RANSAC algorithms; (2) stochastic gradient descent and
conjugate gradient algorithms. Second-order derivatives are less used in stochastic
optimization, probably due to their sensitivity to noise and outliers in addition to their
expensive calculations.

4.2.1. Voting and RANSAC. The voting approaches [Li and Guskov 2005; Lipman and
Funkhouser 2009] accumulate the effects of choosing different parameters to determine
the optimal variables in the optimization. Random Sample Consensus (RANSAC) is
another efficient algorithm for fitting parameters when the problem encounters many
outliers [Tevs et al. 2011, 2009]. Anguelov et al. [2005] used Markov random field to
maximize the joint probability of correspondence in nonrigid shape registration.

4.2.2. Stochastic GD and Stochastic CG Algorithms. The stochastic gradient descent (GD)
method [Kushner and Yin 2003] can be considered as a statistical variant of the deter-
ministic GD algorithm. It determines the step-size λk and search direction dk iteratively
as follows:

xk+1 = xk − γkg̃k,
g̃k = g(xk) + εk,

(15)

where g̃k denotes an approximation of the true derivative gk at xk, and εk is the ap-
proximation error. If εk = 0, this becomes the deterministic GD procedure. During each
iteration, g(xk) is approximated by calculating only the derivative components on a
small randomly sampled element. According to Kushner and Yin [2003], if the bias of
the expected approximation error goes to zero, namely, Exp(g̃k) = g(xk), the convergence
of this stochastic optimization to the true solution x̂ can be guaranteed. Such stochastic
GD methods are effective when exact gradient information is not available, not reli-
able, or too expensive. In these cases, using this statistically approximated gradient
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could improve the algorithm’s efficiency and stability against noise. The stochastic GD
strategy can also be revised to a stochastic conjugate gradient (CG) approach [Xu et al.
2013b], with better convergence rates. Stochastic GD and CG algorithms are effective
for inhomogeneous volume mapping between images whose intensity information (data
fitting term) is noisy [Metz et al. 2011; Xu and Li 2013b].

4.3. Summary and Discussion on Optimization Strategies

Deterministic algorithms iteratively optimize the search direction and step size. When
function and derivative evaluations are available and reliable, they yield efficient and
stable convergence. When such evaluations are prohibitive (bad accuracy due to noise
or bad efficiency in modeling large geometries), stochastic algorithms are effective
alternative strategies. The efficiency of stochastic optimization compared with the
deterministic optimization, however, is debatable: although stochastic optimization
has significantly reduced derivative estimation/approximation time, it often requires
more iterations to converge.

5. SUMMARY AND CONCLUSION

We studied the cross-shape mapping problem to find a bijective map between given
shapes minimizing specific distortions. We classified and compared different mapping
algorithms by considering them as different optimization problems with specific objec-
tive functions, geometric constraints, and solving schemes.

The automatic computation of such correspondence between arbitrarily given shapes
with nontrivial topology and geometry remains a challenging problem. Directly solving
the global intershape map often inevitably gets trapped in local minima under most
existing intrinsic or extrinsic matching metrics. Therefore, most mapping algorithms
utilize various shape features to guide the optimization and avoid undesirable local
optima. Many advanced numerical optimization strategies have also been developed for
efficient mapping computation. Divide-and-conquer could be another global strategy
to solve this problem, which partitions the complex shapes into solvable subparts.
However, effective consistent decomposition of multiple shapes into compatible sets of
subparts with simple topology also remains challenging.

Volumetric data mapping and registration can benefit the analysis of heterogeneous
geometric data. However, with more complicated topology and interior structure for
3-manifolds, the research in this topic has just started. The existence of bijective volu-
metric parameterization for even trivial topological domains is generally unknown. Do-
main decomposition techniques that partition volume regions into simple subregions
could be a solution, but research on consistent volume decomposition and mapping
computation has just begun.

Acquired 3D data usually carry various topological and geometric noises. Developing
intershape matching algorithms for noisy data has not been thoroughly discussed in
this article but is important in many real tasks. Modeling and aligning features that
are reliable against noise can facilitate the mapping of noisy data. Hence, it is an active
research area in computer vision.
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Q.-X. Huang, S. Flöry, N. Gelfand, M. Hofer, and H. Pottmann. 2006. Reassembling fractured objects by
geometric matching. In Proceedings of SIGGRAPH’06. ACM, 569–578.

D. F. Huber. 2002. Automatic three-dimensional modeling from reality. Ph.D. dissertation. Carnegie Mellon
University, Pittsburgh, PA, CMU-RI-TR-02-35.

K. Inoue, I. Takayuki, Y. Atsushi, F. Tomotake, and S. Kenji. 2001. Face clustering of a large-scale CAD
model for surface mesh generation. Comput. Aided Des. 33, 251–261.

M. Isenburg, S. Gumhold, and C. Gotsman. 2001. Connectivity shapes. In IEEE Visualization. 135–142.
S. S. Iyengar, X. Li, H. Xu, S. Mukhopadhyay, N. Balakrishnan, A. Sawant, and P. Iyengar. 2012. Toward

more precise radiotherapy treatment of lung tumors. IEEE Computer 45, 59–65.
V. Jain and H. Zhang. 2006. Robust 3D shape correspondence in the spectral domain. In SMI. 19.
V. Jain, H. Zhang, and O. Kaick. 2007. Non-rigid spectral correspondence of triangle meshes. Int. J. Shape

Model. 13, 1, 101–124.
M. Jin, J. Kim, F. Luo, and X. Gu. 2008. Discrete surface Ricci flow. IEEE Trans. Visual. Comput. Graphics.

14, 5, 1030–1043.
A. Joshi, D. Shattuck, P. Thompson, and R. Leahy. 2007b. Surface-constrained volumetric brain registration

using harmonic mappings. IEEE Trans. Med. Imaging 26, 12 (2007), 1657–1669.
P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. 2007a. Harmonic coordinates for character articu-

lation. In SIGGRAPH’07. 71–81.
T. Ju, S. Schaefer, and J. D. Warren. 2005. Mean value coordinates for closed triangular meshes. SIGGRAPH

24, 3, 561–566.
O. Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. 2011. A survey on shape correspondence. Comput.

Graphics Forum 30, 6, 1681–1707.
M. Kass, A. Witkin, and D. Terzopoulos. 1988. Snakes: Active contour models. Int. J. Computer Vision 1, 4,

321–331.

ACM Computing Surveys, Vol. 47, No. 2, Article 34, Publication date: December 2014.



On Computing Mapping of 3D Objects: A Survey 34:39

S. Katz and A. Tal. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. In ACM SIG-
GRAPH. 954–961.

M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. 2003. Rotation invariant spherical harmonic representa-
tion of 3D shape descriptors. In Proceedings of the Symposium Geometry Processing (SGP’03). 156–164.
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M. Zöckler, D. Stalling, and H.-C. Hege. 2000. Fast and intuitive generation of geometric shape transitions.

Vis. Comput. 16, 5, 241–253.

ACM Computing Surveys, Vol. 47, No. 2, Article 34, Publication date: December 2014.



On Computing Mapping of 3D Objects: A Survey 34:45

D. Zorin, P. Schroder, T. Derose, L. Kobbelt, A. Levin, and W. Sweldens. 2000. Subdivision for modeling and
animation. In ACM Siggraph Course.

E. Zuckerberger, A. Tal, and S. Shlafman. 2002. Polyhedral surface decomposition with applications. Comput.
Graphics 26, 5, 733–743.

Received January 2014; revised June 2014; accepted September 2014

ACM Computing Surveys, Vol. 47, No. 2, Article 34, Publication date: December 2014.


