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Abstract. 
Region representation as a quadtree data structure is a rich field in computer science with many 

different approaches. Forests of quadtrees offer space savings over regular quadtrees by 
concentrating the vital information [4, 5, 6]. They scavenge unused and unneeded space (i.e., node 
containing no information). This paper investigates several properties of forests of quadtrees which 
can be used to design manipulation algorithms fo~ forest-quadtree data structure. In addition, the 
paper discusses the space saving and shows how the basic operations that can be performed on a 
quadtree can also be done on the more space efficient representation (a forest of quadtrees). 
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1. Introduction. 

Efficient data structures for region representation are important for use in 
manipulating pictorial information. Repent research [1, 2, 3, 7, 8, 9] on 
quadtrees has produced several interesting results in different areas of image 
processing. A good tracing of the history of the evolution of quadtrees is 
provided by Klinger and Dyer [12]. Much work has been done on the quadtree 
properties and algorithms for manipulations and translations have been derived 
by Samet [9, 10], Dyer [1] and others [2, 5, 6]. For overviews of related 
research on image data structures see [4, 11, 12]. In 1981, methods of refining 
the quadtree were proposed by Jones and Iyengar [5]. The new refinements 
were called virtual quadtrees. Virtual quadtrees include both compact quadtrees 
and forests of quadtrees. The paper by Jones and Iyengar [4] further illustrates 
the usefulness of a forest of quadtrees as an efficient representation for binary 
images. 

This paper is concerned with the properties of forests of quadtrees and their 
applications for picture processing and discusses development of forest 
manipulation algorithms. 
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Before the results are described, we begin by giving definitions and summary 
of previous results [4, 5, 6] in the next section of our paper. 

2. Definitions and summary of previous remits. 

Pictures: A picture or raster is defined to be a grid of 2~x 2 * colored points 
(pixels), the color representing properties associated with the points. 

Quadtrees: A quadtree is a tree structure with the restriction that any node 
must have either four offspring (or children or descendents) or none. 

Quadtrees Jbr pictorial representation. In a quadtree representing a picture, the 
root represents the whole picture. Its offspring represent each one quadrant in 
the order Northwest(NW), Northeast(NE), Southwest(SW), and Southeast(SE). 
These four children are numbered from 0 to 3. In turn, their offspring each 
represents a subquadrant of the four quadrants and so on until the maximum 
number of subdivisions have been made as determined by the resolution of the 
image. In addition, if the children of a node are all the same color, they are 
deleted and their parent receives the information that was common to the four 
children. They are simply not needed as they carry redundant information. 
Figures la and lb  show a typical picture of a simple region and its quadtree 
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Fig. l(a). Sample region. 

Fig. l(b). Quadtre¢ for sample region shown in Fig. l(a) 
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representation. In this quadtree, parents hold the information "GRAY" and 
leaves are either "BLACK" or "WHITE", representing the presence or absence 
of color respectively. 

Node in a quadtree. Nodes in the quadtree are required to hold color 
information and the 4 pointers to their children. In addition, in the forest 
transformation an additional datum is needed, the "TYPE" field. A typical node 
in a quadtree, then, appears in storage as shown in Figure 2. 

COLOR 

t NE 

TYPE 

SW SE 

Fig. 2. Node o f  a quadtree. 

When additional manipulation is done, such as roping of the quadtree, more 
fields may be added. 

In our quadtrees, the COLOR field holds either "BLACK", "WHITE", or 
"GRAY", the TYPE field "GOOD" or "BAD", and the other fields are pointers 
holding either all nulls or all pointer values (addresses to subtrees). 

Virtual quadtrees. A virtual quadtree is any structure which simulates a quadtree 
in the sense that we can 
(I) determine the color of any node in the quadtree; 
(2) find the offspring in any direction of any node in the quadtree; 
(3) find the father of any node in the quadtree. 
For a broader treatment on this, see [4, 6]. 

Forest ofquadtrees. Let T be a quadtree. The quadtree T is represented by forest, 
F(T), of quadtrees consisting of a list of triples of the form (P, L, K) and a 
collection of quadtrees where 
(a) each triple (P, L, K) in the list consists of the coordinates, (L, K), of a node 

in T, and a pointer, P, to a quadtree in the collection isomorphic to the 
subtree rooted at position (L, K) in T; 

(b) if (L, K) and (M, N) are coordinates of nodes recorded in F, then neither 
node is the root of a subtree containing the other; 

(c) every BLACK leaf in T is represented by a leaf in F(T). 
For example, Figure 3 contains a forest that represents the quadtree of Figure 

lb. The idea of the algorithms for reducing a tree T to a forest of quadtrees 
F(T) that represents the tree, can be described informally as follows. 

First, a "labelling" algorithm is executed. This algorithm traverses the 
quadtrees depth-first and labels each node "GOOD" and "BAD", depending 
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CHARACTERSTIC SUBTREES BLOCK 

ARRAYS CORRESPONDENCE 
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Fig. 3. Forest of quadtrees for sample region shown in Fig. l(a). The block correspondence of the 
region shown in Fig. l(a). 

upon its importance in information storage. A GOOD node is either a 
"BLACK" leaf or a parent of two or more GOOD children. All other nodes are 
labeled "BAD". 

The second phase is a forest creation algorithm. This algorithm retraverses 
the quadtree, deleting BAD nodes from the top down until it encounters a 
GOOD node. This node now becomes the root of a subtree in the forest, and its 
corresponding triple (i.e., level, magic number and pointer to its root) is stored 
in the characteristic arrays. If this node is a "BLACK" leaf, it becomes a 
"BLACK" leaf in the forest, which is actually a subtree consisting of but one 
node. 

The path code. If the children of a node are numbered so that 0 represents NW, 
1 represents NE, 2 represents SW, and 3 represents SE, then a path from the 
root to another node on level L in a quadtree can be represented by a 
quaternary number with L -  1 digits (the root has level number 1). For instance, 
the quaternary number denoting the path from the root to the leaf marked X on 
figure lb has the value 201 (which is 33 decimal) since the directions taken from 
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the root to X are SW, NW, and NE. This number is called the path code and 
forms the K coordinate in the triple representing a subtree in a forest. 

If the path code for a node on level L is ML, then the path code of a child is 

(1) ML+ 1 = 4ML +D 

where D is the digit representing the chosen direction. This follows directly from 
the definition of the path code. 

In [4] the following theorem was proved: 

THEOREM 1. The maximum number of  trees in a forest derived from a quadtree 
that represents a square of dimensions 2 r x  2 r is 4 r - l ,  which is one-fourth the 

area of the square. 

Having reviewed the definitions and results of previous work, we now present 
the new results on the structural properties of forests of quadtrees. 

3. Structural properties of forests of quadtrees. 

The following theorems and their corollaries are useful in the development of 
forest manipulation algorithms. 

THEOREM 2. Given a node with level L F and path code Mr, any arbitrary node 

with level L N > L r and path code M N can be a descendent only if the following 

inequality holds : 

M F x 4LN-LF <= M N < ( M r +  1) x 4LN-LF. 

PROOF. By always taking the minimum value of D in (1), we obtain the 
following recurrence relation: 

ML + I = 4ML (ML = MF for L = LF) 

and by always taking the maximum D we have: 

ML+ 1 = 4ML+3  (M L = M r for L = LF) 

The first equation is homogeneous and has the solution: 

(2) ML = MF x 4L-LF. 

A particular solution to the second equation is: 
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M L = 4L-L , - - I  

so the solution is: 

(3) 
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M L = ( M r +  1)4L-L~ - 1. 

Since M n must lie between the two values given by (2) and (3) the theorem is 
proved. • 

COROLLARY 1. Given a node with level L r and path code Mr,  an arbitrary node 

with level L s < L r and path code M N can be ancestor if and only i f  the following 
inequality holds: 

(4) M N x 4L~-L~ =< M r < (MN+ 1) x 4L:L~. 

PROOF. If a node N is an ancestor of a node F, then node F must be a 

descendant of node N. • 

COROLLARY 2. Given a node with level L r and path code M r, an arbitrary node 

with level L N < L r and path code M n  can be an uncle of  the node (the child of  
an ancestor) if and only if  the following inequality holds: 

4 x [Mv/4L~-L~ +1] < M n < 4 x [Mv/4L:L~ +1] +3.  

PROOF. The father of node F (L v, My) is 

(LF - 1, tMr /4J  ). 

Since for all x > 0, LLx/4J/4J = Lx/42J, an ancestor on level L N -  1 is 

(LANo MANC) = ( L N -  1, [Mr/4Lr-L~ + 1]). 

Three of the children to this node are uncles for node F and the fourth is an 
ancestor. But this means that  an uncle's path code must lie in the range (cf. 
formula (1)) 

4MAN c + 0 _--< M =< 4MAN c + 3 

which proves the corollary. • 

COROLLARY 3. Given a subtree with root R (L R, MR), an arbitrary node N 

(L N, MN), where L N > L R, is situated in an adjacent subtree 

---  to the left if: 
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--- tO the right is: 
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M s  < M R • 4L~-L~ 

M N >= (MR+ 1)4LN--LR. 

PROOF. Since the path codes of nodes on the same level L in a quadtree 
increase towards the right from 0 to 4 L- 1 1, theorem 2 shows that an upper 
bound of path codes for subtrees to the left of node R is given by: 

M N < (M R -  1 + 1)4LN-L~ 

which reduces to the following inequality 

M N < M R. 4LN-LR 

while a lower bound of the path codes for subtrees to the right of node R is 
given by: 

M s >= (MR+ 1)4 LN-LR. • 

THEOREM 3. Given two nodes with levels L a and L~ and path codes MA and M B 

and a common ancestor with level LANc and path code MAr~C, the shortest path 
between the two nodes (in edges) is: 

dsp = (L a + LB) -- 2LAN c. 

PROOF. It is evident upon examination of a quadtree or subtree of a forest that 
the distance of the shortest path between any two nodes is the sum of the 
distances to a common ancestor from each one. This is simply the expression: 

(L A - Lnnc) + ( L ~ -  LANC). • 

4. Algorithms. 

Preliminary manipulation algorithms include traversal, search, and the 
reverse of forest creation, reconstruction. Due to the complexity of a 
hypothetical traversal algorithm, at least to produce results equatable with those 
of a quadtree traversal algorithm, it was decided to forego this less useful 
manipulation for the more useful search and reconstruction algorithms. These 
are now presented. 

The search algorithm, entitled "FSEARCH" searches for a node in a forest by 
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coordinates, and upon the location of the node, subsequently returns its pointer 
if it is real, or its color if it is virtual. 

The input to the process is a forest of quadtrees in pointer-based storage, 
three arrays, ROOT(n), LR(n), and MN(n), each holding the nth subtree root 
pointer, level, and path code, respectively, the number of subtrees N in the 
forest, and finally the level L and magic number M of the node to be searched 
for. 

The program works by performing a binary search" on the list of subtrees 
until a subtree is located whose root has the wanted node as an ancestor, 
descendant, or "uncle". The node is then located and characterized. 

There is no output except the possible error message. A pointer and the 
ancestor flag AF are returned. 

The reconstruction algorithm, entitled "RECONS' ,  reverses the creation of 
the forest. 

The algorithm works by creating all ancestors of the first subtree and their 
tentative descendants (white nodes). Then each subtree thereafter is connected, 
via a chain of ancestors, to a common ancestor with the first subtree. 

The input to the algorithm is the same as that of "FSEARCH",  except that 
only N, the number of subtrees in the forest, is needed in addition to the forest 
and its characteristic arrays. Also, the algorithm assumes existence of a zero 
element in the LR and M N  arrays initialized to zero (LR(O) = O, MN(O) = 0). 

There is no output and Q, the quadtree root pointer, is the only thing 
returned. We shall now present the algorithm in a pascal like syntax. 

FSEARCH : 
procedure FSEARCH (1, m, n: integer; p: ptr; af: boolean); 

This procedure searches for a given node with level 1 and path code m. 
The number of  subtrees is given as n, t is the subtree index, s and b determine 
t according to binary search rules, and d is the horizontal distance between 
nodes. The first condition tests to see if t has gone out of  the list of  sub- 
trees, the second tests for descendants, the third for ancestors, the fourth for 
uncles, the fifth for virtual white nodes, and the sixth and seventh for 
direction to search for the node. The last condition is a blatant error in the 
forest. The af  is true for a gray ancestor found and p is null for a 
virtual node, and the pointer to a real node. 

begin 
s : = l ;  
b : = n ;  
t : = trunc((s + b)/2); 
d : = 0 ;  
while true do 

begin 
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if t <  1 o r  t > n t h e n d o  
begin 

af:  = false; 
p : =  null;  
return; 

end; 
else if (mn(t)*4**(l- lr( t))  ~= m) and (m < (mn(t)+ l)*4**(l- lr( t )))  and 

l >. Ir(t) then do 
begin 

af:  = false; 
p : = travers(l ,  m, root( t ) ) ;  
return; 

end; 
else if (m*4**(Ir( t ) -  I) ~ mn(t)) and (mn(t) < (m+ l)*4**(Ir(t)- l))  then 

do 
begin 

af  : = true; 
p : =  null; 
return; 

end; 
else if (trunc(mn(t)/4**(lr(t) - l+ 1)) '4 5 m) and 

(m <= trune(mn(t) /4**(lr( t )- l+ 1 ) ' 4 +  3) then do 

begin 
if d = 0 then do 

begin 

d : = m - trunc(mn(t)/4**(lr(t) - / ) ) ;  
t : = t + d/abs(d);  

end; 
else t : = t + d/abs(d); 

end; 
else if d < > 0 then do 

begin 

af  := false; 
p : =  null; 
return;  

end; 
else if m < mn(t)*4**(l- lr( t ))  then do 

begin 
b : = t - 1 ;  
ff s > b then do 

begin 
a f : =  false; 
p : =  null;  
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return; 
end; 

t : = trunc((s + b)/2); 
end; 

else if m ~ (ran( t )+ 1 ) * 4 * * ( l - l r ( t ) )  then do 
begin 

s "= t + l ;  
if s > b then do 

begin 
a f  " = false; 
p :=  null; 
return; 

end; 
t : = trunc((s + b)/2); 

else do 
begin 

writeln('*** severe fatal error - bad forest'); 
stop; 

end; 
end; 

end; 
end FSEARCH;  
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RECONS:  
procedure RECONS (n: integer, q: ptr); 

This procedure reconstructs a normal quadtree from a forest of quadtrees, 
returning q as the new quadtree root  pointer. Each subtree is indexed in 
turn by t and the ancestors allocated and linked upward as shown in figure 
4(a) and 4(b), the former representing the first iteration, and the latter 
representing a possible later iteration. The variable m is the new ancestor's 
path code and d is the horizontal path code distance. The main if-stmt, checks 
to see whether the subtree and its ancestors should be connected to the left 
adjacent subtree and ancestors of that subtree. Pointers pl,  p2, p3 point to 
white nodes which serve to provide the ancestor with four proper descendants. 
Pointer p points to the new ancestor. 

begin 
f o r t : =  1 r o n d o  

begin 
h = root(t); 
for l :=  l r ( t ) -  1 downto 1 do 

begin 
m = t r u n c ( m n ( t ) / 4 * * ( l r ( t ) - / ) ) ;  
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d = m - trunc(mn(t)/4* *(It(t) - l) + 1 ))*4; 
if t =  1 or not ( ( m * 4 * * ( l r ( t - 1 ) - l ) < _  r a n ( t - l ) )  and ( r a n ( t - l ) <  

(m + 1)*4**(lr( t -  1)-/)))  then do 
begin 

new(p); 
if I = -1 then q = p; 
new(p 1); 
new(p2); 
new(p3); 
pl.color : = 'white'; 
pl .nw :=  null; 
pl.ne :=  null; 
pl .sw :=  null; 
pl.se :=  null; 
p2.color : = 'white'; 
p2.nw :=  null; 
p2.ne :=  null; 
p2.sw :=  null; 
p2.se :=  null; 
p3.color: = 'white'; 
p3.nw: = null; 
p3.ne: = null; 
p3.sw: = null; 
p3.se : = null; 
if d =  0 then do 

begin 
p.nw: = h ;  
p.ne: = p l  ; 
p.sw: =p2;  
p.se: =p3;  

end; 
else if d = 1 then do 

begin 
p,nw: = p l  ; 
p.ne: = h ;  
p.sw: =p2;  
p.se: =p3;  

end; 
else if d = 2 then do 

begin 
p.nw: = p  1 ; 
p.ne: =p2;  
p.sw:.=h; 
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p.se : =p3; 
end; 

else if d=  3 then do 
begin 

p.nw: =pl  ; 
p.ne: =p2; 
p.sw: =p3; 
p.se:=h;  

end; 
else do 

begin 
writeln('*** error in reconstruction ***'); 
stop; 

end; 
p.color: = 'gray'; 
h:=p; 

end; 
else do 

begin 
p: = travers(1,m,q); 
if d= 0 then p2:=p.nw; 
else if d= 1 then p2: =p.ne; 
else if d=2 then p2: =p.sw; 
else if d=  3 then p2: =p.se; 
if p2.color < > 'white' then do 

begin 
writeln('*** ERROR- BAD FOREST ***'); 
stop; 

end; 
if d=  0 then do 

begin 
dispose(p.nw); 
p .nw:=h;  

end; 
else if d=  1 then do 

begin 
dispose(p.ne); 
p .ne:=h;  

end; 
else if d =  2 then do 

begin 
dispose(p.sw); 
p.sw: =h;  

483 
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end; 
end; 

end; 

VASUDF.VAN RAMAN AND S. SITHARAMA IYENGAR 

end; 
else if d =  3 then do 

begin 
dispose(p.se); 
p . s e = h ;  

end ; 
exit for; 

end; 

end RECONS;  

5. Discussion of results. 

Having presented the properties and algorithms of  forests, we now state our 
conclusions from the work done so far. 

Theorem 2 and its corollaries were used in the development of  the 
manipulation algorithms for a forest of  quadtrees. 

Theorem 3 can be used to find the distance in edges between two nodes in a 
quadtree provided we know the level of  a common ancestor of  both nodes. 

In this paper, we have tested both algorithms, finding the results very good in 
terms of time and space efficiency. The algorithms were tested in several different 
programming languages. The complexity of both algorithms is linear in the 
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(a) Fig. 4. Constructing ancestor chain up. (b) 
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number of subtrees present, which is related to the size and resolution of the 
image. Empirical results concerning the relative time and space usage of the 
forest of quadtrees and an even newer structure developed by the authors versus a 
normal quadtree are reported in [6]. 

The newer structure, called a hybrid quadtree, utilizes not only the method of 
the forest of quadtrees, but also draws from the "metanode" format of the 
compact quadtree and upon further techniques. The integrity of the quadtree is 
preserved. For more of this see [15]. 

6. Summary and conclusions. 

The forest data structure seems to offer general benefits over the normal 
quadtree as the worst case could be where both structures are equal. Even if the 
additional space taken by the characteristic arrays is considered, the benefits of 
using a forest of quadtrees can still be realized. Recent work by the authors 
has yielded an even newer structure called a hybrid quadtree [15] which combines 
the advantages of the forest of quadtrees and the compact quadtree, with a 
resulting much higher space and time efficiency. This is very significant and 
research is still in progress. 

In previous work by Iyengar and Jones [4, 5] and in the recent publication 
by Gargantini [13], other possible structures to provide space-savings over the 
quadtrees were proposed. The primary advantage of forests over other possible 
structures appears to be its ease of use stemming from its similarity and 
compatibility with the widely-used quadtree structure used today. This is 
something that must be considered in any pictorial application of a data 
structure. 

Further work needs to be done in the manner of advanced manipulation of 
forests, such as roping, and more algorithms to equate the forest with normal 
quadtrees in ease of application. 
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