
THE PEBBLE CRUNCHING MODEL FOR LOAD BALANCING 
IN CONCURRENT HYPERCUBE ENSEMBLES 

Sandeep Gulati t Jacob Barhen’ S. Sitharama Iyengar ’ 

C3P-GlO 

$ Jet Propulsion Laboratory, Caltech 
4800OakGroveDrive 

t Department of Computer Science 

Pasadena, California 91109 
Louisiana State University 
Baton Rouge, LA 70803 

ABSTRACT 

The successful development of fifth generation 
systems require enormous computational capability 
and flexibility necessitating the ability to achieve 
operational responses in hard real-time through 
optimal resource utilization. This entails dynamically 
balancing the computational load among all the pro- 
cessing nodes in the system. We propose a graph- 
theoretic, receiver-initiated, distributed protocol for 
dynamic load balancing protocol in large-scale hyper- 
cube ensembles. Using attributed hypergraphs as the 
primary data structure for constraint modeling and 
dynamic optimization, we consider systems running 
precedence-constrained heterogeneous tasks. Fault 
Tolerance is ensured by incorporating an integrity 
check for the decision nodes and their subsequent 
reelection if needed. Simulation studies are used to 
evaluate the performance of the algorithm. 

I. INTRODUCTION 

Real time optimization of overall performance of 
a distributed processing system requires that, the tasks 
being executed be uniformly distributed amongst the 
various processing nodes, in a manner which maxim- 
izes resource utilization to enhance the total 
throughput of the system. Load balancing then, is a ” 
distributed decision process ” [9] which using a local 
view of the global system state, arbitrates on the 
assignment of the system’s resources to the tasks 
requesting them. In general, given a job load com- 
posed of modules with interlying dependencies to be 
executed on a multiprocessor configuration with 
prefixed interconnection network, determine an 
assignment pattern, or, a mapping function for 
shuffling tasks between the processors, such that total 
eXeCUtiOn time of the job is minimized by avoiding 
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under-utilized processors. The difficulty here lies in 
the conflict of constraints over a configuration space 
which grows exponentially with the number of tasks. 

Determination of feasible assignment patterns for 
a given system may be static, as discussed by Barhen 
[ll, Chou and Kohler [3], Livny [9] and Tantawi and 
Towsley [17] or dynamic Eager et al 141, Lin and 
Keller [8], Stankoviv and Sidhu [16]. If the mapping 
is static then the tasks and their dependencies are 
known apriori and can be mapped onto the network 
nodes before the computation begins. Once assigned to 
a particular processor the tasks are bound to it during 
their entire lifetime. On the other hand in dynamic 
assignment the computation is modeled by a dynami- 
cally created task precedence graph and the perfor- 
mance depends upon the process migration mechanism 
and the size of information domain analysed for load 
dispersal. Hereafter we focus on the dynamic load 
balancing. 

Distributed systems may adopt either sender- 
initiated or receiver-initiated strategies for dynamic 
load balancing. In systems using sender-initiated 
requests, the overloaded nodes search for underloaded 
nodes to which some of their excess load may be 
transferred while in the latter the situation is reversed 
and underutilized nodes search for congested nodes 
from which load may be transferred to enhance the 
throughput by preventing processor inactivity due to 
lack of task availability. Analytical models and simula- 
tions have shown [4] sender-initiated strategies outper- 
form receiver-initiated strategies at light to moderate 
system loads while receiver-initiated strategies are 
preferable at high system loads, assuming that the pro- 
cess migration cost under the two strategies are com- 
parable. Receiver initiated policies require the transfer 
of executing partially completed tasks, thus incurring 
substantial process migration costs in most systems. 
This is avoidable in sender-initiated strategies by 
ensuring that load balancing is performed only when 
new tasks are spawned. This advantage may however 
be lost in systems executing tasks of unequal lengths 
where preemptions and migration of executing tasks 
are required to ensure that all processors are equitably 
loaded. 

The primary focus of this paper is to explore a 
new strategy for dynanic load balancing in hypercubes. 
We describe a user transparent, distributed, two-tiered 
graph-theoretic algorithm to dynamically allocate 
tasks onto the different nodes. A receiver-initiated stra- 
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tegy is adopted wherein the underloaded processors 
broadcast there status to the neighbouring nodes ena- 
bling the saturated processors to construct domains 
within which they could redistribute the load. These ” 
balancing domains ” or ” pebbles ” so constructed are 
represented using attributed hypergraph data structure. 
These domains are not however immediately closed 
because at the time of process migration tasks may be 
dispatched to processes embedded in other pebbles. So 
in order to actuate the distribution the pebbles are 
transmitted to their respective cluster controllers which 
compute an optimal mapping of migtatable tasks onto 
the underloaded processors. This is achieved through ” 
pebble crunching “, which involves controlled frag- 
mentation and recombinations of pebbles owned by 
different nodes. This modified schema is then redistri- 
buted among the candidate nodes to actually carry out 
the load partitioning. The algorithmic details are 
described in the subsequent sections. 

2. PRELIMINARIES 

2.1 ENVIRONMENT CHARACTERISTICS 

This load balancing schema is primarily targeted 
loosely coupled, computation ensembles with n homo- 
geneous processing elements interconnected through a 
broadcast based communication subnet instead of 
shared variables. The interconnection network topol- 
ogy may be of the type of two-dimensional, spanning 
bus hypercube, toroid, 2-ary N-cube, hypertree or 
cube-connected cycles. A common characteristic 
shared by these interconnection networks is the high 
degree of interconnectivity. In addition the following 
characterize the architectural properties of the pro- 
posed model. 

Ill 
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the processing nodes in the ensemble are homo- 
geneous, in that a job submitted at any node in the 
network may be processed at any other node in 
the network 
the node behaviour is heterogeneous in that tasks 
are spawned, destroyed or arrive from the external 
hosts, at arbitrary rates on the different nodes. 
Placement of new external tasks on the processing 
nodes is either done by the user or by a host pro- 
cessor whose primary function in most systems is 
to serve as an input/output device. Consequently 
response time is different for each node depend- 
ing upon the computational requirements of the 
tasks and local availability of resources and 
precedence-constraints among the tasks. 
there are reliable, error-free, full duplex commun- 
ication links between the processing nodes. The 
network communication protocol is completely 
separated from the inter-task communication pol- 
icy. 
there is no intermediate buffering of data and con- 
trol messages. The messages are received by a 
node from a remote node in the order in which 
they are transmitted. This is a difficult assumption 
to satisfy in loosely coupled homogeneous ensem- 
bles as a significant number of messages reach out 
of order due to channel contention and process 
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priorities. However if the operating system imple- 
ments virtual time, as is the case for some of the 
recent versions, then this assumption can be met. 
an executing process is interrupted by any control 
messages directed to the node on which it is exe- 
cuting and the nodes have the ability to distin- 
guish between different types of messages when 
operating in the asynchronous mode. 

Problem Descriptors 
Load balancing calls for an optimal task distribu- 

tion in a configuration space with conflicting demands 
HI. In order to avoid processor thrashing or excessive 
accumulation of load on any processing node and to 
achieve maximal utilization of system resources the 
tasks need to be spread out evenly over all the nodes. 
On the other hand the goal of minimizing interproces- 
sor communication to prevent channel saturation 
requires that tasks be clustered on few, adjacent 
processor-nodes. This necessitates a two-tiered solu- 
tion to the problem alongwith a classification of con- 
straints into two broad categories, processor-workload 
characteristics and process-interaction characteris- 
tics. The former serves as a thresholding parameter to 
initiate load balancing while the latter are a function of 
processor utilization, queue length, memory requirc- 
merits, task mix, resource requirements etc. The latter 
are used to decide on how to actually distribute the 
load and refer to the process management overhead 
and the degree of reduced network usage as a conse- 
quence of process-migration, breakage and 
reestablishment of inter-process communication links, 
precedence constraints etc. 

2.2.1 Processor-Workload Characteristics 

The load of each processing node Pi is deter- 
mined by the number of tasks currently being served, 
blocked i.e hanging at synchronization points or 
queued at that site. For the ith processing node we 
define a threshold load which is defined to be the load- 
ing condition for a processor such that further addition 
of tasks to it leads to no further gain in processor utili- 
zation. Based on the instantaneous task load we quanti- 
tatively define the loading states for a processing node 
to be excessive, optimal and light. An excessively 
loaded node can get rid of some of its present load 
while a lightly loaded node could absorb more load. If 
the system is in neither of these states then the loading 
is optimal. As stated earlier the system tends to 
improve throughput by avoiding idle or lightly loaded 
processors. We also define the notion of Balancing 
Region, BRi, for a processor i which includes all pros- 
pective candidates for receiving tasks. This region can 
be defined statically and changed dynamically depend- 
ing upon the state of the system. So task migration is 
essentially a comparison between the degree to which 
the load distribution of the balancing region is unbal- 
anced and the loading threshold. To quantitatively 
measure the degree of “balancedness” of a system, 
Livny’s [9] Unbalance Factor defined over a balancing 
region may be used, which is given below 
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where AL, (i ,t)maxk,sR,(r)(mi,i (t)-mi,t (t)) is the 
relative load-difference of i at time t. BRi(t) refers to 
the balancing region for a processor i at time t, which 
here refers to the hypercube dimension D, and mi j(t) 
denote the number of tasks at processor j. So then, 
given the load vector specifying the instantaneous load 
at each node determine an assignment such that unbal- 
ance in the system and total communication costs, 
measured as the sum of total data transfers between the 
nodes are minimized. 

2.2.2 Processor-Interaction Characteristics 

The availability of a neighbouring underutilized 
node alone does not merit load sharing, specially if the 
process migration overhead and interprocess commun- 
ication link breakage and reestablishment were to lead 
to a greater turnaround time for the migrated task than 
if it were to be locally processed. So a quantification 
for the message passing overhead due to precedence 
constraints or synchronization requirements and the 
parameters affecting process-migration is needed to 
ascertain the effectiveness of balancing alternatives. 

Computations intended to run on concurrent com- 
putational ensembles are decomposed into set of tasks 
which could then be concurrently executed. This prob- 
lem decomposition often induces precedence con- 
straints among the tasks which the distributed nature of 
the computational system translates into message pass- 
ing requirements. These message passing requirements 
due to precedence constraints are determinable at load 
time when the tasks are pumped to the various nodes 
by the host processor or at process creation time if they 
are dynamically spawned. Each task is provided with a 
list specifying the messages it sends to the other nodes 
with their addresses, list of node addresses from which 
it is to receive messages and the length of messages. 
Thus the task coupling function due to precedence 
constraints is specified apriori and is used here as a 
decision criterion. Let n”ij(SiSj> denote the length of 
k th message exchanged between the processes execut- 
ing on nodes i and j. If the channel capacity in 
bytes/set is denoted by D, the total message passing 
overhead for a process executing on node i that needs 
to be incurred before it is completed is given by, 

Mpmi = I% I: [ 

Ilk ij (Si Sj) 

D 
+ Zij F (nk (6i Sj )) 

j#i k 

where Zi. clock cycles is the fixed protocol and routing 
overhea d and is in general a function of the node on 
which a task is executing. In addition, the overhead 
for migrating the task and its state tables, communica- 
tion link breakage and reestablishment need to be 
accounted for. So the total interprocess communication 

cost for migrating a task, T, from processor i to j is 
denoted by 

MIGT = Mpmsr + TSLZEi,T + MPIJ + TABTij 
i 

where TSI.Ei,~ denotes the propagation delay for 
migrating task T, from node i to node j. TAB, refers to 
the cost of migrating all state tables and process con- 
trol block, (PCB) pertaining to the task and ~ij denotes 
the overhead of breaking and reestablishing all links 
for task T executing on node i. The latter pertains to 
the message passing overhead involved in transmitting 
control packets to all the nodes communicating with 
the task on node i. 

2.3 Constraint Representation Using Hypergraphs 

Using the Unbalance factor the feasible balancing 
horizons for the heavily loaded nodes are constructed 
if they exist i.e there exist neighbouring nodes which 
are lightly loaded and can accept excess load. However 
these domains are not closed as they are constructed, 
in that they are candidates for furthur optimization. 
This is desirable from several standpoints. For exam- 
ple, as shown in Fig. 1, nodes c and f are in the baIanc- 
ing horizons of L, M, and P. Now, if all of them were 
to send there excess tasks to C it would immediately 
get saturated and load balancing would again be 
required, incurring a heavy overhead in repeated pro- 
cess migrations. Also a selection between the nodes c 
and f needs to be made since at this stage they are both 
contenders for sharing load with nodes L, M and P. 

This necessitates incorporating a global decision 
mechanism, which using the process-interaction 
characteristics determines a mapping of migratable 
tasks onto the appropriate processing nodes such that 
processor utilization is enhanced. But to perform such 
an optimization, the process-interaction characteristics 
and relevant system information need to be communi- 
cated to a controller node, which can then make the 
balancing decisions. This objective entails a data struc- 
ture which can effectively bridge the gap between 
representation domain used for load balancing and the 
information required to compute a distribution map- 
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ping, To this end we propose the usage of attributed 
hypergruphs to express the optimization constraints 
and encapsulate the dynamic structure of balancing 
domains. Some of the terminology pertinent to the 
model is presented below, 

Definition I: Let X = {x~J~,..?,, } be a finite set, 
and let E= (Ei ) i E I) be a familiy of subsets of X. 
The family E is said to be a hypergraph on X if 
(1) Ei # @ (i E I) 
(2) UEi=X. 

iel 

The couple H = (X,E) denotes a hypergraph. The ele- 
ments of X are called vertices and elements of E are 
called hyperedges. 

Dejinition 2: An attributed hypergraph is one 
whose vertices are associated with a nominal list of 
numerical attribute values. Here it is used to model the 
loading state of the system where each attributed 
hyperedge corresponds to the domain of processors 
over which a heavily loaded node may distribute its 
excess load and the vertices in the hyperedge represent 
the underutilized processors. 

We further introduce the notion of a Pebble, 
which is the fundamental unit of information inter- 
change in the model. Pebble is an attributed hyperedge 
associated with some owner node,P , which is not 
itself a component of any other pebble. It is denoted by 
EP=[(Xi,k,[A]) /XiCX andkc Nand[A]is set of 
m-attribute tuple denoting the cost of migrating m- 
excess tasks. So a pebble has the following structure, 
~Xi~k~~ull~a12~~~~ulIk~~~~xj~~u2l~a22~~~~u2j~~~~~~~ 

(~,,,,1,a,~,a,,,~ ,.., a&))] , where xl;r2,..,xk are the lightly 
nodes with which the pebble-owner could share its 
excess taskload; kj and denote the accepting capability 
of receivers. (Uil,ai2>.+Pik) is the attribute tuple where 
aij denotes the cost of migrating the jth excess-task to 
node i. A pebble is also referred to as Local Balancing 
Horizon of an overloaded node, or LBH. 

Definition 3: A Pebble Cluster corresponds to the 
attributed hypergraph constructed by the Distribution 
Cluster Controller upon receiving the pebbles from all 
the heavily loaded nodes in the cluster. Fig. 1 illus- 
trates a pebble cluster. Initially each cluster has 
several overlapping pebbles with overlapping vertices 
denoting the contending receiver nodes which can 
receive tasks from more than one overloaded node in 
the cluster. Further the ensemble itself, may consist of 
overlapping pebble clusters. 

3. STATIC NODE CLUSTER FORMATION 

In order to enforce a hierarchial control the nodes 
in the ensemble are partitioned into static clusters and 
DCCs are elected for each cluster. The common cri- 
teria for clustering being minimization of internodal 
communication cost, connectedness or k-link failure 
resilience i.e the nodes remain strongly connected upto 
k link failures, minimization of routing tables or a bal- 
anced structure with respect to certain metrics e.g com- 
putational power, size etc. As the processors and com- 
munication links have been assumed to be reliable and 
stationary, the criterion adopted here for clustering is 
balance i.e the processing nodes are partitioned into 

clusters of approximately equal size for the purpose of 
load balancing where the clusters are in the form of 
route balanced m-ary trees. Given the degree of each 
node in the m-ary tree and the number of clustering 
levels desired the clusters can be constructed using the 
bottom-up algorithms proposed by by Ramamoorthy et 
al, [14]. The root of each m-ary subtree at each level is 
designated as the DCC. The parent of each DCC then 
becomes the cluster controller for the next Level of 
hierarchy. This process is repeated upwards till the 
root of the tree which is designated as the System 
Cluster Controller. All the controllers above the level 
of DCC are elected from among the DCC nodes to 
save on communication overhead in transmitting the 
partially computed allocations. Each node is then made 
aware of its own controller node. Fig. 2 shows a 16 
node hypercube partitioned into hierarchical static 
clusters. 

PEBBLE CRUNCHING 
LEUEL 2 FOR DCC’ S 

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 

FIGURE 2. CLUSTER TREE FOR A 16 NODE ENSEMBLE 

Since clustering is used primarily for the purpose 
of reducing communication overhead for control, the 
nodes in one cluster are not forbidden from sharing 
their excess tasks with nodes in another cluster. In fact 
the LBH of overloaded boundary nodes will contain 
nodes in the adjacent cluster. However the decision to 
share tasks with nodes in other clusters are taken after 
pebble crunching is completed within a local cluster 
and the crunched pebbles are communicated to the 
next level controller. If a particular DCC is the next 
level controller then it is required to send request pack- 
ets to all Lower level controllers asking for pebble clus- 
ters. This process is recursively folded upto the root of 
the cluster tree. 

4. LOAD BALANCING ALGORITHM 

Based on the above preliminaries we now present 
the load balancing protocol involving four phases. In 
the first phase each processor determines its loading 
state. If a processor is not being fully utilized due to 
process or data unavailability, it conveys this informa- 
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tion to all its neighbouring nodes. In the next phase, all 
the overloaded processors in the neighbourhood of the 
lightly loaded node, use this information to construct 
their local balancing horizon, which is represented by a 
hyperedge of an attributed hypergraph, also denoted as 
a pebble. In phase 3, this information is transmitted to 
the Distribution Cluster Controller (DCC) for that pro- 
cessor which constructs a pebble cluster from the peb- 
bles. The complete hypergraph or pebble cluster, 
encompasses all the feasible reassignments for that 
cluster. This pebble cluster may however contain 
several overlapping pebbles i.e two or more excessiv- 
ley loaded nodes which can share their load with the 
same set of underloaded nodes. Transversals are then 
computed for this hypergraph and the overlapping 
nodes are assigned to one of the nodes containing them 
in their local balancing horizon. The crunched pebbles 
are rebroadcast to their respective owners which can 
then distribute the load in the new balancing regions. 

PHASE I: RECEIVER.INITIATED LOAD 
REQUESTS DURING THRESHOLD DEPLETION 

Before an instantaneous global scenario can be 
constructed for generating the load distribution, its 
constituent components are composed using the infor- 
mation broadcast by the processors regarding their 
loading conditions. The imbalance function is used by 
each processor to determine if it can benefit by accept- 
ing or by ridding itself of additional load. If there is a 
processor which can accept additional tasks for execu- 
tion i.e it is a underloaded node, then it broadcasts this 
information alongwith the excess capacity to all its 
neighbouring processors. This state recording and 
broadcasting algorithm is superimposed on the under- 
lying computation. Since all state communication is 
interrupt based, the arrival of a control packet from the 
adjacent lightly loaded node, forces the destination 
processor to interrupt processing, and examine the 
incoming message. If the interrupted node is also 
operating below its threshold capacity then it ignores 
this incoming information and continues processing. 
An excessively loaded node however extracts out the 
address of the sending node. The information pertain- 
ing to all the neighbouring processors with which it 
could possibly share its load, is collected to construct 
or update the local balancing horizon (LBH). The 
Local Balancing Horizon of a heavily loaded processor 
then is a domain of underutilized, neighbouring pro- 
cessors over which it could distribute its excess tasks. 
There are two observations regarding the the construc- 
tion of LBH as given below. 

OBSERVATION I. As there is no global system 
clock controlling these events and each processor 
records and transmits its state independently, a 
mechanism is needed which will enable a heavily 
loaded processor to know when all the lightly loaded 
nodes have communicated their status as their number 
is not known a priori. So ths heavily loaded processor 
could be made to wait for CTij + $j, from the time of 

id 
arrival of the first control frame, where Tij is the pro- 
pagation delay for a control frame from node i to reach 
node j. The buffering and protocol overhead is denoted 

by ?j and d refers to the fanout of processor j. At the 
expuy of this interval the pebble construction is ini- 
tiated and any packet which arrives late is rejected, for 
the current balancing cycle. This ensures that nodes do 
not wait infinitely for the prospective receivers, How- 
ever, most of the targetted hypercube computational 
ensembles are loosely synchronized and cannot be 
expected to display preset, collective behaviour. 

OBSERVATION II. Rather than providing each 
node with a deterministic, repetitive control, the LBH 
construction algorithm is made completely asynchro- 
nous and distributed. Instead of transmitting loading 
states at regular intervals, the state changes are broad- 
cast as they occur, i.e the LBH is continuously updated 
and monitored. Each time there is a state change in 
some processing node, for example a heavily loaded 
node becomes a lightly loaded node, it dissolves its 
own LBH and broadcasts this state change to its neigh- 
bours. On the other hand if an underloaded node 
receives tasks for execution and exceeds the optimum 
loading level, it transmits a control frame to this effect 
SO that all overloaded nodes in its immediate neigh- 
bouhood can delete it from their LBHs. With this stra- 
tegy each update in the LBH requires broadcasting one 
control packet. This approach does not impose addi- 
tional synchronization overhead as the overloaded 
nodes do not need to wait for all underloaded nodes in 
the neighbourhood to communicate their status before 
it can construct the pebble to send it to the DCC. On 
the other hand, the LBH is dynamically updated and 
can be transmitted immediately upon reauest to the 
DCC. 

PHASE 2: PEBBLE CONSTRUCTION AND 
ATTRIBUTE ENCAPSULATION 

In this phase, the heavily loaded sender nodes 
construct pebbles to transmit their local balancing hor- 
izons to the DCC upon request. On the basis of their 
current loading state and the threshold each overloaded 
node determines its shareable task set, which contains 
a list of excess tasks that may be migrated to other 
nodes. For each task, T, in the shareable task set it 
computes the balancing delay and the protocol over- 
head, MIGT and uses it to construct its pebble. This 
pebble denoted by Ei, is then transmitted to the Distri- 
bution Cluster Controller for crunching, i.e to deter- 
mine the globally optimal load distribution 

PHASE 3: TRANSVERSAL COMPUTATION AND 
GLOBAL BALANCING 

During this phase all pebbles in a cluster are cen- 
trally operated upon to determine task reallocation 
schema. The DCC collects all the pebbles dispatched 
by the nodes for which a LBH exists. If a heavily 
loaded node does not have any underutilized processor 
in its neighbourhood then its LBH is empty. A node 
with an empty LBH may be required to share its load 
with processors more than one hop away. Thus the 
LBH of such a processor includes all the underloaded 
nodes in the nodal cluster. All such nodes send a con- 
trol message to the DCC, informing it of the unavaila- 
bility of local nodes for sharing their load. The DCC 
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then constructs the pebble for them. In this phase the 
loading state of the entire system or the pebble cluster 
is modeled as an attributed hypergraph where each 
pebble denotes a hyperedge. A hypergraph is said to 
have a cycle if there is a hyperedge that is a subset of 
some other hyperedge. The immediate implication of 
the existence of a cycle in the hypergraph being that 
there is a pebble whose owner can share tasks with a 
node or a set of nodes which is a subset of nodes with 
which another pebble could share its tasks. It denotes 
a maximal sharing conflict situation. The load sharing 
algorithm involves determining all such cycles at the 
outset and reducing them by allowing their owners to 
share their excess tasks with the nodes in the cycle. 
After reducing all proper cycles in the pebble cluster 
we need to determine the minimum transversah with 
respect to each pebble to find out all possible 
conflicting load assignments or those nodes whrch are 
in the shareable task set of two or more nodes. 

Definition 3: A transversal of a hypergraph I-I = 
(X; E1,E2,Ex,...Em) is defined to be a set T CX such 
that 

TnEi~ ( i = 1,2,3 ,..., m). 
where the minimum transversal is defined by the 

set T nEi. 
Definition 4 : The transversal number, 2(H) of a 

hypergraph is defined to be the minimum number of 
vertices in a transversal, and is denoted by 
z(H)=min(TI. 

In this method the minimum transversal with 
respect to each pebble, in the attributed hypergraph is 
needed to determine the globally balanced task alloca- 
tion, for all the excessively loaded nodes. 

Berge [2] has described an algorithm for deter- 
mining the minimum transversal Tr A which is sum- 
marized below 

STEP 1. Determine the set of all minimal subsets 
ofAr.eMinA={A,,A, ,..., A, ). 

STEP 2. successively determine the following 
families: 

Al =A, + Tr Ar=(a 1 aEAr) 
Az=A,U A, + TrAz=Min(TrAIV Tr AZ) 
As=AzU A3 + TrA3=Min(TrA2V TrA-J 

etc. 
Using Tr (A nB)= Min (Tr A V Tr J3) the 

TrA k+r can be computed from Tr A, . If ther; are k 
excessively loaded nodes in the system whose LBRs 
have been submitted to the DCC then this algorithm 
constructs Tr A = Tr Ak ink steps. 

This algorithm computes the composite minimal 
transversal sets for the entire hypergraph, i.e it deter- 
mines all the conflicting nodes in the system. But it 
cannot be used per se because with each node in the 
conflict set there is no information regarding the own- 
ers. The above algorithm could however be modified 
to compute the minimum transversal with respect to 
each pebble owner, such that as soon as a node is 
detected which can share tasks with two nodes a task 

sharing decision is taken. But this underutilized node 
may be in the pebble of some other node with a lower 
balancing cost, in which case a nonoptimal assignment 
would have taken place. So a mechanism is needed to 
determine all pebble owners with respect to each 
conflicting node in the pebble cluster. Using the 
Process Interaction characteristics we could then 
decide iipon the minimal cost task migration among 
the various candidates. 

Since the ensemble nodes have been assumed to 
be reliable and stationary, and a static clustering algo- 
rithm is used to partition them into clusters and the 
cluster controllers are aware of the nodes in their 
respective cluster, we can create a data structure at the 
cluster controller which considerably simplifies 
minimum transversal computation. At each cluster 
controller a k X k+l, boolean bit matrix which is main- 
tained as a boolean template. It is constructed using the 
information contained in the pebbles where k 
corresponds to number of nodes in the cluster and 1 
denotes the number of overlapping boundary nodes 
belonging to a different cluster which could be in the 
LBH of two nodes. Also two pebbles cannot have 
more than one boundary node in their LBH thus plac- 
ing a bound on 1. An element bi’ of this boolean matrix 
is set to 1 if node j is in the LBH of i. The minimum 
transversal computation then reduces to filling the tem- 
plate and scanning along the columns for more then 
one 1. So K+lth minimum transversal can be computed 
in O(k’). Fig. 3 shows how the template is used to 
compute minimum transversals with respect to each 
pebble in a given cluster. For details refer [ll]. The 
nodes in a minimal transversal are considered 
equivalent i.e a processor may distribute its load to 
either of these nodes or divide the excess load equally 
among all the nodes in the minimal transversal. 
Pseudo-code for the algorithm to determine global 
balancing schema is given below. 

Booleatr Pebble Crunching Ternplate 
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algorithm PEBBLE-CRUNCHING (A,E); 
I* A is the set of processors in the system and 

E denotes the pebbles or attributed-hyperedges */ 

1. 

2. 

3. 
4. 

5. 

!I 

8. 

9. 

10. 

11. 

12. 

13. 

14. 
15. 

16. 

begin 
partition E into sets C and E-C 
using Graham Reduction; 

/*C is the set of all proper 
cyclic-hyperedges in the 
hypergraph *I 

assign and mark processors in each set in C to 
their pebble-owners and dissolve cyclic pebbles; 
for all empty pebbles do 

Ej = {E-C}; 
/* balancing domain of empty 
pebbles is the entire system */ 

for all pebbles in E-C do 
begin 

compute-transversals(E-C); 
assign nodes in TR (E-C ); 

I* assign nonconflicting nodes *I 
for all nodes in TR(E-C) do 

begin 
form sets, OWNERi of pebble 
owners for each node in TR(E-C) 
for all sets O~‘NERi do 
begin 

using the attribute tuple extract out 
all tasks that can be assigned to 
node i; 

perform the minimal-overhead 
task assignment among the several 
owners; 
mark nodes in TR(C) assigned; 

end 
end 

end 
for all pebbles in {E} do 

if a task Qj; in attribute-tuple 
is assigned to a 
receiver in same tuple then 

replace all (Xi ,k ,{ A 1) 
tuples with (Xi,aji); 

/* the attribute list in 
hyperedge is 
replaced with the 

end; 
processor-task pairs *I 

end I* pebble-crunching *I 

Each DCC runs the algorithm Pebble Crunching 
to COnStmCt a task redistribution schema which is 
optimal within a cluster. These crunched pebble C~US- 
ters are then passed onto the cluster controllers at the 
next level in the hierarchy. As mentioned previously 
the higher level controllers are elected from among the 
DCC’S to reduce the number of nodes involved in con- 
trol functions and to reduce on communication costs. 
This computation is recursively carried upto the root of 
the cluster tree, which then returns the crunched peb- 
bles to their respective owners. 

PHASE 4: PROCESS MIGRATION 

men the SC- completes pebble crunching at the root 
of the cluster uee, it needs to retufll the pebbles to their 
respective owners. The returned pebbles have the form 

Ei = [(x~,u I),(Xz,U*),-.,(Xj ,aj)] where xj denotes the 
node j to which the excess task with balancing cost Uj 
is to be transferred. These pebbles now contain the 
closed balancing horizons which are globally optim- 
ized, On receiving the distribution schema the owners 
i.e the heavily loaded nodes transmit their excess tasks 
to the nodes in the pebble. The migration phase 
involves detaching processes from their current 
environment and transfer& them to new nodes and 
then reinstalling them. The processor dependent loca- 
tions need to be remapped onto the new node, along- 
with the redirection communication links between the 
processes. The process migration mechanism also 
needs to ensure that all processes with which this pro- 
cess requires to communicate are informed of its 
changed location. While this process is still being 
migrated the process migration mechanism needs to 
buffer all the incoming messages for this process and 
pass them on to it, after its installation is over, because 
when the process is migrating others continue to 
interact with it. 

5. SIMULATION FOR PERFORMANCE 
EVALUATION IN LARGE SCALE SYSTEMS 

A number of simulations were carried out on the 
VAX 111780 to evaluate algorithm performance to 
analyse the gain and variations in throughput, execu- 
tion speedup and processor utilization with load 
balancing as the systems are scaled up. The simulation 
involved randomly generating large task sets and their 
computational requirements, precedence graphs, nodes 
on which they were to be externally submitted or 
dynamically spawned., creation times, and interprocess 
communication requnements. Data used during the 
simulation was obtained from benchmarking tests con- 
ducted on the NCUBE hypercube and results were 
averaged over several runs. 

Figure 6.1 shows the variation in processor utili- 
zation with the number of nodes, with and without 
load balancing where processor utilzation is defined as 
the percentage of time the processing node is busy. 
The processor utilization was averaged over all nodes 
in the systeem. The graph shows that for a constant 
number of tasks, as the system was scaled up there was 
a decrease in processor utilization which could be attri- 
buted to increased delays during process synchroniza- 
tion and process migration. Fig. 6.2 demonstrates the 
variation in the ratio of useful machine cycles to the 
total machine cycles performed by the processing 
nodes versus the number of nodes in the system. The 
fall in the ratio as illustrated by the results is to be 
expected because as the number of nodes is scaled up 
the load balancing overhead increases as the number of 
levels at which pebble crunching is performed 
increases. Useful cycles here refer to the computa- 
tional cycles spent on task execution and excludes the 
overhead for load balancing, process migration and 
context switching. 

Fig. 6.3 illustrates the increase in throughput as 
the number of nodes is increased. Though increase in 
throughput is implicit here due to inCTeaSe ln con- 
currency it is seen that pebble crunching load balanc* 
ing dgo&nn leads to enhanced throughput than in 
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systems with no load balancing. What is more 
significant from the graph is the fact that gains over 
systems with no load balancing are higher as the sys- 
tems are scaled up. 

The computational overhead incurred by the algo- 
rithm is heavily dependent upon the cluster size as 
addition of clusters leads to an increase in the number 
of pebble crunching cycles. Fig. 6.4 analyses this rela- 
tionship between the cluster size and throughput. It 
was seen that throughput does not monotonically vary 
with cluster size. For large scale systems, with smaller 
cluster size the cluster tree is large and pebble clusters 
have to transmitted several times before a load distri- 
bution is arrived at. With a large cluster size this pro- 
cess is reduced. However in the latter case the message 
passing overhead is higher as more local balancing 
horizons need to be transmitted and pebble crunching 
takes place over a larger set. 

6. INCORPORATING FAULT TOLERANCE 

The nature of applications envisaged for the 
hypercube ensembles impose high demands on relia- 
bility, availability and performance. Consequently the 
traditional approaches for achieving fault tolerance 
through modular redundancy and circuit duplication or 
voting are not adequate as the number of standby 
redundant spares need to be kept to a minimum for 
extracting maximal concurrency from the system. So 
mechanisms are needed for concurrent fault detection 
and fault isolation. We now drop the assumption in 
sec. 2.1 and consider both nodal and link failures. It is 
assumed that the Distribution Cluster Controllers will 
occassionally fail and new DCCs will need to be 
elected and the nodes in the cluster made aware of 
their presence. This may lead to a redefinition of the 
nodal cluster itself and subsequent invalidation of the 
transversal computing boolean template. Here we do 
not concern ourselves with the implications of the 
failure on the ensuing computation at a node but 
instead on its implications on the load balancing pro- 
cess. For example, if a DCC were to fail then there 
would be no load balancing within a cluster. The peb- 
bles would be transmitted to it but they will not be 
crunched and returned. 

In the past hardware solutions have been proposed 
for providing fault tolerance in the event of node/link 
failures (Rennels [15]). Rennels’s method attempts to 
maintain original performance and connectivity by 
adding another dimension to the hypercube to provide 
spares. Each node in the basic hypercube is provided 
with an additional serial port which is used to reach a 
spare node. A group of nodes is connected to the same 
spare via a crossbar matrix such that if any of them 
fails the additional node can be inducted into the sys- 
tem such that all neighbouring relations are preserved. 
Our model can be implemented per se under this 
framework as this processor shuffle does not disturb 
the topology of the ensemble and static cluster organi- 
zation is valid. However this implementation is avail- 
able in very few prototype systems. So we propose a 
distributed algorithm for detecting and recovering 
from failures which does not require any hardware 
modifications. 

Our strategy is based on the PMC model intro- 
duced by Preparata et al 1131. Its essential characteris- 
tic is to decompose the ensemble into subunits which 
are capable of testing each other. By this method, a 
fault-free unit will ultimately detect a faulty node 
which can then be excluded from the processing set. If 
the faulty node turns out to be a DCC then another 
DCC needs to be elected and its existence made known 
to the others. Through simulations it was found (sec- 
tion 6) that there is an optimal cluster size for a given 
hypercube dimension at which the pebble crunching 
yields maximal throughput. So initially the ensemble is 
divided into optimal size clusters. As the computa- 
tions proceed in time some processors or links may 
fail, varying the effective cluster size. The fault 

diagnosis algorithm is implemented within each cluster 
to maintain a conceptual consistency with the load 
balancing algorithm, though it need not be so. Each 
cluster is denoted by a configuration graph [ 11 J, K = 
(N,L) where N is the set of processors and L is the set 
of physical communication channels. Also each node 
and edge is associated with an “active” or “failed’ state 
denoted by a boolean variable. These individual states 
are combined to form a diagnostic state vector which 
epitomizes the active state of the entire configuration 
graph, denoted by S = C 
nbl,nb2...,nbN,lb,,2,1b2,3,..., IbNelfl }. Further diugnosa- 
bility, of nodes and links from the perspective of an 
intact node, has been defined [l l] as, 

Definition A node nj is diagnosable from ni if there 
exists a path in the configuration graph 

where ni , nk etc. are operational nodes. A COnUInmiCa- 
tion link lj,k is diagnosable from node i if nodes 
n. and flk are diagnosable from ni. In a hypercube of 
dimension k, each node can diagnose upto k nodes and 
broadcast their status to the others nodes in the cluster. 
This requires that the communication subsystem does 
not fail, in that diagnostic messages can be sent and 
acknowledged within fixed time intervals if the node 
being checked is functional. Since each node has an 
independent communications processor, node failure 
can be distinguished from link failure. But a confirmed 
node failure results in all its outgoing links being 
declared faulty too. 

For our purpose we do not want tasks to be 
transmitted to failed nodes or over non-operational 
links. Since this model is receiver initiated a node will 
be able to convey request for addi%onal workload only 
if it is intact and receipt of this request implicitly 
implies link availability. But it may fail after the 
load-request has been broadcast to the neighbours and 
any processes migrated to it after crunching will be 
lost. To prevent this task loss and reduce the message 
passing overhead needed for diagnosing the health of 
receiver nodes the diagnosis defined previously is car- 
ried out after the crunched pebbles have been returned 
to their owners i.e before process migration and tasks 
transmitted to a designated receiver only if it is deter- 
mined to be intact. 
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In contrast to the traditional approach to fault 
diagnosis whereby all nodes in the system are uni- 
f&mly diagnosed we introduce a distinction in our 
model. Only the functionality of elected DCCs is diag- 
nosed by their immediate neighbours at regular inter- 
vals. Results of this neighbourhood test are then 
broadcast to other nodes in the cluster. Links are also 
validated by this process with each node updating its 
diagnosibility state vector, S, for the path to the current 
DCC. As the inter-nodal communication paths in the 
hypercubes are directly determined by the addresses of 
the source and destination nodes and their hamming 
distance we do not need to maintain the complete diag- 
nosibility vector and only the address of current DCC 
and knowledge of failed neighbouring link is adequate. 
If a DCC failure is detected then another will have to 
be elected in accordance with some protocol that 
ensures a unique winner. 

There are two basic approaches to “elections in a 
distributed system” 163, bully approach and invifa- 
tional approach which can be used to select unique 
controllers from among a collection of nodes. In the 
former, a priority schema is used to order the proces- 
sors and the one with the highest priority from among 
the nodes participating in the election will become the 
new DCC. In the invitational approach the nodes 
which wish to become controllers invite other nodes to 
join them as a group. As mentioned earlier this model 
carries out recovery within the clusters setup initially 
for performance optimality. So we use the bully elec- 
tion approach to re-elect DCCs in which the nodal 
address serves as a priority metric. In accordance with 
the binomial spanning tree, (BST), paradigm which 
encaptures the addressing and connectivities among 
the hypercube nodes we designate a higher priority for 
nodes whose addresses have lower boolean value. 

Pseudocode for algorithm for diagnosing the 
status of the current_DCC and reelecting a new one if 
it fails is given below. This is executed periodically on 
every node in the cluster. Since the size of a cluster is 
bounded from above, the boolean template used for 
computing the transversals during pebble crunching 
can retain its structure as shown in Fig 2. Every node 
is given a copy of this template which is activated 
when that node becomes the current DCC. After a 
faulty DCC comes up it is allowed to-become a con- 
troller again by participating in the elections after the 
active DCC crashes. 

7. CONCLUSIONS 

In this paper we have described a robust, 
demand-driven, distributed protocol for dynamic load 
balancing for heavily-loaded hypercube ensembles 
using a graph-theoretic approach. An attributed- 
hypergraph is used to model the instantaneous loading 
state for the system and provides a versatile mechan- 
ism for constraint representation and cost encapsula- 
tion. Unlike some of the existing algorithms this 
methodology ensures that process migration takes 
place only if it is profitable and with minimal over- 
head. Existence of lightly loaded processors is not seen 
as an adequate criterion for load sharing. This 

procedure DCC-monitoring (i : node; 
current-clust-size : integer) 

1 entry fault-monitoring ; 
2 begin 

: 
repeat 

5 
6 
7 

delay( t : cycles ); 
if i E current DCC neighbourhood then 

send diagnosisqacket ; 
async wait ( t2 : timeunits ); 

/* waitTor interrupt for upto t2 sec.*/ 
if no response then 

broadcast DCC Down ; 
set link (i,ctient-DCC) down ; 
update Si ; 

I*Si is the DSV for node i *I 
else 

iz 
10 
11 

12 
13 
14 
15 
16 
17 

append ji ,current DCC ,ni to Si ; 
broadcast DSVto neighbours; 

endif; 
else 

18 

asyn wait(t5 : timeunits ); 
/* wait7or DSVgkt from neighbouring node */ 

if DCC down then initiate elections for 
new DCC 

19 

2 

else update DSV and broadcast it ; 
endif; -_ - 

until forever ; 
22 end /* procedure *I 

/* bully algorithm for electing a new DCC */ 

ii E;yn faulty-recovery ; . 

iFcurrent DCC faulty then 
suspeiid load balancing procedures ; 
for all nodes in the cluster do 

determine if remote node k has address 
with lower binary value than i ; 
I* select only nodes with higher priority */ 

send am-becoming-DCC packet to node k ; 
endfor ; 
asyn-wait{ t3 : timeunits); 
if a node k with higher priority indicates 

a desire to become DCC then 
i suspends its bid to be the new DCC ; 
asyn wait ( t4 : timeunits ); 

/* waiTfor id of new_DCC */ 
set current_DCC to new_DCC ; 

else 
for all nodes in the cluster do 

determine remote nodes with addresses 
having higher binary value than i ; 
/* inform lower priority nodes /* 

send am-new-DCC packet to k ; 
endfor ; 

endif ; 
endif _ 

43 end I* procedure *I 

Pseudocode for Fault Diagnosis and 
Reconfiguration algorithms 
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approach is particularly desirable for large applications 
with spontaneous and erratic task generation at certain 
nodes leaving others underutilized. The algorithm 
described here dynamically recomputes the task distri- 
bution in a manner which enhances resource utilization 
by distributing load over underutilized processors. The 
algorithm avoids processor thrashing as it does not 
allow for arbitrary migration or broadcast of excess 
tasks to a lightly loaded processor beyond its excess 
capacity. 

The model has also been extended to incorporate 
fault-tolerance in the event of node and link failures. It 
is ensured that tasks are not transmitted to nodes which 
have crashed or cannot be reached. On detection the 
faulty nodes are removed from the Ioad balancing 
environment to prevent process loss. In the event of a 
DCC failure, contingency procedures are provided for 
re-electing another one from among the fault-free 
nodes in the cluster to take over the control functions. 
However to limit the amount of control traffic, fault 
diagnosis and recovery is performed at the cluster level 
rather than the system level. 
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