
BIT23 (1983[472-486

P R O P E R T I E S A N D A P P L I C A T I O N S O F F O R E S T S O F

Q U A D T R E E S F O R P I C T O R I A L D A T A R E P R E S E N T A T I O N

VASUDEVAN RAMAN * and S. SITHARAMA IYENGAR **

• Department of Electrical and Computer Engineeriug, Louisiana State Universiy, Baton Rouge,
Louisiana 70803, USA

• * Department of Computer Science, Louisiana State University, Baton Rouge, Lousiana 70803, USA

Abstract.
Region representation as a quadtree data structure is a rich field in computer science with many

different approaches. Forests of quadtrees offer space savings over regular quadtrees by
concentrating the vital information [4, 5, 6]. They scavenge unused and unneeded space (i.e., node
containing no information). This paper investigates several properties of forests of quadtrees which
can be used to design manipulation algorithms fo~ forest-quadtree data structure. In addition, the
paper discusses the space saving and shows how the basic operations that can be performed on a
quadtree can also be done on the more space efficient representation (a forest of quadtrees).

Keywords and phrases: quadtree, forest, data structure, image processing, algorithm.
CR Categories: 3.63, 8.2.

1. Introduction.

Efficient data structures for region representation are important for use in
manipulating pictorial information. Repent research [1, 2, 3, 7, 8, 9] on
quadtrees has produced several interesting results in different areas of image
processing. A good tracing of the history of the evolution of quadtrees is
provided by Klinger and Dyer [12]. Much work has been done on the quadtree
properties and algorithms for manipulations and translations have been derived
by Samet [9, 10], Dyer [1] and others [2, 5, 6]. For overviews of related
research on image data structures see [4, 11, 12]. In 1981, methods of refining
the quadtree were proposed by Jones and Iyengar [5]. The new refinements
were called virtual quadtrees. Virtual quadtrees include both compact quadtrees
and forests of quadtrees. The paper by Jones and Iyengar [4] further illustrates
the usefulness of a forest of quadtrees as an efficient representation for binary
images.

This paper is concerned with the properties of forests of quadtrees and their
applications for picture processing and discusses development of forest
manipulation algorithms.

Received February 19, 1983. Revised July 22, 1983.

PROPERTIES AND APPLICATIONS OF FORESTS OF QUADTREES... 473

Before the results are described, we begin by giving definitions and summary
of previous results [4, 5, 6] in the next section of our paper.

2. Definitions and summary of previous remits.

Pictures: A picture or raster is defined to be a grid of 2~x 2 * colored points
(pixels), the color representing properties associated with the points.

Quadtrees: A quadtree is a tree structure with the restriction that any node
must have either four offspring (or children or descendents) or none.

Quadtrees Jbr pictorial representation. In a quadtree representing a picture, the
root represents the whole picture. Its offspring represent each one quadrant in
the order Northwest(NW), Northeast(NE), Southwest(SW), and Southeast(SE).
These four children are numbered from 0 to 3. In turn, their offspring each
represents a subquadrant of the four quadrants and so on until the maximum
number of subdivisions have been made as determined by the resolution of the
image. In addition, if the children of a node are all the same color, they are
deleted and their parent receives the information that was common to the four
children. They are simply not needed as they carry redundant information.
Figures la and lb show a typical picture of a simple region and its quadtree

-~-~ -~- r ~-~

-- | -

i l

Fig. l(a). Sample region.

Fig. l(b). Quadtre¢ for sample region shown in Fig. l(a)

474 VASUDEVAN RAMAN AND S. SITHARAMA IYENGAR

representation. In this quadtree, parents hold the information "GRAY" and
leaves are either "BLACK" or "WHITE", representing the presence or absence
of color respectively.

Node in a quadtree. Nodes in the quadtree are required to hold color
information and the 4 pointers to their children. In addition, in the forest
transformation an additional datum is needed, the "TYPE" field. A typical node
in a quadtree, then, appears in storage as shown in Figure 2.

COLOR

t NE

TYPE

SW SE

Fig. 2. Node o f a quadtree.

When additional manipulation is done, such as roping of the quadtree, more
fields may be added.

In our quadtrees, the COLOR field holds either "BLACK", "WHITE", or
"GRAY", the TYPE field "GOOD" or "BAD", and the other fields are pointers
holding either all nulls or all pointer values (addresses to subtrees).

Virtual quadtrees. A virtual quadtree is any structure which simulates a quadtree
in the sense that we can
(I) determine the color of any node in the quadtree;
(2) find the offspring in any direction of any node in the quadtree;
(3) find the father of any node in the quadtree.
For a broader treatment on this, see [4, 6].

Forest ofquadtrees. Let T be a quadtree. The quadtree T is represented by forest,
F(T), of quadtrees consisting of a list of triples of the form (P, L, K) and a
collection of quadtrees where
(a) each triple (P, L, K) in the list consists of the coordinates, (L, K), of a node

in T, and a pointer, P, to a quadtree in the collection isomorphic to the
subtree rooted at position (L, K) in T;

(b) if (L, K) and (M, N) are coordinates of nodes recorded in F, then neither
node is the root of a subtree containing the other;

(c) every BLACK leaf in T is represented by a leaf in F(T).
For example, Figure 3 contains a forest that represents the quadtree of Figure

lb. The idea of the algorithms for reducing a tree T to a forest of quadtrees
F(T) that represents the tree, can be described informally as follows.

First, a "labelling" algorithm is executed. This algorithm traverses the
quadtrees depth-first and labels each node "GOOD" and "BAD", depending

PROPERTIES AND APPLICATIONS OF FORESTS OF QUADTREES... 475

CHARACTERSTIC SUBTREES BLOCK

ARRAYS CORRESPONDENCE

,./+ 7 7

14 _i
& 3 G" - I /rx~ ~. 4.~-~.~g4 .L.

. -- - . , ,
Ii

1%

"I, 2, 3

Fig. 3. Forest of quadtrees for sample region shown in Fig. l(a). The block correspondence of the
region shown in Fig. l(a).

upon its importance in information storage. A GOOD node is either a
"BLACK" leaf or a parent of two or more GOOD children. All other nodes are
labeled "BAD".

The second phase is a forest creation algorithm. This algorithm retraverses
the quadtree, deleting BAD nodes from the top down until it encounters a
GOOD node. This node now becomes the root of a subtree in the forest, and its
corresponding triple (i.e., level, magic number and pointer to its root) is stored
in the characteristic arrays. If this node is a "BLACK" leaf, it becomes a
"BLACK" leaf in the forest, which is actually a subtree consisting of but one
node.

The path code. If the children of a node are numbered so that 0 represents NW,
1 represents NE, 2 represents SW, and 3 represents SE, then a path from the
root to another node on level L in a quadtree can be represented by a
quaternary number with L - 1 digits (the root has level number 1). For instance,
the quaternary number denoting the path from the root to the leaf marked X on
figure lb has the value 201 (which is 33 decimal) since the directions taken from

476 V.ASUDEVAN RAMAN AND S. SITHARAMA IYENGAR

the root to X are SW, NW, and NE. This number is called the path code and
forms the K coordinate in the triple representing a subtree in a forest.

If the path code for a node on level L is ML, then the path code of a child is

(1) ML+ 1 = 4ML +D

where D is the digit representing the chosen direction. This follows directly from
the definition of the path code.

In [4] the following theorem was proved:

THEOREM 1. The maximum number of trees in a forest derived from a quadtree
that represents a square of dimensions 2 r x 2 r is 4 r - l , which is one-fourth the

area of the square.

Having reviewed the definitions and results of previous work, we now present
the new results on the structural properties of forests of quadtrees.

3. Structural properties of forests of quadtrees.

The following theorems and their corollaries are useful in the development of
forest manipulation algorithms.

THEOREM 2. Given a node with level L F and path code Mr, any arbitrary node

with level L N > L r and path code M N can be a descendent only if the following

inequality holds :

M F x 4LN-LF <= M N < (M r + 1) x 4LN-LF.

PROOF. By always taking the minimum value of D in (1), we obtain the
following recurrence relation:

ML + I = 4ML (ML = MF for L = LF)

and by always taking the maximum D we have:

ML+ 1 = 4ML+3 (M L = M r for L = LF)

The first equation is homogeneous and has the solution:

(2) ML = MF x 4L-LF.

A particular solution to the second equation is:

PROPERTIES AND APPLICATIONS OF FORESTS OF QUADTREES...

M L = 4L-L , - - I

so the solution is:

(3)

477

M L = (M r + 1)4L-L~ - 1.

Since M n must lie between the two values given by (2) and (3) the theorem is
proved. •

COROLLARY 1. Given a node with level L r and path code Mr, an arbitrary node

with level L s < L r and path code M N can be ancestor if and only i f the following
inequality holds:

(4) M N x 4L~-L~ =< M r < (MN+ 1) x 4L:L~.

PROOF. If a node N is an ancestor of a node F, then node F must be a

descendant of node N. •

COROLLARY 2. Given a node with level L r and path code M r, an arbitrary node

with level L N < L r and path code M n can be an uncle of the node (the child of
an ancestor) if and only if the following inequality holds:

4 x [Mv/4L~-L~ +1] < M n < 4 x [Mv/4L:L~ +1] +3.

PROOF. The father of node F (L v, My) is

(LF - 1, tMr /4J).

Since for all x > 0, LLx/4J/4J = Lx/42J, an ancestor on level L N - 1 is

(LANo MANC) = (L N - 1, [Mr/4Lr-L~ + 1]).

Three of the children to this node are uncles for node F and the fourth is an
ancestor. But this means that an uncle's path code must lie in the range (cf.
formula (1))

4MAN c + 0 _--< M =< 4MAN c + 3

which proves the corollary. •

COROLLARY 3. Given a subtree with root R (L R, MR), an arbitrary node N

(L N, MN), where L N > L R, is situated in an adjacent subtree

--- to the left if:

478

--- tO the right is:

VASUDEVAN RAMAN AND S. SITHARAMA IYENGAR

M s < M R • 4L~-L~

M N >= (MR+ 1)4LN--LR.

PROOF. Since the path codes of nodes on the same level L in a quadtree
increase towards the right from 0 to 4 L- 1 1, theorem 2 shows that an upper
bound of path codes for subtrees to the left of node R is given by:

M N < (M R - 1 + 1)4LN-L~

which reduces to the following inequality

M N < M R. 4LN-LR

while a lower bound of the path codes for subtrees to the right of node R is
given by:

M s >= (MR+ 1)4 LN-LR. •

THEOREM 3. Given two nodes with levels L a and L~ and path codes MA and M B

and a common ancestor with level LANc and path code MAr~C, the shortest path
between the two nodes (in edges) is:

dsp = (L a + LB) -- 2LAN c.

PROOF. It is evident upon examination of a quadtree or subtree of a forest that
the distance of the shortest path between any two nodes is the sum of the
distances to a common ancestor from each one. This is simply the expression:

(L A - Lnnc) + (L ~ - LANC). •

4. Algorithms.

Preliminary manipulation algorithms include traversal, search, and the
reverse of forest creation, reconstruction. Due to the complexity of a
hypothetical traversal algorithm, at least to produce results equatable with those
of a quadtree traversal algorithm, it was decided to forego this less useful
manipulation for the more useful search and reconstruction algorithms. These
are now presented.

The search algorithm, entitled "FSEARCH" searches for a node in a forest by

PROPERTIES AND APPLICATIONS OF FORESTS OF QUADTREES... 479

coordinates, and upon the location of the node, subsequently returns its pointer
if it is real, or its color if it is virtual.

The input to the process is a forest of quadtrees in pointer-based storage,
three arrays, ROOT(n), LR(n), and MN(n), each holding the nth subtree root
pointer, level, and path code, respectively, the number of subtrees N in the
forest, and finally the level L and magic number M of the node to be searched
for.

The program works by performing a binary search" on the list of subtrees
until a subtree is located whose root has the wanted node as an ancestor,
descendant, or "uncle". The node is then located and characterized.

There is no output except the possible error message. A pointer and the
ancestor flag AF are returned.

The reconstruction algorithm, entitled "RECONS' , reverses the creation of
the forest.

The algorithm works by creating all ancestors of the first subtree and their
tentative descendants (white nodes). Then each subtree thereafter is connected,
via a chain of ancestors, to a common ancestor with the first subtree.

The input to the algorithm is the same as that of "FSEARCH", except that
only N, the number of subtrees in the forest, is needed in addition to the forest
and its characteristic arrays. Also, the algorithm assumes existence of a zero
element in the LR and M N arrays initialized to zero (LR(O) = O, MN(O) = 0).

There is no output and Q, the quadtree root pointer, is the only thing
returned. We shall now present the algorithm in a pascal like syntax.

FSEARCH :
procedure FSEARCH (1, m, n: integer; p: ptr; af: boolean);

This procedure searches for a given node with level 1 and path code m.
The number of subtrees is given as n, t is the subtree index, s and b determine
t according to binary search rules, and d is the horizontal distance between
nodes. The first condition tests to see if t has gone out of the list of sub-
trees, the second tests for descendants, the third for ancestors, the fourth for
uncles, the fifth for virtual white nodes, and the sixth and seventh for
direction to search for the node. The last condition is a blatant error in the
forest. The af is true for a gray ancestor found and p is null for a
virtual node, and the pointer to a real node.

begin
s : = l ;
b : = n ;
t : = trunc((s + b)/2);
d : = 0 ;
while true do

begin

480 VASUDEVAN RAMAN AND S. SITHARAMA IYENGAR

if t < 1 o r t > n t h e n d o
begin

af: = false;
p : = null;
return;

end;
else if (mn(t)*4**(l- lr(t)) ~= m) and (m < (mn(t)+ l)*4**(l- lr(t))) and

l >. Ir(t) then do
begin

af: = false;
p : = travers(l , m, root(t)) ;
return;

end;
else if (m*4**(Ir(t) - I) ~ mn(t)) and (mn(t) < (m+ l)*4**(Ir(t)- l)) then

do
begin

af : = true;
p : = null;
return;

end;
else if (trunc(mn(t)/4**(lr(t) - l+ 1)) '4 5 m) and

(m <= trune(mn(t) /4**(lr(t)- l+ 1) ' 4 + 3) then do

begin
if d = 0 then do

begin

d : = m - trunc(mn(t)/4**(lr(t) - /)) ;
t : = t + d/abs(d);

end;
else t : = t + d/abs(d);

end;
else if d < > 0 then do

begin

af := false;
p : = null;
return;

end;
else if m < mn(t)*4**(l- lr(t)) then do

begin
b : = t - 1 ;
ff s > b then do

begin
a f : = false;
p : = null;

PROPERTIES AND APPLICATIONS OF FORESTS OF QUADTREES.. .

return;
end;

t : = trunc((s + b)/2);
end;

else if m ~ (ran(t)+ 1) * 4 * * (l - l r (t)) then do
begin

s "= t + l ;
if s > b then do

begin
a f " = false;
p := null;
return;

end;
t : = trunc((s + b)/2);

else do
begin

writeln('*** severe fatal error - bad forest');
stop;

end;
end;

end;
end FSEARCH;

481

RECONS:
procedure RECONS (n: integer, q: ptr);

This procedure reconstructs a normal quadtree from a forest of quadtrees,
returning q as the new quadtree root pointer. Each subtree is indexed in
turn by t and the ancestors allocated and linked upward as shown in figure
4(a) and 4(b), the former representing the first iteration, and the latter
representing a possible later iteration. The variable m is the new ancestor's
path code and d is the horizontal path code distance. The main if-stmt, checks
to see whether the subtree and its ancestors should be connected to the left
adjacent subtree and ancestors of that subtree. Pointers pl, p2, p3 point to
white nodes which serve to provide the ancestor with four proper descendants.
Pointer p points to the new ancestor.

begin
f o r t : = 1 r o n d o

begin
h = root(t);
for l := l r (t) - 1 downto 1 do

begin
m = t r u n c (m n (t) / 4 * * (l r (t) - /)) ;

482 VASUDEVAN RAMAN AND S. SITHARAMA IYENGAR

d = m - trunc(mn(t)/4* *(It(t) - l) + 1))*4;
if t = 1 or not ((m * 4 * * (l r (t - 1) - l) < _ r a n (t - l)) and (r a n (t - l) <

(m + 1)*4**(lr(t - 1)-/))) then do
begin

new(p);
if I = -1 then q = p;
new(p 1);
new(p2);
new(p3);
pl.color : = 'white';
pl .nw := null;
pl.ne := null;
pl .sw := null;
pl.se := null;
p2.color : = 'white';
p2.nw := null;
p2.ne := null;
p2.sw := null;
p2.se := null;
p3.color: = 'white';
p3.nw: = null;
p3.ne: = null;
p3.sw: = null;
p3.se : = null;
if d = 0 then do

begin
p.nw: = h ;
p.ne: = p l ;
p.sw: =p2;
p.se: =p3;

end;
else if d = 1 then do

begin
p,nw: = p l ;
p.ne: = h ;
p.sw: =p2;
p.se: =p3;

end;
else if d = 2 then do

begin
p.nw: = p 1 ;
p.ne: =p2;
p.sw:.=h;

PROPERTIES AND APPLICATIONS OF FORESTS OF QUADTREES.. .

p.se : =p3;
end;

else if d= 3 then do
begin

p.nw: =pl ;
p.ne: =p2;
p.sw: =p3;
p.se:=h;

end;
else do

begin
writeln('*** error in reconstruction ***');
stop;

end;
p.color: = 'gray';
h:=p;

end;
else do

begin
p: = travers(1,m,q);
if d= 0 then p2:=p.nw;
else if d= 1 then p2: =p.ne;
else if d=2 then p2: =p.sw;
else if d= 3 then p2: =p.se;
if p2.color < > 'white' then do

begin
writeln('*** ERROR- BAD FOREST ***');
stop;

end;
if d= 0 then do

begin
dispose(p.nw);
p .nw:=h;

end;
else if d= 1 then do

begin
dispose(p.ne);
p .ne:=h;

end;
else if d = 2 then do

begin
dispose(p.sw);
p.sw: =h;

483

484

end;
end;

end;

VASUDF.VAN RAMAN AND S. SITHARAMA IYENGAR

end;
else if d = 3 then do

begin
dispose(p.se);
p . s e = h ;

end ;
exit for;

end;

end RECONS;

5. Discussion of results.

Having presented the properties and algorithms of forests, we now state our
conclusions from the work done so far.

Theorem 2 and its corollaries were used in the development of the
manipulation algorithms for a forest of quadtrees.

Theorem 3 can be used to find the distance in edges between two nodes in a
quadtree provided we know the level of a common ancestor of both nodes.

In this paper, we have tested both algorithms, finding the results very good in
terms of time and space efficiency. The algorithms were tested in several different
programming languages. The complexity of both algorithms is linear in the

Q %//~ (1,0)

(2,0)

(3, I)

~ (4,7)

j5..

.. ..

: 5 '_42 5-)-~ 7-' 42 ? .{7. U02 I7,4 717

(2,2)

(3,9)

(4,36)

~ LA ~ (s,145)

Subt ree/-A ¢
I r~'°l (~ (6,582)
! &._a I -[
I (6.576). Subtree-Bl
. : ~ ?7~ 2%; 9-; r

i [
(8 93±~1) (31@

(a) Fig. 4. Constructing ancestor chain up. (b)

PROPERTIES AND APPLICATIONS OF FORESTS OF QUADTREES.. . 485

number of subtrees present, which is related to the size and resolution of the
image. Empirical results concerning the relative time and space usage of the
forest of quadtrees and an even newer structure developed by the authors versus a
normal quadtree are reported in [6].

The newer structure, called a hybrid quadtree, utilizes not only the method of
the forest of quadtrees, but also draws from the "metanode" format of the
compact quadtree and upon further techniques. The integrity of the quadtree is
preserved. For more of this see [15].

6. Summary and conclusions.

The forest data structure seems to offer general benefits over the normal
quadtree as the worst case could be where both structures are equal. Even if the
additional space taken by the characteristic arrays is considered, the benefits of
using a forest of quadtrees can still be realized. Recent work by the authors
has yielded an even newer structure called a hybrid quadtree [15] which combines
the advantages of the forest of quadtrees and the compact quadtree, with a
resulting much higher space and time efficiency. This is very significant and
research is still in progress.

In previous work by Iyengar and Jones [4, 5] and in the recent publication
by Gargantini [13], other possible structures to provide space-savings over the
quadtrees were proposed. The primary advantage of forests over other possible
structures appears to be its ease of use stemming from its similarity and
compatibility with the widely-used quadtree structure used today. This is
something that must be considered in any pictorial application of a data
structure.

Further work needs to be done in the manner of advanced manipulation of
forests, such as roping, and more algorithms to equate the forest with normal
quadtrees in ease of application.

Acknowledgements.

We would like to thank Professor Jones and Dr. Madhavan for helpful
discussions of this work. We are indebted to Professor Venkatesh and the
referees for their critical comments on an earlier version of this paper. We are
very grateful to one referee for several important suggestions on various
theorems in our paper. We would also like to thank the referee for his
implementation in SIMULA.

486 VASUDEVAN RAMAN AND S. SITHARAMA IYENGAR

R E F E R E N C E S

1. C. R. Dyer, A. Rosenfeld and H. Samet, Region representation: Boundary codes from quadtrees,
Comm. ACM 23, 3 (March 1980), 171-179.

2. G. M. Hunter and K. Steiglitz, Operations on images using quadtrees, IEEE Trans. On Pattern
Analysis and Intetl. 1, 2 (April 1979), 145-153.

3. G. M. Hunter and K. Steiglitz, Linear transformations of pictures represented by quadtrees,
Computer, Graphics and Image Processing 10, 3 (July 1979), 289-296.

4. L. Jones and S. S. Iyengar, Space and time efficient virtual quadtrees, Technical Report # 82-
D24, Louisiana State University, Baton Rouge, LA 70803, (Nov, 1982).

5. L. Jones and S. S. Iyengar, Representation of a region as a forest ofquadtrees, Proc. IEEE-PR1P
81 Conference, Dallas, TX, IEEE Publ. 81 Ch1595-8, (1981), 57-59.

6. L. Jones and S. S. Iyengar, Virtual quadtrees, Proc. IEEE-CVIP 83 Conference, Virginia, IEEE
publications (1983), 101-105.

7. E. Kawaguchi and T. Endo, On a method of binary-picture representation and its application to
data compression, IEEE Trans. On Pattern Analysis and Machine Intell. 2, 1 (Jan. 1980), 27-35.

8. A. Klinger, Patterns and search statistics, optimizing methods in statistics, J. D. Rustagi, (Ed.),
Academic Press, New York (1971).

9. A. Klinger and M. L Rhodes, Organization and access of image data by areas, IEEE Trans. On
Pattern Analysis and Machine Intell. 1, 11 (Jan. 1979), 50-60.

10. H. Samet, An algorithm for converting rasters to quadtrees, IEEE Trans. On Pattern Analysis
and Machine Intell. 3, 1 (Jan. 1981).

11. H. Samet, Connected component labelling using quadtrees, JACM 28, 3 (July 1981), 487-501.
12. H. Samet, Region representation: Quadtreesfrom boundary codes, Comm. ACM 23, 3 (March

1980), 163-170.
13. S. Klinger and C. R. Dyer, Experiments on picture representation using regular decomposition,

Computer Graphics and Image Processing, No. 5 (March 1976), 68-105.
14. Irene Gargantini, An effective way to represent quadtrees, Comm. of ACM, 25, 12 (Dec. 1982),

905--910.
15. V. Raman, S. S. Iyengar and S. K. Kandu, An optimal quadtree structure for pictorial data

representation using top and bottom compaction technique; to appear in the Proceedings of
IEEE-SMC Conference, Bombay, India (Dec. 1983).

