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We present parallel algorithms for constructing and maintaining balanced 
m-way search trees. These parallel algorithms have time complexity 0(1)  for an 
n processors configuration. The formal correctness of the algorithms is given in 
detail. 
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1. I N T R O D U C T I O N  

The use of tree structures to represent symbol tables, dictionaries has been 
extensively studied. (1) In all these structures we hae a collection of records 
that are to be manipulated with regard to a certain key field in a record. 
Common  operations on these structures are SEARCH, INSERT, and 
DELETE.  SEARCH(K) returns a pointer to the record that contains the 
requested key field K. If no record with key K is in the given collection, it 
returns a pointer to the location in which a record with such a key can be 
inserted. INSERT(R)  inserts a new record into the collection. DELETE(K)  
removes the record with key K from the collection. The tree structure sup- 
ports efficient INSERT,  SEARCH, and D E L E T E  operations. In some 
implementations the operations are designed so that a balanced tree is 
maintained through the process. Another approach is to periodically 
rebalance the tree. 
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In our discussion we refer to these structures as dictionaries. The 
operations INSERT, SEARCH, and D E L E T E  will be referred to as basic 
dictionary operations. 

When the data associated with the dictionary fit into main memory,  
the most common structure used would be a balanced binary search tree. 
When the data are too big to fit in main memory,  a balanced m-way search 
tree would be used. Many type of balanced m-way search trees are reported 
in Refs. 1 and 2. In our discussion we refer to the following: 

Def ini t ion 1.1. An m-way search tree, T, is a tree is which all 
internal nodes are of degree ~< M. If T is empty, then T is an m-way search 
tree. When T is not empty, it has the following properties: 

1. T is a node of type Ao, (K~,AI), (K2 ,  A2)  ..... ( K  m l, Am_l)  where 
the Ai, O<,i<m, are pointers to the subtrees of T and the Ki, 
1 ~< i < m, are key values. 

2. Ki<Ki+x, l ~ < i < m - 1 .  

3. All key values in subtree Ai are less than value K~+ l, 0 ~ i < m - 1. 

4. All key values in the subtree A m _  1 are greater than Km-~. 
5. The subtrees Ai, 0 ~< i ~< m -  1, are also m-way search trees. 

As an example of a 4-way search tree consider the tree of Fig. 1. This 
tree is constructed for key values 2, 3, 10, 11, 14, 16, 17, 19, 22, 25, 30, 32, 
35, 40, 47, 60, 65, 90. In order to search for any key value x in this tree, we 
start at the root T and look for keys K~ and Ki + ~ for which Ki ~< x < K~+ 1 
(for convenience we assume the existence of keys Ko = - o e  and 

Fig. 1. Example of a 4-way search tree. 
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K,,+I = Go). In case x = Ki then the search is complete. Otherwise, by the 
definition of the m-way tree, x must be in sbstree A i if it is in the tree. 
Clearly, the 4-way search tree in Fig. 1 is not the only possibility for a 
4-way search tree construction with the given keys. In general we would 
prefer the construction with the minimal possible height. 

D e f i n i t i o n  1.2. A balanced m-way search tree is an m-way search 
tree minimal height. 

In this paper, we present parallel algorithms for balancing and main- 
taining m-way search tree. Since the complexity of a parallel algorithm 
depends very much on the architecture of the parallel machine on which it 
runs, it is necessary to keep the architecture in mind when designing 
parallel algorithms. Many parallel architectures have been proposed and 
studied. In this paper, we deal directly with only the multiple-instruction 
stream, multiple-data stream (MIMD) model. Our technique and 
algorithms readily adapt to other models (e.g., single-instruction stream, 
multiple-data stream (SIMD) and data flow models). MIMD computers 
have the following characteristics. 

(1) The consist of p processing elements (PEs). The PEs are indexed 
0, 1,..., p -  1, and an individual PE may be referenced as PE(i). 
Each PE is capable of performing the standard arithmetic and 
logical operations. In addition, each PE knows its index. 

(2) Each PE has some local memory. 

(3) The PEs operate asynchronously under the control of individual 
instruction streams. 

(4) Different PEs can execute different instructions at any time. 

During the computation the PEs communicate results to each other. 
In many MIMD models the time required to communicate data from PE 
to PE often dominates the overall complexity of the algorithm. Several 
interprocessor communication models for MIMD computers have been 
proposed in the literature. 

The communication overhead of an algorithm varies from one com- 
munication model to another. To simplify the discussion we deal only with 
the shared-memory model (SMM) in this paper. This model has no com- 
munication delay. In a shared-memory computer there is a large common 
memory that is shared by all PEs. It is assumed that any PE can access any 
word in common memory in O(1) time. When two or more PEs access the 
same memory word simultaneously, we say that a conflict has occurred. As 
far as our discussion is concerned, no conflicts are allowed. 

The advent of parallel processing (specifically VLSI) has led to the 
development of a number of special purpose parallel machines to support 
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dictionary structures. (3-1~ Leiserson, (7~ Bently and Kung, (5) Ottmann, et  
al., (8~ and Atallah and Kosaraju (4) proposed pipelined architectures based 
on a balanced binary tree. O(N) PEs are used in order to support a search 
tree containing up to N elements. The machines vary in their wiring com- 
plexity and the variety of dictionary operations that they support. 
Generally, all of them can perform the basic dictionary operations in 
O(log N) time. They vary on the input pipeline intervals. The Atallah and 
Kosaraju's machine (4) provides O(log N) performance with a pipeline inter- 
val of O(1) for a wide range of dictionary operations. (n is the actual num- 
ber of elements stored in the O(N) PEs machine). These designs maintain 
the dictionary elements in some sorted order. Somani and Agarwal (9) 
propose a binary tree machine with O(N) PEs that does not require any 
sorted order for the dictionary elements. Their design supports all 
dictionary operations and provides an O(logn) time performance with 
constant pipeline interval. Armstrong, (3~ Tanaka, e t  al., (1~ and Carey and 
Thompson (6) propose a pipelined architecture for maintaining a search tree 
of N elements with only O(log N) PEs. The most recent design, by Carey 
and Thompson supports the richest set of dictionary operations among 
these three designs. This design can perform the basic dictionary operations 
in O(logN) time with O(1) pipeline interval. Fisher ('a/ developed an 
architecture based on the Trie structure. (11 In his design the number of PEs 
is proportional to the length of the maximum key. Like the Carey and 
Thompson's design, (6) his machine supports a smaller set of operations 
than the O(N) PEs machines. Fishers scheme (a~/is advantageous when the 
dictionary keys are long. 

These pipelined architectures achieve only an O(log N) throughput 
improvement over the serial balanced tree algorithms. When the number of 
records in the dictionary becomes bigger than N these designs will not 
function. That is, the hardware is tailored to the maximal possible number 
of elements in the tables. While to O(N) PEs architectures can handle 
efficiently operations be!)ond basic dictionary functions, they have no 
advantage over the O(log N) designs when only the basic operations are 
considered. 

These parallel designs follow the trend in most serial algorithms for 
search trees: They maintain the tree balanced through the INSERT and 
DELETE operations by splitting and combining nodes. Another strategy is 
to allow insert and delete to "unbalance" the tree and to periodically 
rebalance the entire tree. (12 14) Recently, Moitra and Iyengar (13) explored a 
technique of transforming a sequential algorithm for balancing a binary 
search tree into an efficient parallel algorithm. Furthermore, they have 
shown that the resulting parallel algorithm has a time complexity O(1) 
when a tree with N elements is balanced with N PEs. An O(log N) time 
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set-up overhead is incurred when a new N is considered. For broader 
treatment of this, see Ref. 13. 

Manber (15) discusses the concurrent maintenance of a variation of the 
binary search tree. He considers the basic dictionary operations in a 
concurrent environment. His approach is to allow the tree to become 
unbalanced as a result of an INSERT or DELETE operation. To allow 
rebalancing, he introduces maintenance processes. 

In this paper, we consider the construction of parallel algorithms for 
balancing and maintaining a general m-way search tree. These parallel 
algorithms are examples of algorithms with no communication overhead. 
That is, once the assigned processors read in the input, they do not need to 
communicate until after the result is written out. Our algorithms have O(1) 
time complexity on an n-PEs configuration, where n is the number of 
elements in the tree. No setup overhead is required. 

The complexity analysis is carried out on the assumption that as many 
PEs as needed are available. This assumption is of course unrealistic. A 
parallel algorithm will eventually be run on a machine with a finite number 
of PEs, say k. It should be easy to see that all our algorithms are easily 
adapted to the case of k PEs. If our algorithm has O(1) complexity using 
O(N) PEs, then with k PEs k < N, its complexity is O(N/k). Thus wth only 
1 PE our tree balancing algorithm will have the same time complexity as 
the best serial algorithm for this problem. 

The paper is organized as follows. In Section 2, we review some 
properties of m-way search trees. In Section 3 we develop the general 
m-way search tree rebalancing/construction algorithm, we discuss in detail 
the development of the algorithm and its correctness. I this section we also 
present algorithms for rebalancing after one insertion or one deletion. In 
Section 4, we discuss the implementation of the algorithms on an MIMD  
machine. 

2. M - W A Y  S E A R C H  T R E E S  

In this section we review some general properties of m-way search 
trees. As mentioned in the introduction, m-way trees are used to represent 
dictionaries that do not fit in internal memory, i.e., m-way search trees are 
structures tailored for external search. The choice of m is hardware depen- 
dent. 

Dictionary searches are more efficient when they are done on a balan- 
ced tree. Thus the insertion and deletion algorithms are designed to leave 
the tree balanced. Because of this requirement, it is more convenient to 
consider balanced m-way search trees that are not necessarily of minimal 
height (e.g., B-trees). These trees lend themselves to easier splitting and 

828/15/6-4 
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combining. While this is true in the serial case, we show that in the parallel 
case the complete m-way search tree proves to be an efficient choice. 

We now present some definitions and review properties of m-way 
search trees. 

Def ini t ion 2.1. A search tree of minimal height is called route- 
balanced. 

It is easy to show the correctness of the following two lemmas: 

L e m m a  2.1. The maximum number of nodes on level i of an m- 
way search tree is m (i- 1). 

L e m m a  2.2. The maximum number of nodes in an m-way search 
tree of height h is (m h -  1)/(m - 1). 

Definit ion 2.2. A full m-way search tree of heigh h is an m-way 
tree of height h having ( m  h - 1 ) / ( m -  1) nodes. 

Definit ion 2.3. A level labeling of an m-way search tree is a 
labeling in which nodes are numbered sequentially, from top down and left 
to right. The root node is always labeled 1. 

Definit ion 2.4. An m-way search tree with n nodes and of height h 
is complete if its nodes correspond to the nodes which are numbered 1 to n 
(by level labeling) in a full m-way search tree of height h. 

Figure 2 shows a full 4-way tree of height 3. Its 21 nodes are labeled 
by level labeling. In Fig. 3, we show a complete 3-way tree. 

L e m m a  2.3. If the nodes of a complete m-way tree are labeled by 
level labeling, then the m children of node i (if they exist) are labeled 
( i -  1 ) * m + 2  + j ,  O < < . j < < . m -  1. 

Fig. 2. A full 4-way tree. 
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Fig. 3. A complete 3-way tree. 

ProoL By induction on the number of nodes in the complete m-way 
tree. 

D e f i n i t i o n  2.4. In an m-way tree T, the (i, j) ' th node refers to the 
j t h  node, (from the left), on the ith level, if it exists. We refer to this 
indexing method for m-way search trees as two-dimensional indexing. 

L e m m a  2.5. A full m-way search tree of height h can accommodate 
at most m h -  1 key elements. 

Proof. This follows directly from Lemma 2.2 and the m-way search 
tree definition (Def. 1.1). 

D e f i n i t i o n  2.5. Inorder traversal of an m-way search tree is 
defined by the following recursive procedure: 

procedure MINORDER(T) 
{*T is an m-way search tree as defined in Def. 1.1"} 
if T r  null then 

begin 
call MINORDER(A0); 
for i : =  1 t o m - 1  

begin 
if no Ki key then exit; 
visit(Ki); 
MINORDER(Ai); 
end; 

end; 
end. {*MINORDER* } 
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D e f i n i t i o n  2.6. An index can be associated with each key in an 
m-way search tree. If this index corresponds to the order in which 
MINORDER visits the keys, it is called the inorder indexing. 

Figure 4 shows a 3-way search tree. The inorder index is given for each 
key. The inorder index can be obtained by modifying MINORDER to 
execute the line X i := count + 1 in place of the line visit(Ki). The variable 
count should be a global variable initialized to zero by the calling program, 
and Xi will be the inorder index associated with key Ki. It is easy to see 
that if the keys are printed out by their inorder index the result would be a 
sorted sequence of keys. In the following lemmas we consider the relation 
between the inorder indexing of a key and its location in the m-way search 
tree. 

L e m m a  2.6. Suppose node I is at level r of a full m-way search tree 
of heigh h. Let the inorder index associated with key Ki  in I be Xi. Then 
X i  + l - X i  = m h -  r for l ~ < i < m - 1 .  

Proof .  The keys visited by MINORDER  between g i and Ki+l are 
exactly the keys of the subtree pointed by pointer Ai. These keys will have 
inorder indexes starting from X;+  1 to X~+I - 1. Since the tree is a full tree, 
the height of the subtree Ai is h - r. The number of keys in a tree of height 
h -  r is m ( h - r ) -  1 (Lemma 2.5). Hence Xi+ 1 - -  X i =  m ( h - r )  for 1 ~< i < m -  1. 

L e m m a  2.7. a) Let nodes I and J be two adjacent sibling nodes at 
level r of a full m-way search tree of heigh h. Let I.  X m _  ~ be the inorder 
index of the last key in node I and J.X1 the inorder index of the first key in 
node J. Then J . X  1 - -  I .  X m _  1 = 2  * m ( h - r ) .  

b) The previous claim is true for any two adjacent nodes at level r. 

Proof .  a) Observe that MINORDER,  after traversing 1 .Km_~  and 
assigning it an index I . X m _  1, goes on to traverse subtree I.  A m _  1. When 

Fig. 4. A full 3-way search tree. 
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this tree is completed the procedure will traverse S.Kg, where S . A f _  1 = I  
and S . A f = J  (S is the parent node of I and J). Next MINORDER will 
traverse subtree J.Ao and only then key J.K1. Thus indexes between 
I. Xm_ 1 and J.X1 are associated with keys in two subtrees of height h -  r 
and an extra key in the parent node. Since each subtree has m (h r )_  1 keys 
(Lemma 2.5), we get: J.X1 - I . X , , _ ~  = 2  �9 (m (h-r~-  1 )+  1 + 1 = 2  * m (h-r).  

b) One can readily observe that the only difference between sibling 
nodes at level r and nonsibling adjacent nodes is the level in which the 
extra key resides. For the sibling case the extra key is one level above. If 
the parents of the nodes are siblings then the extra node is two levels 
above, and so on. 

Theorem 2.1. Consider a full m-way search tree of height h. The 
inorder indexes for keys in node i at level r (node(r , i))  are: 
( i -  1) �9 m(h-r + l) + j * m (h-r),  where 1 <~ i ~m(~-  J); 1 <~ j <m. 

Proof. The number of nodes at level r is m (r- ~) (Lemma 2.1). Pointer 
A o in the first node (from the left) points to a subtree with m (h-~)-  1 key 
elements (Lemma 2.5). All these elements are traversed before the first 
element in this node. Hence the inorder index of this key is m (h-r). From 
Lemma 2.6 we know that the inorder index of the second element in that 
node should be 2 �9 m (h-r).  From Lemma 2.7 we get that the inorder index 
of the first element in the second node should be x +  2 �9 m (h-r),  where x is 
the index of the last element in the first node. Thus the first m nodes should 
contain elements with the following indexes: 

m(h- r), 2 * m (h - r),..., (m - 1 ) * m (h - r ) ,  i = 1 first node 

m(h-r+])Wm(h-r), . . . ,m(h-r+t)-b(m--1)*m(h-r),  i = 2  

(m-- 1) * m(h-r+l)+m(h-r) ..... (m-- 1 ) * m ( h - r + ] ) +  (m-- 1)*m (h r) i = m  

We may now generalize for arbitrary node (r, i), and conclude that it 
contains elements with indexes as claimed. 

Corollary 2.1. A key with inorder index t is at level r of a full 
m-way search tree if and only if t mod m (h-~+ 1)~ 0 and t rood m ( h - r ) =  O. 

Proof This readily follows from Theorem 2.1. 

Corollary 2.2. Let t be the inorder index associated with a key at 
level r of an m-way tree of height h, and let q = I t /m (h- ~+ 1/]. Keys with 
the same r value (Cor. 2.1) and q value are in the same node, in the m-way 
search tree. Moreover, the two-dimensional indexing of this node will be 
(r, q +  1). 
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ProoL Integer division of ( i -  1 ) �9 m (h - - r  +1)__ j , m(h--r) by m (h-r + 1) 
yields ( i - 1 ) ,  where i is the node number in the previous representation 
(Theorem 2.1 ). 

Corollary 2.3. Let t be the inorder index associated with a key at 
level r of an m-way tree of height h. The position of the key within the node 
is given by s, 1 ~s<<,m-1,  where s=[_(t rood m(h-r+l))/m(h-r)l. 

Proof. This readily follows from Theorem 2.1. 

Lemma 2.8. Let h be highest level in a complete m-way tree. The 
inorder indexes associated with keys in node (h,p) are ( p - 1 ) , m + j ,  
where 1 <~j<u. (h, v) is the last node in this level, v<,m (h 1). u = m -  1 for 
all nodes except (h, v). 

Proof. Observe that the leftmost key in this level (K 1 of node (h, 1)) 
is the first key to be visited by MINORDER. Hence the inorder index for 
this key is 1. Since all the pointers in level h are set to null, the next key to 
be visited by MINORDER will be key/(2 of node (h, 1), the index for this 
key is 2. In the same manner the inorder index for the m - 1 keys of node 
(h, 1 ) (if they exist.) are assigned inorder indexes 1, 2,..., m - 1. The first key 
of node (h, 2) is visited after key K I in the parent node is visited, where 
pointers A i_ 1 and A F are pointing at nodes (h, 1) and (h, 2) respectively. It 
follows that the inorder index of K1 in node (h, 2) is m + 1. Observe that 
MINORDER will visit a key in a node at level s < h after the last key of 
node (h, p) and before the first key of node (h, p + 1). The key visited is in 
a node that is the nearest common ancestor to nodes (h, p) and (h, p + 1). 
For example the key visited after the last key of node (h, m) and before the 
first key of node (h, m + 1) is in a node at level h - 2. Thus the keys within 
a node at level n are indexed by consecutive integers. The inorder index 
associated with the first key in node (h, p) is g + 2, where g is the inorder 
index of the last key in node (h, p - 1 ) .  Hence the inorder indexes 
associated with node (h, p) are ( p -  1) �9 m + j ,  where 1 ~<j~< u and u is the 
number of keys in this node. 

Corol lary  2.4. Consider a complete m-way search tree of height h. 
Let w be the inorder index of the last key in the rightmost node, (h, v), 
in level h. Furthermore let the number of keys in node (h, v) be u. Then 
w = ( v - 1 ) , m + u .  

Proof. This follows immediately from Lemma 2.8. 
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3. A L G O R I T H M S  FOR R E B A L A N C I N G  A N  M - W A Y  
S E A R C H  TREE 

Operations of m-way search tree are most efficient when the tree is 
balanced. In this section we develop parallel algorithms for balancing a 
general m-way tree. We develop first a rebalancing algorithm for the special 
case where the number of keys in the m-way search tree fit exactly into a 
full m-way search tree of height h. this algorithm is then generalized to 
rebalance an m-way search tree with any number of keys. Finally we 
present rebalancing algorithms for the basic dictionary operations: 
INSERT and DELETE. A discussion about SEARCH is given in Section 4. 

It is instructive to look first at the case where the number of keys in 
the tree is m h -  1 for some h ~> 1. This is the maximal number of keys that 
can be accommodated in a full m-way search tree of height h (Lemma 2.5). 
We assume that the input m-way search tree is unbalanced. The tree could 
become unbalanced as a result of some insertions and deletions of records. 

Our first approach will be to assign a PE to each key. The PE com- 
putes the location of the key in the balanced m-way tree. This approach to 
the problems is similar to the approach taken by Moitra and Iyenger (13~ in 
their algorithm for balancing a binary tree. We follow Moitra and Iyenger 
and allow for an extra field to be associated with each key. The content of 
this field is the inorder index of the key. If no inorder index exist, it can be 
computed using a parallel version of the MINORDER procedure from Sec- 
tion 2. The parallel procedure is based on the Euler path technique, (16) and 
can perform the operation in O(log n) time using n PEs, where n is the 
number of nodes in the tree. It is easy to see that assuming the availability 
of the inorder index, is equivalent to assuming that the keys are sorted in a 
nondecreasing order of key values and stored in an array. Key Ki is in 
location j in the array if and only if its inorder index is j. PE(i) is assigned 
to the key with inorder index i. The PE uses the inorder index of the key in 
order to compute the two-dimensional index of the node in which the key 
is to be stored. It is assumed that each PE knows the height of the tree and 
its degree. (These might be passed to the PE as procedure parameters.) We 
now present the algorithm: 

3.1. A l g o r i t h m  1 

(*The input keys can be accessed by their inorder index, i.e., by key Kj we 
mean the key with associated inorder index j, 1 <~j<~m h -  1.*) 

Step 1. (*Find the level (r) for each node.*) 

for each key Kt; 1 ~< t ~< m h - 1 do 
find i, such that 
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Step 2. 

t mod m ~ ~ 0 and t mod m (~- 1) = 0 
r : = h - i +  l;  

(*Find the second index (q) for two-dimensional indexing of each 
node.*) 

for each key Kt;  1 <~ t <<. m h - 1 do 
in Kt is at level r then q := [_t/m (h r+ 1~ + 1]; 

Step 3. (*Find the position of key K, in node (r, q).*) 

for each key Kt;  1 <. t <~ m h - 1 do 
s := [ _ ( t m o d m  (h-r+ 1))/m(h-r).j 

Step 4. (*Elements with equal r and q are grouped together in the same 
node.*) 

for each key Kt; 1 ~< t ~< m h - 1 do 
Assign key K~ to node (r, q) as key s of the m keys associated with the node; 

Step 5. (*Compute the pointer values*) 

for each node(r, q) do 
create m pointers Ao, A ~,..., Am_ ~ ; 
if r = h then A j  := null 

else Aj : = n o d e ( r +  1, ( q -  1) * m + j +  1); 

T h e o r e m  3.1. Algorithm 1 correctly constructs the required full 
m-way search tree. 

Proof .  The correctness of the algorithm follows from the discussion 
in Section 2. In Step 1, PE(i) correctly computes the level r of key K~ (the 
key with inorder index i) in the m-way tree (Cor. 2.1). The specific node q 
in level r in which key Ki is stored is computed in Step 2 (Cor. 2.2). The 
exact position s of key Ki in node (r, q) of the search tree is computed in 
Step 3 (Cor. 2.3). In Step 4,' PE i uses the values r, q, and s to position 
element Ki in its correct location in the tree. Step 4 establishes the values of 
the pointers. One can readily observe that the m children of node (r, q) are 
( r + l ,  ( q - 1 ) , m + j ) w h e r e  l~<j~<m. 

Clearly Steps 2-4 can be executed in constant time. ach PE computes 
the q, r, and s values for its associated key. Since m - 1 PEs end up being 
associated with any node, it is easy to see that Step 4 can also be completed 
in constant time. In Step 1 PE t has to compute the level r in which the key 
with inorder index t will reside. To compute r PE(t)  searches for a power i 
of m such that t m o d m i # 0  and tmodm(~- l~=0 .  This i can be found in 
O(log n) time by conducting a search over the possible values. The search 
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has to be conducted once for given tree size. The i values computed can be 
used in future rebalancing operations. Thus the O(log n) search time can be 
considered as a set-up cost. Having observed that, we can  conclude that the 
time required for rebalancing a full m-way search tree with m h -  1 keys is 
O(1) when using m h -  1 PEs. 

Observe that when executing the algorithm, the PEs are only involved 
in computation. Each PE has all the information that it needs for com- 
puting the required values. Thus Algorithm 1 has no communication 
overhead. When the number of available PEs is smaller than the number of 
keys, we can let each PE compute the values for several keys. If only p PEs 
are available, where l<< .p<m h -  1, then we can associate r(m h -  1)/p7 
keys with each PE. The time complexity of the algorithm with only p PEs 
available will be then O((m h -  1)/p), not counting the set-up overhead. 

We can avoid the set-up overhead altogether if we approach the 
problem differently. For  our next algorithm we assume the same input as 
for Algorithm 1. This time we associate a PE with each node in the m-way 
balanced search tree. We now let each PE calculate the inorder indexes for 
keys that should reside in the node. As in the previous algorithm we 
consider a full m-way search tree and assume that each PE knows the 
height and degree of the tree. 

3.2. Algorithm 2 

(*Assume that there are (m h -  1)/(m- 1) PEs. The number of keys that are 
to be associated with this tree are m h -  1 (Lemma 2.5).*) 

Step 1. (*Each PE computes the two dimensional index of the node it is 
associated with, i.e., this is a mapping from i, the PE index, to 
(r, q), where 1 <<.i<~(m h -  1 ) / ( m -  1), 1 ~<q~<m (h-l), 1 <~r<~h.*) 

for each PE i do 
begin 
j := [_log m/_](*/is the PE index*) 
if i > (m U+ 1) _ 1)/(m - 1) then 

begin 
r : = j + 2 ;  
q : = i -  (m ( j + l ) -  1 ) / ( m -  1); 
end 

else 

end 

begin 
r : = j + l ;  
q := i -  (m j -  1)/(m - 1); 
end 
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Step 2. (*Each PE represents a node (r, q). Node (r, q) has m -  1 inorder 
index associated with it. Each inorder index is associated with a 
unique key. The inorder index for key Ks in node (r, q) is held in 
X,, where 1 ~< s ~< m - 1.*) 

for each node (r, q) do 
begin 
for s:= 1 to m -  1 do 
X, := ( ( q -  1 ) ,  m + s ) ,  m(h-r); 
end 

Step 3. (*The m pointers for node (r,q) are stored at A s, where 
0 ~ s ~ < m -  1.*) 

for each node (r, q) do 
begin 
fors : = 0 t o m -  1 do 

if r < h then 
As :=node ( r+  1, ( q -  1 ) ,  m + s +  1) 

else 
A s := null 

end 

In the first step of Algorithm 2 we map level labeling (Def. 2.3) to two- 
dimensional labeling (Def. 2.4). That is, PE i is assigned to the node with 
level label i in the m-way search tree. The value of i is then used in order to 
compute the level of the node in the tree, r, and its displacement from the 
left on this level, q. One can readily observe the correctness of this step. 

(level in l, wo=dimensional  indexing) 

1 2 3 h 

II IL II II I 
. . . . . .  $ . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . .  :,1r . . . . . . . . . . . . . . . . .  

. . . . . . . .  

(index of PEs)  

h - l  

0 

Fig .  5. T h e  r e l a t i o n  b e t w e e n  level  l a b e l i n g  a n d  t w o - d i m e n s i o n a l  i n d e x i n g .  
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There are at most (m h - 1 ) /(m - 1 ) nodes in a tree of height h (Lemma 2.2). 
Each PE find the height of the full tree that could be constructed using 
indexes that are smaller than its own index. Hence it finds the level of the 
node with level labeling i. Once the level of the node is known the 
displacement of the node within that level can be computed by subtracting 
the number of nodes in the full tree above the node from the level label of 
the node (Fig. 5). 

The correctness of the other two steps in Algorithm 2 can be easily 
observed. Step 2 follows directly from Theorem 2.1, and Step 3 is the same 
as Step 5 in Algorithm 1. If one prefers to work with level labeling, then 
Step 3 should be (Lemma 2.3): 

for each node i do (*i is the level label for the node*) 
begin 
f o r s : = 0 t o m -  1 do 

if r < h then 
A , : = ( i - 1 ) , m + 2 + s  

else 
A, := null 

end 

T h e o r e m  3.2. Algorithm 2 correctly constructs the required full 
m-way search tree. 

Proof .  The correctness of this theorem follows from the previous 
discussion. 

As far as the complexity of Algorithm 2 is concerned, it should be clear 
that there is no set-up overhead. With (m h -  1 ) / ( m -  1) PEs Steps 1, 2, and 
3 of the algorithm can be carried in constant time. If one wants to minimize 
the processing time within a node (Steps 2 and 3) then up to m - 1  PEs 
can be utilized in each node. This, however, does not change the overall 
O(1) time complexity of our parallel algorithm. 

While it is instructive to go over Algorithms 1 and 2, in practice it will 
be more often the case that the number of keys will not be of the form 
m h - 1. We now consider the general case where the number of keys can be 
positive integer. Algorithm 3 will produce a complete m-way search tree for 
the given number of keys. Only the last node in the tree (greatest level 
label) can have less then m -  1 keys associated with it. We assume that 
each PE knows the number of keys and the degree of the search tree. These 
values might be passed to the PE as procedure parameters. 
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3.3. A lgor i thm 3 

(*The input keys have inorder indexes in the range [ l :n] ,  where n can be 
any positive integer.*) 

Step 1. (*Each PE computes the two-dimensional index of the node it is 
associated with. This is, a mapping from i, the PE index, to (r, q), 
1 <~i<~rn/ (m-  1)], 1 <~q<~m (h-l), 1 <~r~k .*)  

for each PE i do 
begin 
j := Llogm i_](*i is the PE index*) 
i f / >  (m (j+ t ) _  1 ) / (m-  1) then 

begin 
r : = j + 2 ;  
q := i -  (m ( j + l ) -  1 ) / (m-  1); 
end 

else 

end 

begin 
r : = j + l ;  
q : = i - ( m  j -  1 ) / (m-  1); 
end 

Step 2. (*This computes the parameters of the tree.*) 

for each PE i do 
begin 
h := [log m n.J; 
ifn = m (h+ '~ - 1 then (*full tree*) 

(*The height of the m-way search tree is h + 1. 
It is a complete m-way search tree*) 
execute steps 2 and 3 of algorithm 2 and stop; 

c : = n - ( m  h - 1 ); (*number of keys for the last level*) 
u := c mod(m - 1 ); (*number of keys in the last node*) 
v := Lc/(m - 1)]; (*number of full nodes at last level*) 
ifu = 0  then w := v ' m -  1 else w : = v * m + u ;  
(*w is the inorder index of the right ost key at highest (last) level.*) 
end 

Step 3. (*Compute the inorder indexes that are directly influenced by the 
extra (last) level. These will be associated with nodes in the left 
part of the tree.*) 
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for each node (r, q) do 
begin 
s := 1; 

loop 
temp := ( ( q -  1) * r e + s )  �9 m(h-r+ 1~; 
if temp > w or s = m then exit; 
X~ := temp; 
s : = s + l ;  
forever 

end 

Step 4. (*Compute the inorder indexes for the rest of the tree.*) 

for each node (r, q) with r < h + 1 do 
begin 
s : = m -  1; 

loop 
temp : = ( ( q  - 1 ) * m  + s)  �9 m ( h -  r) + c; 

if temp ~< w or s = 0 then exit; 
X, := temp; 
s : = s = l ;  
forever 

end 

Step 5. (*Compute pointer values*) 

for each node (r, q) do 
begin 
if u = 0  then ql := v else q~ : = v +  1; 
(*Node h + 1, q~) contains w.*) 
q2 := [_(ql - 1)/m] + 1; (*(h, q2) is the parent of(h + 1, ql)*) 
j := (q~ - 1 ) mod m; (*Aj of (h, q2) points (h + 1, q~)*) 
fors  : = 0 t o m -  1 do 

if r < h or (r = h and q < q2) or (r = h and q = q2 and i ~< j)  
then 

A~ : = n o d e ( r +  1, ( q -  1 ) ,  m + s +  1) 
else 

A, := null; 
end. 

Before we proceed to show the correctness of this algorithm, it is 
helpful to look at an example. 



520 

Example 

Input:  

Step 1. 

Dekel, Peng, and lyengar 

3.1 

A set of n keys and their associated inorder  indexes, the degree of 
the search tree, m. Let n = 19, m = 3. 

10 PEs are utilized to form the nodes of the tree 

PE  1 2 3 4 5 6 7 8 9 10 
n o d e ( l ,  1)(2, 1 ) ( 2 , 2 ) ( 2 , 3 ) ( 3 ,  1 ) ( 3 , 2 ) ( 3 , 3 ) ( 3 , 4 ) ( 3 , 5 ) ( 3 , 6 )  

Step 2. h = 2 ,  c = l l ,  u = l , v = 5 ,  w = 1 6 .  

Step 3. The set of elements of node (r, q) is {t = (3 �9 ( q -  1) + s) * 3 (3- r), 
where t~< 16 and s =  1 or 2}. 

content  
PE node ( inorder  indexes) 

i (r, q) Jr1 X2 

0 (1 ,1)  9 - -  
2 (2, 1) 3 6 
3 (2, 2) 12 15 
4 (2, 3) - -  - -  
5 (3, 1) 1 2 
6 (3,2) 4 5 
7 (3, 3) 7 8 
8 (3, 4) 10 11 
9 (3 ,5)  13 14 

10 (3,6) 16 - -  

Step 4. The set of elements for node (r, q) r < 3 is 
{ t = (3 * (q + 1 ) + s) * 3 (2- ~) + 11, where t > 16 and s --- 1 or 2 }. 

content  
PE  node ( inorder indexes) 

i (r, q) XI )(2 

1 (1, 1) 9 17" 
2 (2, 1) 3 6 
3 (2 ,2)  12 15 
4 (2, 3) 18" 19" 

* was assigned value in this step 
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Step 5. ql =6,  q2=2,  j = 2 .  

PE node pointers (children) 
i (r, q) A o A l A 2 

1 (1, 1) (2, 1) (2, 2) (2, 3) 
2 (2, 1) (3, 1) (3, 2) (3, 3) 
3 (2,2) (3, 4) (3, 5) (3, 6) 
4 (2, 3) null null null 
5 (3, 1 ) null null null 
6 (3, 2) null null null 
7 (3, 3) null null null 
8 (3, 4) null null null 
9 (3, 5) null null null 

10 (3, 6) null null null 

In Fig. 6 we show the 3-way complete search tree for the example. 
While Algorithm3 seems complicated, it is easy to show its 

correctness. 

tree: 
Lemma 3.1. The following are true for a complete m-way search 

(i) The right most node of level h +  1 is node(h+ 1, v) when u = 0  
and node(h + 1, v + 1) otherwise. 

(ii) The last element of the right most node at level h + 1 is w. 

Fig. 6. The 3-way complete tree for Example 3.1. 
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Proof. (i) For  the resulting tree to be complete, it has to accom- 
modate c keys in its last level h + 1. When c is a multiple of m - 1 (u = 0), v 
nodes at level h + 1 are sufficient. When c is not an exact multiple of m - 1, 
an extra node (h + 1, v + 1) is required. Node (h + 1, v + 1) will be only 
partially full, i.e., it will have less then m-1 keys associated with it. (ii) This 
follows immediately from Corollary 2.4. 

L e m m a  3.2. Steps 3, 4 and 5 of algorithm 3 correctly assign the 
values of indexes associated with nodes and the value of pointers among 
the nodes. 

ProoL Observe that key with inorder index i, where i ~< w should be 
assigned using the construction for an m-way tree of height h + 1. Only 
these keys are candidates for level h +  1 (Lemma2.8). These keys are 
assigned to nodes in Step 3. Notice also that keys with inorder index i, 
i > w are candidates for levels 1 through h in the m-way tree. The index for 
these keys should be biased in order to compensate for the keys that were 
assigned in step 3. One can easily show that this bias should be c. That is, 
the keys with inorder index i, i > w, should be assigned as keys with inorder 
index i-c in a full m-way tree with h levels. This is done in Step 4 of the 
algorithm. It follows that the assignment of keys to nodes is performed 
correctly. 

As for the correctness of Step 5, assignment of pointers among the 
nodes, only the case where r = h, needs to be justified. But in this case, we 
only need to find the pointer Aj of node (h, q) such that Aj points to the 
node containing the key with inorder index w. By the definition of a com- 
plete tree, all pointers to the right of this pointer should be set to null. This 
is exactly what is done in the algorithm. 

T h e o r e m  3.3. Algorithm 3 correctly constructs the required com- 
plete m-way search tree. 

ProoL The correctness of this theorem follows from the previous 
discussion. 

As far as the time complexity of Algorithm 3 is concerned, the 
mapping of level labeling to two-dimensional indexing (Step 1) can be 
performed in constant time. The number of nodes in the tree and, corre- 
spondingly the maximal number of PEs that can be effectively utilized for 
Step 1 is [-n/(m- 1)7, where n is the number of keys (length of input). 
Next, each PE computes the values of c, u, v, and w. This can be done in 
constant time using the same number of PEs. With one PE assigned to a 
node, Steps 3-5 can be performed in O(m) time each. Since m is fixed, we 
can conclude that the overall time complexity of Algorithm 3 is O(1). As in 
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the previous algorithm, up to m -  1 PEs can be utilized in each node (for 
Steps 3-5). These additional PEs will not change the overall time 
complexity of the algorithm. 

When algorithm 3 available to rebalance the tree periodically, we can 
allow the insertion and deletion operation to leave the tree unbalanced. 
The INSERT (DELETE)  procedure will use SEARCH to identify the point 
of insertion (deletion) and insert (delete) the key at that point. Obviously, 
the m-way search tree will become unbalanced after a few such INSERT 
and DELETE operations. Algorithm 3 can then be utilized to rebalance the 
tree. 

In an environment where insertion and deletion are not common, it is 
more efficient to insert or delete keys while maintaining the tree balanced. 
To do that we need to transform a balanced m-way search tree with n keys 
to a balanced m-way search tree with n + 1 or n -  1 keys. We consider a 
transformation from n to n - 1 keys (a delete, Algorithm 4), and from n to 
n + 1 keys (an insert, Algorithm 5). Each of the transformations described 
here is simpler than the operation of rebalancing the whole tree described 
earlier in this section. Observe that after a direct insertion or deletion we 
need to update the structure and the content of the complete m-way search 
tree. 

In both Algorithms we modify first the structure to reflect the change 
in the number of keys, and then move the keys into their correct locations 
in the new balanced tree. We assume that the following parameters are 
kept with the data structure: 

n-- the  number of keys in the tree. 
u-- the number of keys in the last node of the highest level. 
v--the number of full nodes in the highest level. 
w--the inorder index of the last key in the last node. 
h + 1--the height of the tree. 

3.4.  A l g o r i t h m  4 

(*Insert key X into a balanced m-way search tree of height h + 1. The tree 
remains balanced after the insertion.*) 

Step 1. (*This transforms a given complete m-way search tree with n keys 
to an m-way search tree with n + 1 keys.*) 

n : = n + l ;  
u := (u+  1) m o d ( m -  1); 
if u = 1 then 

begin 
(*A new node is required.*) 

828/15/6-5 
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else 

if n 

else 

=mh+ 1 

begin 
(*The new node is at a new level.*) 
h : = h + l  
v :=0; 
w : = l ;  
end 

begin 
v : = v + l  
w : = w + 2 ;  
end 

create a new node(h + 1, v + 1) that contains only 
one key, this key has inorder index w; 
j := v mod m; 
Aj of node (h, Lv/mJ+ 1 ) : = n o d e ( h +  1, v+  1); 
end 

begin 
w : = w + l ;  
just add the key with inorder index w to node(h + 1, v + 1); 
end 

Step 2. (*Reset the indexes effected by the increase in number of keys.*) 

for each node(r, q) do 
for each inorder index t associated with node(r, q) do 

if t > w then t := t +  1; 

Step 3. (*Insert key X.*) 

for all keys K; with inorder index i ~< w and K,. > X do 
(*Assume K0 = - ~  and Kw = ~ * )  
i f K i _ l > X  

Ki:=Ki 1 
else 

Ki:=X; 
for all keys K~ with inorder index i ~> w and Ki ~ X do 

(*Assume Kn+l = ~ .* )  
if K~+ 1 < X 

Ki : =  Ki+ 1 
else 

Ki :=X; 
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3.5. Algorithm 5 

(*Delete key X from a balanced m-way search tree of height h + 1. The tree 
remains balanced after the deltion.*) 

Step 1. (*Delete key X from the tree*) 

for all keys Ki do (*i is the inorder index of the key*) 
if Ki>>. X then Ki := Ki+ l ; 

Step 2. (*This transforms a given complete m-way search tree with n keys 
to an m-way search tree with n -  1 keys.*) 

n : = n - 1 ;  
u := ( u -  1) mod(m - 1); 
if u = 0 then 

begin 
if n = m h - 1 then 

(*The only node at level h + 1 should be deleted.*) 
begin 
h : = h - 1 ;  
V : =  m h 

W : = / / ;  

delete node(h + 2, 1); 
Ao of node(h + 1, 1) := null; 
end 

else 

end 
else 

begin 
w := w - 2 ;  
v : = v - 1 ;  
delete node(h + 1, v + 2); 
j := (v + 1) mod m; 
Aj of node(h, L(v + 1)/m] + 1) := null; 
end 

begin 
just delete w from the right most node at level h + 1; 
w : = w - 1 ;  
end 

Step 3. (*Update inorder indexes effected by the decrease in number of 
keys*) 
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for each node(r, q) do 
for each inorder index t associated with node(r, q) do 

if t > w then t := t -  1; 

The correctness of these algorithms can be easily shown. The time 
complexity of these algorithms is O(1). In Fig. 7 we show the tree of Exam- 
ple 3.1 after 2 insertion operations. The values of the variables n, u, v, w, 
and h before the first insertion are 19, 1, 5, 16 respctively. After the first 
insertion the value of these variables would be 20, 0 = 2  m o d ( 3 -  1), 5, 17 
respectively, and after the second insertion their values would be 21, 1, 
6, 19. 

CONCLUSION 

In Section 3 we presented optimal parallel algorithms for rebalancing 
or constructing belanced m-way search trees. If n keys are to be associated 
with the tree then the construction can be carried out in O(1) time using 
O(n) PEs. While our algorithm is more general then Moitra and Iyengar's 
binary tree algorithm, (13) we can compare the two when m = 2. For  this 
case our algorithm is more efficient since it does not require any set-up 
overhead. Notice also that the complexity of our algorithm is independent 
of the degree of the tree, m. Hence m can be chosen to fit best with the 
external storage hardware characteristics. 

The problem of constructing a balanced m-way search tree was chosen 
to demonstrate a parallel algorithm where communicating overhead is 

4 

] 
Fig. 7. The 3-way search tree of Fig. 6, after 2 insertions. 
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completely eliminated. While in Section 3 we treated the problem from the 
"Design of Algorithm" point of view, it is important to consider the 
environment in which such algorithms can be useful. 

In this context, let us examine the basic distionary operation 
(SEARCH, INSERT, AND DELETE).  Using straightforward information- 
theoretic arguments, one can show that at least logk n parallel steps are 
required for searching a sorted array of n elements with k PEs. SEARCH is 
required as an initial operation for both INSERT and DELETE. It is clear 
that once a location for insertion (deletion) is found, the insertion of an 
element can be done in constant time. Hence the complexity of insertion is 
bounded below by the complexity of searching. 

Consider the case where the dictionary information fits in internal 
memory. Using a "fan in" argument, we can see that there is no advantage 
to using more than one PE for a search operations. This argument is based 
on the practical assumption that a PE can send or receive information con- 
currently from only a fixed number of ports. In our analysis we assume that 
only one communication port can be active at a time. Assume that we have 
k PEs and we need to search for a specific element in an ordered set of size 
n. We will need O(log k) time to transmit the key for the search to the k 
PEs. As observed, the search can be conducted in logk n parallel steps. 
After each step the search location for the search step is transmitted among 
the PEs. Hence each search step will require O(log k) communication 
overhead. Thus the overall time complexity of a search is 
(log2 k) �9 (logk n ) =  log2 n. Since this search can be conducted using binary 
search and only one PE in O(log n) time, the argument follows. Notice that 
this analysis provides a lower bound for any data structure or number of 
PEs. The observation made for the case of one PE is the only one that 
assumed ordered keys. 

Having established the O(log n) lower bound, it is not surprising that 
all the spcial purpose architectures have this time complexity for searching 
no matter how many PEs. they use, see Refs. 3-10, 14. While those 
solutions achieve the lower bound complxity, it was observed in Ref. 11 
that they are "processor-profligate." Most of these architectures use O(n) 
PEs to achieve only an O(log n) throughput improvement over the serial 
balanced tree algorithm. 

When the dictionary is stored in external memory, the optimization 
criteria are different. The storage structure is chosen so that the number of 
I/O operations are minimized. An m-way search tree is a popular choice. 
The degree m is selected to fit the physical characteristics of the external 
storage. (2) 

These observations can be translated quite effectively to practice in our 
MIMD environment. The system can initiate any number of searches in a 
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"pipelined" fashion. Each search is conducted using only one PE leaving 
one machine cycle between consecutive requests. Search results can be 
obtained in a pipeline interval of O(1). While some PEs are conducting 
searches, other PEs are free to perform other tasks. 

Our solution is applicable for a general purpose machine environment. 
The m-way search tree is kept in external storage. At any time k PEs are 
available, where 0 ~< k ~< P (P is the maximal number of PEs available on 
the a machine.). In such a machine the operating system can be instructed 
to allocate only one processor for a search operation and as many PEs as 
available or required (whichever is the minimum),  in case a new tree has to 
be constructed or an existing tree rebalanced. 
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