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There has been an increasing trend in the electric power system from a centralized generation-driven grid to
a more reliable, environmental friendly, and customer-driven grid. One of the most important issues which
the designers of smart grids need to deal with is to forecast the fluctuations of power demand and gener-
ation in order to make the power system facilities more flexible to the variable nature of renewable power
resources and demand-side. This paper proposes a novel two-tier scheme for forecasting the power demand
and generation in a general residential electrical gird which uses the distributed renewable resources as the
primary energy resource. The proposed forecasting scheme has two tiers: long-term demand/generation
forecaster which is based on Maximum-Likelihood Estimator (MLE) and real-time demand/generation
forecaster which is based on Auto-Regressive Integrated Moving-Average (ARIMA) model. The paper also
shows that how bulk generation improves the adequacy of proposed residential system by canceling-out the
forecasters estimation errors which are in the form of Gaussian White noises.

Keywords : Adequacy Analysis, ARIMA Model, Forecasting Model, Maximum Likelihood Estimation,
Smart Grids.

1. INTRODUCTION

In recent years, increasing awareness about en-
vironmental issues and sustainable energy sup-
ply introduced modern power system, called
smart grid (SG), to upgrade conventional
power system by utilizing novel technologies.
There are many influential elements in the
SG which helps power grid to achieve a
more reliable, sustainable, efficient and se-
cure level, such as distributed renewable re-
sources (DRRs), advanced metering infrastruc-
ture (AMI), energy storage devices, electric
vehicles, demand response programs, energy
efficiency programs, and home area networks
(HANs) [1,2]. Furthermore, recent advances
in deploying communication networks in SG
provide two-way communication between util-
ity and electricity consumers and improve mar-
ket efficiency [3]. In a related context, con-
ventional generation resources mostly use fos-

sil fuel as their energy source which is a ma-
jor environmental concern. To overcome this
problem, SG will experience a high penetration
of DRRs which has two main advantages: 1)
cost-effective because the main energy source
is free (wind energy, sunlight, etc), 2) produce
no hazardous pollution. Additionally, DRR
utilization helps power system to become dis-
persed. Therefore, not only SG is more dis-
tributed than conventional power system but
power generation units are trying to implement
green-based energy resources [4].

One of the most challenging issues in future
power system design and implementation is the
flexibility of power system devices to adapt
the stochastic nature of demand and genera-
tion [5,6]. In other words, high penetration of
DRRs, such as wind power and photovoltaics,
is not sufficient to achieve an acceptable level of
reliability in terms of adequate supply of elec-
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tricity demand; for instance the output power
of wind generators requires excessive cost to
manage intermittency [7]. Consequently, there
is a foremost obligation to develop an accurate
forecasting method to predict the power gen-
eration of intermittent DRRs.

Based on US Energy Information Administra-
tion (EIA) assessment, energy demand will in-
crease by 56% from 2010 to 2040. This aston-
ishing consumption growth is driven by eco-
nomic development [8]. Additionally, on the
demand side, customers demand depends on
many factors and there are many studies per-
formed in order to achieve an accurate forecast
methodology. Load forecast uncertainty plays
a pivotal role on power system studies such
as loss estimation, reliability evaluation, and
generation expansion planning. Demand fore-
casting methods including, but not limited to,
fuzzy logic approach, artificial neural network,
linear regression, transfer functions, Bayesian
statistics, judgmental forecasting, and grey dy-
namic models [9].

Considering all of the above-mentioned issues,
including uncertainty of demand and gener-
ation, forecasting errors and DRR intermit-
tent generation profile, proposing an accurate
demand/generation forecasting scheme is defi-
nitely required to achieve a more reliable and
secure power grid. In other words, the pur-
pose of this paper is to propose a framework in
which the SG customers are satisfied in terms
of supplying their demand reliably, indepen-
dent from the wide variation of DRRs’ genera-
tion amount.

1.1. Related Works

Utilizing green power generation units, DRRs,
requires electricity demand/generation fore-
casting which are addressed in recent stud-
ies. In [5], deferrable demand is used to com-
pensate the uncontrollable and hard-to-predict
fluctuations of DRRs. As a result, green-based
power generation units can utilize the flexi-
bility of the customers to meet demand ap-
propriately. They introduced an efficient so-
lution using stochastic dynamic programming

implement their method. Moreover, consumer
participation in generation side is modeled in
term of demand response. Implementation of
demand response programs brings many ad-
vantages for the SG: 1) customer participa-
tion in generating power, 2) transmission lines
congestion management, and 3) reliability im-
provement. In [10], a flexible demand response
model is proposed. This model is useful for
evaluation customer’s reactions to electricity
price and incentives. They defined a strategy
success index to evaluate the feasibility of each
scenario [10].

Additionally, Hernandez et al. performed a
comprehensive survey on power grid demand
forecasting methods considering SG elements.
This study classifies load forecasting based
on forecasting horizons: very short term load
forecasting (from seconds to minutes), short
term load forecasting (from hours to weeks),
medium and long term load forecasting (from
months to years). The authors also classified
forecasting methods according to the objec-
tive of forecast: one value forecasting (next
minute’s load, next year’s load), and multiples
values forecasting (such as peak load, average
load, load profile) [9].

Smart load management studies also require
load/generation forecasting to efficiently bal-
ance load and generation in a near-real time
manner. In [11], a multi-agent based load
management framework is introduced. This
approach considered renewable resources and
responsive demand to achieve an acceptable
level of load-generation balance. For a broader
treatment on this, there are some other re-
searches on this topic that considered electric
energy dispatch in presence of DRRs [12,13].
For a broader treatment on this, please see [14–
25].

1.2. Our Contribution

In this paper, we propose a novel hybrid (two-
tier) scheme for forecasting the power demand
and generation in a residential electrical gird.
The grid has expanded over a city consisting of
a number of communities, Distributed Renew-
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able Resources (DRR), and some bulk genera-
tions back-up plan. Our forecasting scheme has
two tiers: long-term demand/generation fore-
caster which is based on Maximum-Likelihood
Estimator (MLE) and real-time forecaster
which is based on Auto-Regressive Integrated
Moving-Average (ARIMA) model (see [26–29]
for related work). In the long-term fore-
caster, we use the classification of historical
demand/generation data to build our estima-
tor; while in the real-time one, we predict the
time series of power demand/generation using
a discrete feedback control system which gets
feedback from short-term previous values. We
show that how the bulk generators can im-
prove the adequacy of our residential system
by canceling-out the forecasters estimation er-
rors which are in the form of Gaussian White
noises.

The rest of this paper is organized as follows.
Section 2 represents a general framework of the
problem. In Section 3 we discuss our proposed
two-tier forecasting scheme in both long-term
and real-time time horizons. A far-reaching ad-
equacy analysis framework is presented in Sec-
tion 4. Finally, summary and outlook are given
in Section 5.

2. PROBLEM SPECIFICATION

Consider a network of communities in a city.
In each community, there are a number of cus-
tomers and a distributed renewable resource1

which supplies the energy needed by the cus-
tomers in the community. Moreover, there are
a few power plants which are outside the com-
munities and scattered over the city to help the
distributed renewable resources generate elec-
tricity on demand. Existence of these extra
plants improves the performance of our electri-
cal distribution system. We refer to these ex-
tra power plants as bulk generators. The elec-
tric energy generated by these generators can
be transferred to each community in the city
through the network of communities schemat-

1An industrial facility for the generation of electric

power. The power generator of a distributed renew-

able resource use renewable energy sources.

(a) The Whole Network.

(b) More Details Inside a Community. Arrows
Represent Energy Flow.

Figure 1. Schematic Representation of The
Electric Power Distribution Network.

ically represented in Figure 1a. This Fig-
ure shows a network representation of our de-
scribed model. As you see, each community
has some connected neighbors so that it can
trade electricity with them if it is necessary.
We assume that any two neighbors are con-
nected via a two-way transmission power line.

Consider some community in our example.
Each customer located in the community has
some amount of electricity demand which
varies from time to time. Let D(q, t) denote
the total electricity demand of all of the cus-
tomers in the qth community at given moment
t. Note that D(q, t) is the instantaneous power
that have to be supplied at time t. To illus-



82 Kianoosh G Boroojeni, et al.

Figure 2. Daily Demand Profile of New-
England in 2012.

trate, see Figure 2 which specifies the daily ex-
pected value of D(q, t) in New-England in 2012.
Additionally, we use G(q, t) to represent the to-
tal amount of electric power generated by the
DRR located in the community at given time
t.

Figure 1b shows more details of a community.
As you see, there is a controller unit called
Local Load Management Unit (LLMU) which
controls the energy flow inside the community.
Furthermore, the controller may participate in
the energy distribution of other communities
by forwarding the flow received from its neigh-
bors. Assuming that the instantaneous gener-
ated power (G(q, t)) of the DRR exceeds D(q, t)
in a period of time, the energy flow of size
G(q, t) from the DRR is divided into two parts:
a power flow of size D(q, t) moves towards the
customers and the other G(q, t)−D(q, t) units
is stored by the energy storage unit embed-
ded in each community. On the other hand, if
the value of G(q, t) becomes lower than D(q, t)
in some time interval, there will be two main
energy flows in the community to satisfy the
customers demand: one is originated from the
DRR; the other of magnitude D(q, t) − G(q, t)
is from the storage unit. Moreover, in the case
that D(q, t) > G(q, t) and there is no enough
amount of energy in the storage unit to com-
pensate the shortage of DRR generation, there
has to be another flow from the neighbors to-
wards the community of customers.

3. OUR PROPOSED HYBRID FORE-

CASTING SCHEME

In this section, we focus on how to forecast the
power demand and generation in short/long-

term. At the first subsection, we propose a
Maximum-Likelihood Estimator for long-term
foresting which is crucial in the process of
low-cost energy flow management and also is
a basis for real-time forecasting of power de-
mand/generation. In the following subsection,
two estimation models will be proposed for
real-time forecasting of demand and genera-
tion. In the first one which is a two-tier hy-
brid model (based on MLE and AR), we as-
sume that the forecast random processes are
stationary in few hours; however, the second
model (which is an ARIMA) is more appropri-
ate for the case that the forecast random pro-
cesses doesn’t show stationary behaviors even
in few hours.

3.1. Long-Term Forecasting

We assume that there are a set of customers
C distributed over an area. By partitioning
the area into n disjoint parts A1, A2, . . . , An,
we obtain a corresponding partition of set
C: C1, C2, . . . , Cn (communities of customers).
The demand values of every subset Cq has been
measured every u units in time period [0, T u]
for some integer T and real value u.

Assume that a year is divided into m parts
(school time, Christmas holidays, Summer
break, etc) based on the similarity of electric-
ity usage pattern. We partition time interval
[0, T u] into m subsets: I1, I2, . . . , Im such that
set Ii contains the ith part of every year be-
longing to [0, T u]. Additionally, every set Ii is
divided to two parts: weekends Ii1 and busi-
ness days Ii2. Moreover, assuming that a day
is divided into d parts (again based on the
similarity of electricity usage pattern during
the day), we partition every interval Iij into
Iij1, Iij2, . . . , Iijd.

In addition, assume that we have the histori-
cal weather data in every area Aq over period
[0, T u]. Considering that W denotes the set of
different weather conditions, we partition time
interval Iijk in the following form for every area
Aq:

Iijk =
⋃

w∈W

I
(w,q)
ijk (1)
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for every i = 1, 2, . . .m, j = 1, 2, k =
1, 2, . . . , d, q = 1, 2, . . . , n. Note that in Equa-

tion 1, I
(w,q)
ijk specifies the subset of Iijk such

that the weather condition in area Aq and time

t ∈ I
(w,q)
ijk is w.

Now, assuming that interval [0, T u] contains δ
days, let Dv specifies the vth day of time inter-
val [0, T u] for every v = 1, 2, . . . , δ. Addition-
ally, consider D(q, τ) as the power demanded
by the set of customers Cq measured at mo-
ment uτ (for every τ = 0, 1, . . . , T ). For every

interval I
(w,q,v)
ijk = I

(w,q)
ijk ∩ Dv, if I

(w,q,v)
ijk 6= ∅,

we specify five parameters: X
(q)
1 which is the

number of years passed since t = 0 (till inter-

val I
(w,q,v)
ijk ), X

(q)
2 which is the number of weeks

passed since the begining of the ith paritition

of a year, X
(q)
3 which is the number of days

passed since the begining of the jth partition

of a week, X
(q)
4 is the temperature in area Aq

and time interval I
(w,q,v)
ijk , and

y(q) =

∑
uτ∈I

(w,q,v)
ijk

D(q, τ)

∑
uτ∈I

(w,q,v)
ijk

1
, (2)

where y(q) specifies the average power de-
manded by the set of customers Cq in time

interval I
(w,q,v)
ijk .

For every subset I
(w,q)
ijk ⊂ [0, T u], we construct

a maximum-likelihood estimator for the depen-
dent variable y(q) based on the following linear
model:

ŷ(q) = [1 X
(q)
1 X

(q)
2 X

(q)
3 X

(q)
4 ][β̂0 β̂1 . . . β̂4]

T

+N(0, σ̂2) .

(3)

Considering that condition I
(w,q,v)
ijk 6= ∅ is only

true for v = v1, v2, . . . , vp, we obtain that
Y (q) = X(q)β+ε ∀q = 1, 2, . . . , n such that

Y (q) = [y
(q)
i ]p×1, β = [βi−1]5×1, ε = [εi]p×1,

and X(q) = [1 X
(q)
1 X

(q)
2 X

(q)
3 X

(q)
4 ]. Sym-

bol y
(q)
ι specifies the average power demanded

by the set of customers Cq in time interval

I
(w,q,vι)
ijk ; moreover,Xι1, . . . , Xι4 denote the pa-

rameters on which y
(q)
ι is dependent (for every

ι = 1, 2, . . . , p).
Using the maximum-likelihood method for the
linear model mentioned in Equation 3, we ob-
tain that:

β̂ML = (X(q)TX(q))−1X(q)TY (q)T , (4)

ε̂ML =
(
Y (q)T −X(q)β̂ML

)
∼ N(0, σ̂2

MLI) ,

(5)

and

σ̂2
ML =

(
Y (q) −X(q)β̂ML

)T

×
(
Y (q) −X(q)β̂ML

)
/p .

(6)

Note that the ML estimator specified in Equa-
tion 3 can forecast the average power demand
in an interval of few hours. However, by us-
ing the estimator repetitively and for differ-

ent intervals I
(w,q)
ijk , we can forecast the aver-

age power demand for longer time; however,
the variance of error will increase respectively2

Additionally, the similar estimation model can
be made for power generation. The only differ-
ence is that we don’t need to partition a week
into two parts. Moreover, we have to partition
a year into small parts based on the similarity
of power generation pattern.

3.2. Real-Time Forecasting

In the previous subsection, we partitioned the
interval [0, T u] into Θ(md|W |) subsets in the

form of I
(w,q)
ijk (for every set of customers Cq).

Additionally, for every subset I
(w,q)
ijk , a maxi-

mum likelihood estimator was constructed to
estimate the average power demanded by cus-

tomers Cq in time interval I
(w,q)
ijk ∩Dv.

Our ultimate goal in this section is to construct
an estimator for the value of power demanded

2addition of b i.i.d. jointly normally distributed random

variables of variance σ
2 is also a normal variable of

variance bσ2.
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by set of customers Cq in moment t = τu (for
some integer value τ) based on ARIMA(a, 0, 0)
model with drift −µ(q):

(
1−

a∑

l=1

φlL
l
)
(D(q, τ) − µ(q)) = ετ , (7)

where µ(q) is the average of demand value

D(q, t) in time interval t ∈ I
(w,q,v)
ijk which is

estimated by Equation 3, ετ is a white noise of

variance σ2, τu ∈ I
(w,q,v)
ijk for some i, j, k, w, v,

and L is the lag operator : L(D(q, τ)) =
D(q, τ − 1). By replacing µ(q) with ŷ(q) + ε′

where ε′ ∼ N(0, σ̂2
ML), we obtain that:

D(q, τ) = (

a∑

l=1

φl − 1)ŷ(q) +

a∑

l=1

D(q, τ − l)

︸ ︷︷ ︸
estimated value

+ ετ + (
a∑

l=1

φl − 1)ε′

︸ ︷︷ ︸
.

estimation error

(8)

Note that Equation 7 works only if random pro-
cess D(q, t) shows stationary behavior; other-
wise, we need to use the model with moving
average. In fact, assuming that process D(q, t)
is not stationary, ARIMA(a, 1, 0) is much bet-
ter for short-term forecasting:

(
1−

a∑

l=1

φlL
l
)
(1− L)D(q, τ) = ετ . (9)

Consequently, we obtain that:

D(q, τ) = (φ1 + 1)D(q, τ − 1)

+

a∑

l=2

(φl − φl−1)D(q, τ − l)

− φaD(q, τ − a− 1) + ετ .

(10)

As you see, ARIMA(a, 1, 0) model forecasts the
demand value using its (a+ 1) previous values
with a white noise error.
In addition, the power generation of the
gth generator can also be forecast using

ARIMA(a′, 1, 0). Assuming that G(g, t) speci-
fies the instantaneous power generated by the
gth generator at moment t, we have:

(
1−

a′∑

l=1

φ′

lL
l
)
(1− L)G(g, τ) = ε′τ ; (11)

or equivalently,

G(g, τ) = (φ′

1 + 1)G(g, τ − 1)

+
a′∑

l=2

(φ′

l − φ′

l−1)G(g, τ − l)

− φ′

a′G(g, τ − a′ − 1) + ε′τ .

(12)

In the following section, we analyze the ad-
equacy of the electricity system based on
ARIMA(a, 1, 0) forecasting model.

4. ADEQUACY ANALYSIS

By assumption, we consider the maximum se-
curity for our electrical facilities (like wires).
Henceforth, the system reliability in our dis-
cussion refers to the system adequacy. In or-
der to analyze the system adequacy, we need to
use the forecasting models of instantaneous de-
mand and generation presented in the previous
section:D(q, τ) = D̂(q, τ) + Dτ and G(q, τ) =

Ĝ(q, τ) +Gτ such that D̂(q, τ) and Ĝ(q, τ) are
obtained by the ARIMA estimators specified
in Equations 10 and 12; additionally, Dt and
Gt are two independent Gaussian white noises

of the following covariance functions (regard-
ing the Central-Limit theorem, the estimation
errors of the instantaneous demand and gener-
ation are Gaussian processes): cov(Ds, Dt) =
σ2
d · δ(s− t) and cov(Gs, Gt) = σ2

g · δ(s− t).

Now, assume that community Cq uses the
qth renewable power plant (DRR) to satisfy
its demand. Assuming that at given time t,
community Cq has stored S(q, t) units of en-

ergy, we obtain that S(q, t) =
∫ t

0
(G(q, t′) −

D(q, t′))dt′ + sq for every t ≥ 0 such that sq
is the initial stored energy in the community.
By replacing the generation and demand func-
tions with their equivalent random processes,
we obtain that S(q, t) = Ŝ(q, t) − Wt where
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Ŝ(q, t) =
∫ t

0
(Ĝ(q, t′)−D̂(q, t′))dt′+sq andWt =∫ t

0
(Dt′−Gt′)dt

′. Since Gt and Dt are two inde-
pendent Gaussian white noises, Wt is a Wiener
process of variance (σ2

g + σ2
d) and covariance

function cov(Ws,Wt) = min{s, t} · (σ2
g + σ2

d).
Moreover, it is easy to show that the expected
value of the stored energy at given time t is
Ŝ(q, t).
According to the above analysis, the amount of
stored energy S(q, t) is equal to the summation

of deterministic amount Ŝ(q, t) and the scaled
Wiener process (−Wt). In the rest of our anal-
ysis, we assume that the expected value of the
stored energy never becomes less than the ini-
tial amount of energy (sq); i.e. Ŝ(q, t) ≥ sq
for every t ≥ 0. This condition can be held by
providing sufficient DRRs for every community
(which is designed based on long-term forecast-
ing of power demand and generation).

Here, we define the system adequacy ratio

(ρq(0, t)) for the qth community as the prob-
ability that the actual stored energy S(q, t′)
doesn’t meet the low-threshold (sq − λ) for
some λ ∈ [0, sq] and every t′ ∈ [0, t]. So,
ρq(0, t) = Pr

[
∀t′ ≤ t : S(q, t′) > sq −

λ
]
≥ Pr

[
Mt < λ

]
where Mt is the running

maximum process corresponding to the scaled
Wiener process Wt. So, regarding the char-
acteristics of the running maximum process,

we conclude that ρq(0, t) ≥ erf
( λ√

2tσ2

)
such

that σ2 = σ2
g + σ2

d. In other words, we as-
sume that if S(q, t) ≤ sq−λ (the stored energy
becomes lower than some threshold in the qth

community), the consumers demand will not
be satisfied anymore. Figure 3 shows how the
lower-bound of the reliability ratio changes as
parameters λ and σ2 get different values.

As you see in Figure 3, if the DRR of each
community is the only source of power for the
community customers, the adequacy ratio will
substantially decrease over time. In fact, even
if the DRRs are sufficient to satisfy the cus-
tomers’ demand in long-term(Ŝ(q, t) ≥ sq), the
system adequacy can not be guaranteed be-
cause of the white noise errors existed in the

Algorithm 1: LocalLoadManagementU-

nit

Input: Community Index q & time t
1 if Ŝ(q, t+ 1) ≤ sq − λ then

2 Ask the bulk generations for

sq − Ŝ(q, t+ 1) units of energy;

3 end

4 if D(q, t) > G(q, t) then
5 Create an energy flow of size

D(q, t) − G(q, t) originated from the
storage unit toward the customers.;

6 end

7 else

8 Divide the energy flow originated from the
DRR into two branches: one toward the
customers and the other toward the
storage unit.

9 end

Figure 3. Lower Bound of The Adequacy Ratio
of a Community for Three Different Values of
λ and σ2.

short-term forecasting scheme of demand and
generation. Subsequently, we have to get help
from the bulk generators located outside the
community to cancel out the temporary noises
and improve the adequacy ratio by generating
extra energy on demand.

4.1. Canceling out the Noise by Energy

Requests

As mentioned before, if the value of S(q, t) falls
below some threshold (sq − λ), the system ad-
equacy will be endanger. In this subsection,
we use the bulk generation as a back-up plan
to prevent such event. To do this, we design
a controller to watch the amount of stored en-
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ergy in different communities during the time.
In the case that S(q, t) ≤ sq−λ for the qth com-
munity, the controller asks the bulk generation
to fill the gap and cancel out the noise −Wt

by providing the community with Wt units of
energy.

Here, we focus on what has to be done by
the LLMU specified in Figure 1b. The re-
cently explained scenario which specified the
functionality of LLMU cannot be implemented
in the real-world as the values of G(q, t) and
D(q, t) are obtained from random processes.
This urges us to forecast theses values in short
term (for example, every 15 minutes). Algo-
rithm 1 shows the practical way of implement-
ing LLMU using forecasting models for the qth
community. As mentioned before, by forecast-
ing (estimating) the power demand and genera-
tion using ARIMA model, we will obtain white
noise errors added to the real values of G(q, t)
and D(q, t) as the estimated values. These
noises on the estimated power values will add
some errors in the form of Brownian Motion
processes to the estimated values of stored en-
ergy.

5. SUMMARY AND OUTLOOK

This paper proposed a novel hybrid scheme
for forecasting the power demand and gener-
ation in a residential power distribution net-
work. Our forecasting scheme had two tiers:
long-term demand/generation forecaster which
is based on Maximum-Likelihood Estimator
(MLE) and real-time demand/generation fore-
caster which is based on Auto-Regressive Inte-
grated Moving-Average (ARIMA) model. The
paper also showed how bulk generation im-
proves the adequacy of our residential system
by canceling-out the forecasters estimation er-
rors which are in the form of Gaussian White
noises.
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