
AN OPTIMAL DISTRIBUTED DEPTH-FIRST-SEARCH ALGORITHM

Mohan B. Sharma 38, Sitharama S. Iyengar 38

$ Department of Computer Science
Louisiana 6tate University
Baton Rouge, LA 70803.

Narasimha K. Mandyam t

t Indian Telephone Industries Ltd.
Bangalore

India.

ABSTRACT

This paper presents a new distributed depth-first-search

algorithm with communication and time complexities of

O(IVl). The algorithm is shown to use 21VI-2 messages and

21V1-2 units of time and is shown to be optimal in time and

message.

keywords: distributed system, distributed algorithm, com-

munication graph

1.Introduction

Many applications in distributed systems

require traversal of messages through the underly-

ing communication network. The problem of graph

traversal has been studied extensively in a sequen-

tial context. In this paper, we present algorithm for

depth-first-traversal of a graph in a distributed con-

text. The problem of distributed depth-first-search

is defined as follows. Consider a communication

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© A C M 1989 0-89791-299-3/89/0002/0287 $1.50

network. The aim is to equip the set of processors in

the network with a control algorithm which will

allow a processor Pi in the network to effect a

depth-first-traversal through the graph underlying

the network, using messages. The output of the

algorithm is a depth-first-search (DFS) tree of the

communication network kept in a distributed

fashion, i.e., at the end of the algorithm, each node

will know its neighbors in the DFS tree [4].

Recent papers [1,5,3] by Awerbuch, Laksh-

manan and Cidon present improved algorithms for

distributed depth-first-search (DDFS) for graphs

representing communication networks. Earlier

work of Cheung[2] presents a DDFS algorithm with

message and time complexities of 21El for both,

where E is the set of undirected links in the graph.

Awerbuch [1] improves the time complexity of

Cheung's algorithm and presents an algorithm with

time complexity less than 41VI, requiring 41El mes-

sages, where V is the set of nodes in the graph.

Lakshmanan et.al., in [5] prove lower bounds for

message and time complexities and present an algo-

rithm that is time optimal requiring less than 41El -

(IVl -1) messages. In [3], both the time and com-

munication complexities are improved with the

communication cost shown to be less than 31El mes-

sages and the time complexity being 21VI.

287

In this paper, we present a new algorithm for

DDFS with time and communication complexities

of O(IVl) for both. The algorithm is shown to use

exactly 21VI-2 messages and terminate after 21VI-2

units of time. This reduction in message complexity

is achieved by the effective use of extended mes-

sage format in the algorithm and it is later shown

that the total number of bits used for communica-

tion is less than that used in the earlier algorithms.

2.The model

The communication network is represented by

the graph G(V,E) where V and E are respectively

the sets of vertices and undirected edges. Vertices

and edges of the graph denote the nodes and

undirected communication links of the communica-

tion network. We make the following assumptions

for an asynchronous communication network.

1. No two processors in the network share

memory.

2. Any message transmitted from a node i to node

j is received by node j unaltered, in finite time.

3. Each node has the knowledge of its neighbors

to which it is linked in the network and the

node from where a message is received.

4. Each node has a distinct name and the names

are taken from the integers 1,2,..,IVI. Nodes do
not have the knowledge of total number of

nodes in the network.

We evaluate the performance of the algorithm

with the following complexity measures as

described in the earlier papers. The time complex-

ity is the maximum time elapsed from begining to

the termination of the algorithm, assuming that the

time for delivering a message over a link is atmost

one unit of time and time for receiving a message,

local processing and sending it over a link being

zero. The communication complexity is the total

number of messages sent during the execution of

the algorithm. Also, we compare the communication

complexity of our algorithm with the previous algo-

rithm [3] in terms of total number of bits used in

communication. All through this paper, we use the

terms communication complexity and message

complexity interchangeably.

3. Proposed Solution

In this section, we describe the extended mes-

sage format and present the algorithm.

3.1 Message Format:

There are two messages namely START and

DISCOVER. The DISCOVER message has the

header and an appendage of IVl bits atmost. The

appendage in the message is a bit array such that the

i th bit represents the state of the i th processor. State

of a processor with respect to the appendage is

either VISITED or UNVISITED. The START mes-

sage contains the start header and is used as signal

to initiate the algorithm.

3.2 Description of the proposed algorithm

In the earlier algorithms of [1,3,5], the basic

idea was to select a node as the son at every 'center

of activity' and send the 'VISITED' message to the

rest of the unvisited neighboring nodes, in parallel.

In [1], each node waits for an ACK message to be

received from all the neighbors, after sending

VISITED message to them. The ACK message of

algorithm in [1] is eliminated in [5] and the time

complexity is reduced to 2IEI - 2. The algorithm in

[3] eliminates the ACK message and the message

complexity is reduced to < 31El messages with time

288

complexity of 2[V[. The high communicatiorl cost in

all these algorithms is due to the use of VISITED

message from a node to some of its neighbors.

Our proposed solution eliminates the need for a

separate VISITED message and this information is

embedded in the message itself. The algorithm

operates as follows. A node is given the START

message from the external world, to start with. The

START message signals the start of the algorithm

and the node that receives the START message

becomes the root node of DFS.

The root node forms the DISCOVER message

with a bit-array of size equal to the maximum of the

root i.d.(name) and the largest integer denoting its

neighbor, i.e., if k is the largest i.d. of the nodes

adjacent the root and r is the root i.d., then max(k, r

) bit-array is created. Every bit in the bit-array is

initialized to UNVISITED state. The root node

selects one of its neighboring nodes as its son,

marks its (root) position in the bit-array of the

message as VISITED and sends this message over

the link to the selected son. It may be recalled that

since each node i is identified as integer i, 1 < i < IVl

, position of each node in the bit-array is unique.

Clearly, the contents of the bit-array depict the pre-

valent state (VISITED/UNVISITED) of nodes in

the network, at any instant of time.

Upon receiving the DISCOVER message for

the first time, each node i does the following.

i. It marks its position (i th bit) in the bit-array of

the received message as VISITED.

ii. It marks the node from where the DISCOVER

message was received, as its father in the DFS.

iii. It extends the bit-array to k bits if k > size of

the received bit-array, where k is the largest i.d.

of its neighbors and initializes the added bits to

UNVISITED state.

iv. The node chooses an UNVISITED node as its

son from its adjacency list, if one exists, and

transmits the DISCOVER message with the

updated bit-array to the selected son node. To

choose an UNVISITED neighbor, next node in

the adjacency list of node i is taken and the

state of the chosen node is checked in the

received bit-array; if found VISITED, the pro-

cess is repeated with other nodes in its adja-

cency list. If all the neighboring nodes are

already VISITED, i.e., node i is a leaf node in

DFS, the received DISCOVER message with

updated bit-array is returned to the father node.

If the DISCOVER message is received from a

son node, then only step iv. above is executed. The

algorithm terminates when the root node receives

the DISCOVER message with all nodes in its adja-

cency list exhausted in the search.

If the total number of nodes in the network is

known a pr ior i , then the root node creates a bit-

array of size IVI-bits and no other node in the net-

work need extend the bit-array.

4.Complexity Analysis and Proof of Correctness.

In the previous section, we presented the DDFS

algorithm employing two messages with the above-

said message format. In this section we prove that

time and messsage complexities of the algorithm are

both O(IVI). We also show that the algorithm is

optimal in message complexity and further demon-

strate that DDFS has message complexity lower

bound of O(IVI). We also establish that the com-

munication complexity of our algorithm is less than

that reported in [3], in terms of total number of bits

289

3.3 Formal description of the algorithm

We present formal description of the proposed algorithm, executed at each

node i. The algorithm is described in a Pascal-like language and record structure

for the DISCOVER message is used for clarity. Following are the message format

and variables used at each node i.

Message:

Type message = record

begin

HEAD : integer; /* Identification of discover message type */

NLIST []: bit-array; /* The bit-array apenctage */

end;

START: Message used to initiate the algorithm at any node chosen to be

the root of DFS.

DISCOVER: Message sent to/received from a son node.

Variables:

Ad jacen t i

Father i

Son i

M a x a d j i

Source

= Set of node adjacent to node i.

= Father of node i in DFS.

= Set of sons of node i in DFS.

= Node in Adjacenti with largest i.d.

= initialized to -1. Used to mark the root node.

P R O C E D U R E INIT;

Begin

On receiving the START message from external world,

begin

Source = i; /* mark the root node */

Create bit-array of size max (Maxadji , i);

Initialize the bit-array to UNVISITED state;

Form the message record MSG;

MSG.HEAD = DISCOVER;

290

MSG.NLIST = the bit-array formed;

MSG.NLIST [i] = VISITED;/* set the node state to visited */

SEARCH; /* Start dfs */

end;

end;

end ;

On receiving the message record MSG from node j,

if MSG.HEAD = DISCOVER then,

begin

i f j e Son i then /* return msg from son */

SEARCH; /* continue search with other neighboring nodes. */

else

begin

Father i = j ; /* msg from father node */

MSG.NLIST [i] = VISITED ;/* mark the state */

if(size ofMSG.NLIST[]) < Maxadj i then

extend MSG.NLIST to the size Maxadji and

initialize the added bits to UNVISITED state.

SEARCH; /* start search for possible son */

end;

/* End of procedure INIT */

P R O C E D U R E SEARCH;

Begin

if for some k, MSG.NLIST[Adjacent i [k]] = UNVISITED

then

begin

else

end

Son i = Son i kJ Adjacent i [k] ;

send MSG to node Son i ;

/* all neighboring nodes are in VISITED state */

291

end;

begin

/f Source ~ i then

Send MSG to Father i/* send return */

else

/* algorithm terminates. */

STOP.

end;

/* end of procedure SEARCH */

used for communication, despite increasing the

message size in our algorithm.

Theorem 4.1.

DDFS has the message complexity lower

bound of O(IVI) for IVI > 1.

Proof

This bound is easily seen. It is clear that atleast

ONE message must be sent from any node i to any

node j in the network, i,j e {V}, since no memory is

shared in the network. Hence atleast IVI-1 messages

must be sent over the links so as to communicate to

all the IVl nodes atleast once. Hence DDFS has an

O(IVl) lower bound in message complexity. []

Theorem 4.2 The proposed algorithm is optimal in

communication complexity and uses exactly 21VI - 2

messages.

Proof

Every node in the network except the root node

receives only one DISCOVER message from its

father (forward path) and sends one DISCOVER
message to its father (return path) . Also it is clear

from the algorithm that DISCOVER message is not

sent to an already VISITED node in the network.

Thus, each of the IVI - 1 nodes (excluding the root)

exchanges DISCOVER messages with its father

exactly twice. Hence, the total number of messages

used in the algorithm is exactly 21VI - 2. Clearly,

the message complexity of the algorithm is O(IVl)

and is optimal within a constant. []

Theorem 4.3 The algorithm terminates after 21VI-2

units of time, if all messages are delivered in one

unit of time and is time optimal.

Proof

Total time needed for the algorithm to construct

DDFS is the time required to transmit the messages

over the links. From theorem 4.2, total time needed

to transmit a total of 21VI-2 messages is 21VI-2 units

of time if all messages are delivered in atmost one

unit of time.

It is shown in [5] that distributed algorithm for

DFS has a worst case time complexity of 21VI - 2

and hence the proposed algorithm is optimal in

time. []

We now compare our algorithm with the algo-

rithm in [3] for bit-wise message complexity. For

convenience, we call our algorithm as A1 and that

in [3] as A2. Let n be the total number of nodes in

the network and m be the number of bits transmitted

for each message of A2.

292

L e m m a 4.4 The total number of bits used for com-

munication in the algorithm A1 is less than that for

the algorithm A2, for n > 1 and m > 4 bits, for a

fully connected network.

Proof

In algorithm A1, the number of bits transmitted

for the DISCOVER message is atmost (m+n) bits

due to the possible n-bit appendage to the message

of A2. Total number of messages that are used in

A2 is < 31El where IEI < n(n-1)/2. Hence, for a fully

connected network, total number of bits used for

communication is < 3n(n-1) * m/2. In A1, the total

number of messages used is 2(n-l) and hence the

total number of bits used for communication is

atmost 2(n-l) (m+n). We derive the condition for m

and n such that

2(n- 1) (n + m) < 3 n (n - 1) m / 2 .

i.e. 4 (n + m) < 3 n m

i.e. 4 m / (3 m - 4) < n .

For m > 4 , we get n > 1 for the inequality to be

satisfied and hence the proof.D

Table 1

Author Year

T.Cheung 1983

1985

1987

B.Awerbuch

K.B.Lakshmanan, N.Meenakshi

and K.Thulasiraman

I.Cidon 1988

S.B.Mohan, M.K.Narasimha

and S.S.Iyengar

1988

In table 1 we summarise the performance of

algorithms of the algorithms for DDFS. However, it

should be noted that the unbounded message sizes

are used for comparison in the table.

5.Discussion

We have presented a new DDFS algorithm that

is optimal in message complexity. The algorithm is

shown to use exactly 21VI - 2 messages with the

time complexity of 21VI-2 units of time. We have

shown that the extended message format reduces

overall message complexity in terms of total

number of bits used for communication. It may be

noted from table 1 that although the message com-

plexity of our algorithm is O(IVl), the number of

bits per message in our algorithm is more than that

in the other algorithms in the table. It is interesting

to see that the proposed algorithm performs the

same way for both synchronous and asynchronous

networks since the 'center of activity' moves

sequentially in a deterministic manner.

Time Complexity

21El

< 4IV[

21VI - 2

Uommumcatlon tSomplexlty

21El

41El

< 41El -([VI - 1)

-< 2IV[

21VI- 2

< 31El

21Vl- 2

293

References.

[1]. B.Awerbuch, A new distributed depth-first-

search algorithm, Inform. Process. Lett., 20,

(3), 1985, pp. 147-150.

[2]. T.Cheung, Graph traversal techniques and the

maximum flow problem in distributed computa-

tion, IEEE Trans. Software Engineering.,Vol.

SE-9,(4), 1983, pp. 504-512.

[3]. I.Cidon, Yet another distributed depth-first-

search algorithm, Inform. Process. Lett, 26,(6),

Jan 1988, pp. 301-305.

[4]. E.Horowitz and S.Sahni, Fundamentals of

Computer Algorithms, Computer Science Press

Inc, 1984.

[5]. K.B.Lakshmanan, N.Meenakshi and

K.Thulasiraman, A time optimal message-

efficient distributed algorithm for depth-first-

search, Inform. Process. Lett.,25, (2), May

1987, pp. 103-109.

294

