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Abstract
Confocal microscopes (CM) are routinely used for building 3-D images of microscopic structures.
Nonideal imaging conditions in a white-light CM introduce additive noise and blur. The optical
section images need to be restored prior to quantitative analysis. We present an adaptive noise filtering
technique using Karhunen–Loéve expansion (KLE) by the method of snapshots and a ringing metric
to quantify the ringing artifacts introduced in the images restored at various iterations of iterative
Lucy–Richardson deconvolution algorithm. The KLE provides a set of basis functions that comprise
the optimal linear basis for an ensemble of empirical observations. We show that most of the noise
in the scene can be removed by reconstructing the images using the KLE basis vector with the largest
eigenvalue. The prefiltering scheme presented is faster and does not require prior knowledge about
image noise. Optical sections processed using the KLE prefilter can be restored using a simple inverse
restoration algorithm; thus, the methodology is suitable for real-time image restoration applications.
The KLE image prefilter outperforms the temporal-average prefilter in restoring CM optical sections.
The ringing metric developed uses simple binary morphological operations to quantify the ringing
artifacts and confirms with the visual observation of ringing artifacts in the restored images.

1 Introduction
A confocal microscope allows imaging thick microscopic structures at various depths without
physically sectioning the specimen. The concept of confocal microscopy was invented by
Marvin Minsky in 1955.1 A white-light confocal microscope (WLCM) allows imaging tissues
in vivo.2 Use of a white-light source in WLCM reduces speckle noise in the observed images
mainly due to the interaction of various wavelengths present in the white light. Figure 1 shows
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a schematic representation of a WLCM. An objective lens focuses a thin ray of light passing
through a pinhole from a white-light source and illuminates a small volume in the specimen.
Assuming that the objective lens has a focal length f and an imaging plane is at a distance i
from the objective, then from the lens equation (1/o)+(1/i)=1/ f, a layer referred to as an on-
focus layer at a depth o will be on focus. However, the light from the layers neighboring to the
on-focus layer, referred to as out-of-focus layers, will also be collected by the objective lens.
A finitely small pinhole placed at the focal length f limits the photic contributions from the
out-of-focus layers and from the locations adjacent to the imaging points in the focal plane, as
shown in Fig. 1. When imaging an on-focus layer in the specimen, the whole area needs to be
imaged point-by-point. A Nipkow disk with spiral pinhole arrangement is typically used for
real-time image formation.

Due to nonideal lens and pinhole size, each image point (pixel) will receive photic contributions
from adjacent pixel positions and from out-of-focus planes. The characteristics of the WLCM,
which especially accounts for the light from adjacent and out-of-focus planes, can be described
using an impulse response of the imaging device commonly known as a point-spread function
(PSF) or a smearing function. Assuming that the PSF h of the WLCM is spatially invariant, an
image acquired at the image plane can be represented as g=h* f +n, where g is the image
observed at the image plane, f is the true object image at the object plane, * is the convolution
operator, h is the 2-D PSF of the WLCM, and n is the additive noise artifacts introduced by
the imaging system.

Image restoration algorithms estimate the original image f from the observed image g with the
knowledge of the PSF h3–7 or without the knowledge of the PSF h8 of the imaging instrument.
Since image restoration is the reverse of the blurring or convolution process, the image
restoration algorithms are commonly referred to as image deconvolution or image deblurring
algorithms. For a detailed review of restoration methods, refer to Refs. 4 and 9.

The performance of the image restoration algorithms, more specifically that of the inverse
restoration algorithm, can be improved by prefiltering the image noise.10 If multiple WLCM
images of a specimen at the same z-axis depth are acquired at the same instant, then the images
typically will represent the same scene. The only variations among the images in the ensemble,
per z-axis depth at a given instant, will be due to the random noise artifacts introduced by the
system. In this work, we present a novel adaptive noise filtering algorithm using Karhunen–
Loève (KL) expansion for use in confocal microscopes. We use the KL transform to decorrelate
an ensemble of WLCM images acquired per z-axis position to filter the random variations in
the pixel intensities due to the scanning system and additive noise. Deconvolution is a
deblurring process, and the restored images typically exhibit sharp edges with an overall
increase in the high-frequency contents of the image. Therefore, we use a gradient-based
contrast metric to measure the quality of the restored images. We will compare the performance
of the proposed adaptive KL filter with that of a temporal averaging filter in the prefiltering
stage during inverse restoration.

Iterative restoration algorithms derive an estimate of f from g in iterative steps.6,11 We observed
that the images restored using the iterative Lucy–Richardson (LR) deconvolution algorithm
exhibit prominent oscillations at a higher number of iterations around the edges and at pixel
locations with sharp intensity transitions. These spurious oscillations around the edges are
known as ringing artifacts. A usual stopping criterion for an iterative restoration algorithm is
an error functional of the form min║g−h*f̂k║, where f̂k is an estimate of the original image f
at the kth iteration. The ringing artifacts usually do not appear in the forward projection h*f̂k.
Therefore, terminating the iterations prior to convergence imposes a prior model on the restored
image f̂k. Truncation of iterations in an iterative restoration algorithm is a well-known
regularization technique (called regularization via truncated iterations).6,9 These ringing
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artifacts can be easily identified by a human visual system (HVS). Hence, an image-quality-
based ringing metric will be useful to identify an appropriate stopping criterion for the iterative
LR deconvolution algorithm.

Recently, several image-quality metrics have been proposed to measure the blur and blocking
artifacts introduced by image/video compression algorithms.12–14 Objective quality metrics
such as the peak signal-to-noise ratio (PSNR) and mean-squared error (MSE) metrics do not
correlate with the quality assessed by an HVS.15,16 A frequency-based ringing metric will
have difficulties in differentiating the ringing artifacts from the image features. Spatial analysis
techniques, as in Ref. 13, require extensive row-by-row processing and are not suitable for
real-time image-quality measurement. We have developed a novel ringing metric using simple
binary morphological operations to measure the amount of ringing artifacts present in an image.

Section 2 contains a brief overview of KL expansion. In Sec. 3, we present the adaptive noise
filtering and inverse restoration algorithm using KL expansion. In Sec. 4, we describe a sobel
operator-based contrast measure for evaluating the performance of the WLCM image
restoration. We present our ringing metric for use with the iterative LR deconvolution algorithm
in Sec. 5. In Sec. 6, we present and discuss the results of (1) WLCM image restoration using
adaptive KL noise prefiltering and inverse restoration algorithm and compare the results with
temporal-average prefiltering algorithm and (2) the performance of the ringing metric in
estimating the ringing artifacts introduced in the WLCM images restored using LR
deconvolution algorithm. We conclude this work in Sec. 7.

2 Karhunen–Loève Expansion
Karhunen–Loève (KL) expansion provides an optimal set of orthogonal basis vectors that span
an entire ensemble of signal,17 The KL transform is optimal, in a mean-squared-error sense,
over all the images drawn from distributions with the same covariance matrix R. It is also
referred to as proper orthogonal decomposition (POD), hoteling transform, and principal
component analysis (PCA).18 KL expansion decorrelates a given ensemble of signals by
discovering an orthogonal basis set that is optimal for the signal under consideration as opposed
to analyzing the signal using an off-the-shelf wavelet basis or Fourier transform. It has been
used for characterizing an ensemble of human faces with few optimal image bases called
eigenpictures, thereby reducing the number of coefficients in the KL expansion for each image.
19

Using KL expansion, a continuous second-order process x∈ ℝM×N with a covariance R(x,x′)
can be expanded as

(1)

with .Here E is the expectation, {λi} are the eigenvalues, and
{ɸi} are the eigenvectors of the covariance matrix R of {xi}. In the discrete case,

(2)

The existence of Λ={λi} and Φ={ɸi} in Eq. (2) is guaranteed by Mercer’s theorem20 analogous
to the spectral decomposition of symmetric matrices.21 For a given ensemble , KL
expansion guarantees the best k-term orthogonal expansion (in a mean-squared-error sense)
among all the orthogonal transforms.22 The eigenvectors of the covariance matrix R form an
optimal orthogonal basis for the ensemble . The orthogonal basis vector ɸ i corresponding
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to the largest eigenvalue is in the principal direction of the ensemble . When the elements
in the ensemble are correlated, for example, for an ensemble is formed using multiple
snapshots of images of a given scene, each with different noise realization, the principal basis
vector alone can effectively represent the entire ensemble with the least expansion error when
compared to the other available orthogonal expansions. This property is desirable in pattern
recognition applications. The energy retained during a k-term expansion is given in terms of
the eigenvalues of R as follows:

(3)

The eigenvectors and eigenvalues of R can be computed using a direct computation or using
a reduced computation technique called the method of snapshots.23

Let be the expectation-centered ensemble set, where xi∈ ℝM×N and E(x)=0. Let each of
the column formatted ensemble elements xi form the ith column of the ensemble matrix X. For
example, given an ensemble  of gray-scale images of size 256 × 256, each of the column-
formatted images xi∈  65536×1 will form the ith column of the ensemble matrix X∈  65536×L.
Here,  represents the space of gray-scale image vectors, and L is the number of elements in
the ensemble. Now, the ensemble covariance matrix R=XXT, where R∈ℝ MN×MN.

2.1 Direct Method to Compute the Optimal Basis

The eigenvectors  of the ensemble covariance R in Eq. (2) that form the orthogonal basis
for the ensemble can be derived using a singular-value decomposition (SVD) of the ensemble
matrix X as follows:

(4)

(5)

The covariance XXT is a symmetric matrix; therefore, an eigendecomposition as in Eq. (5)
exists. The left singular matrix U forms the basis of the column space of the ensemble matrix
X as in Eq. (4); and therefore, the ensemble elements , which form the column space of
X, have an expansion in U. Solving the eigenvalue problem in Eq. (5) requires solving an
MN × MN system. In the above example of a gray-scale image ensemble, this would require
solving a 65,536 × 65,536 system. Although computational resources are available for solving
such a massive eigenvalue problem, it is unnecessary for the problem under consideration.

2.2 Method of Snapshots
The dimension of the optimal orthogonal basis needed to describe the ensemble is L, where
L is the ensemble size. The ensemble matrix X is singular and does not require a full dimension
to describe the ensemble elements. Thus, a reduction in the basis computation can be achieved
using a reduced SVD approach as follows:

(6)
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The right singular vectors V and the eigenvalues Λ2 can be computed from Eq. (6). This requires
solving an L × L system. Further, the left singular vectors U can be computed from Eq. (4)
using X, V, and Λ. The left singular vectors U span the column space of the ensemble matrix
X and thus form the basis of the ensemble . The reduced SVD approach for determining
an optimal ensemble basis17 provides a significant reduction in computation when L ≪ MN.

3 Adaptive Noise Filtering and Restoration of WLCM Images
The WLCM optical section images are digitized using a frame grabber (DT 3155) PCI card
that allows a maximum frame acquisition rate of 30 frames per second. The frame acquisition
rate will be limited by the scanning rate of the confocal microscope. To adaptively filter noises
in the acquired images, we propose using 3frames of images acquired per z-axis position. Each
of the images is converted to a column-formatted image Xi ∈  MN×1. An ensemble matrix X ∈
MN×3 is constructed using the column-formatted images. The vector space MN×1 represents
the space of gray-scale WLCM images. From the KL expansion using the method of snapshots,
the dimension of the ensemble space can be reduced to three. An optimal basis for this ensemble
matrix X can be obtained by computing the eigenvectors V of the covariance matrix XTX ∈
ℝ3×3 and the left singular matrix U ∈ ℝMN×3 of X as described in Sec. 2.2. Now each of the
column-formatted ensemble images Xi can be expressed as a linear combination of the optimal

basis as .

Since the ensemble matrix is formed using the images of the same scene, we found that only
the first principal left singular vector of X, denoted Umax, is sufficient to retain more than 90%
of the energy. Note that the bases {U1 ,U2 ,U3} are arranged in the order of their contribution
in the ensemble space with U1=Umax. The first principal component U1 points in the direction
of the maximal ensemble variance and therefore typically represents the features present in the
image ensemble. The second and third principal components are available to depict the
differences between the three images in the ensemble and contain less than 10% of the total
ensemble energy. Since the ensemble was formed using the images of the specimen at the same
z-axis depth, the coefficients of the second and third principal components can be dropped to
eliminate the variations observed between the images in the ensemble. These coefficients
typically represent the noise and random pixel variations due to the scan lines introduced by
the Nipkow scanning disk. Thus, any image from the ensemble reconstructed using only the
first principal component will be a noise-filtered image of the specimen at the given z-axis
depth given by

(7)

where Xi can be any one of images from the ensemble. Now the filtered image can be restored
using the inverse restoration algorithm. Algorithm 1 summarizes the adaptive noise filtering
and the restoration steps.

Algorithm 1 Algorithm for adaptive KL prefiltering and inverse restoration

1 procedure KL PREFILTER-INVERSE RESTORATION

2 Acquire image ensemble {xi}i=13  at a given z-axis position.

3 Form column-formatted image matrices {xi}i=13  and ensemble matrix X.

4 Compute the covariance matrix R=XXT.
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5 Compute an optimal ensemble basis {ui}i=13  using reduced SVD as in Sec. 2.2.

6 Filter the noise and random components in the image ensemble by dropping the second and third principal components.
Determine the noise filtered image as in Eq. (7).

7 Using the optical transfer function H and the noise prefiltered image Xfiltered, restore image as

Xrestored̄ = H −1Xfiltered̄, where X̄ represents the FFT of X.

8
Energy retained during the adaptive KL prefiltering λmax/∑i=1

3 λi × 100 % .

9 end procedure

4 Evaluation of the Restored Images Using a Contrast Measure
If the PSF of the WLCM were ideal, h(x, y)=δ(x, y). However, nonideal lens and pinhole
dimension result in a PSF that acts as a low-pass filter, resulting in a blurred image. The image
restoration process restores an image using a prior knowledge about the PSF of the imaging
device. The blur in the restored images is expected to decrease and cause an eventual increase
in the high-frequency details in the image. The common choices to measure blur in images are
(1) image pixel intensity variance; (2) l1-norm of the image gradient ∇I, (3) l2-norm of the
image gradient ∇I, (4) l1-norm of the image Laplacian ∇2I, and (5) l2-norm of the image
Laplacian ∇2I. Autofocusing in widefield microscopy requires a similar focus measure to
identify an optimal focusing point with less blur.24–27

We use an image contrast measure of the l2-norm of the image gradient to demonstrate the
performance of the adaptive KL filter presented in Sec. 3. The image gradient is given as

Here, the image x- and y-gradients (Gx ,Gy) are computed using the sobel operator kernels

as Gx=Sx*I and Gy=Sy*I, respectively. Now the magnitude of the image gradient at all the pixel
locations can be computed as

(8)

Using the image gradient in Eq. (8), we can compute the contrast of an image I ∈ ℝ M×N as
follows:

(9)

where is the mean image gradient computed as .
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5 A Ringing Metric for Use with the Iterative Lucy–Richardson Deconvolution
Algorithm

We attempted to quantify the amount of deblurring achieved in each iterative step using the
contrast measure defined in Eq. (9) using the iterative Lucy–Richardson (LR)
deconvolution3 defined as

(10)

We observed that the contrast measure indicated an increasing trend during iterative LR
restoration steps. We expected the contrast measure to converge to a maximum contrast value.
But the contrast measure was exponentially increasing at each iterative step. Upon careful
evaluation of the restored images at various iterative steps, we observed significant oscillations
around edges and at pixel locations with sharp intensity transition in the restored images at
higher number of iterations. Figure 2 shows the contrast plot of an image of random cotton
fibers at various iterative steps of the LR deconvolution algorithm.

The PSF h in the imaging model g=h* f integrates pixel intensities from adjacent locations to
cause blurring in the acquired image g. The restoration process computes pixel gradients using
an inverse of the optical transfer function (Fourier transform of the PSF matrix). Therefore,
the locations in the image with sharp intensity transition exhibit pixel intensity overshoot
(extreme positive values) or undershoot (extreme negative values).4 The ringing artifacts
appear as oscillations around the edges or locations with sharp intensity transitions. This led
us to develop a ringing metric to quantify the amount of ringing introduced at various iterative
steps to assist in identifying an appropriate terminal point of the iterative LR deconvolution
algorithm.

The proposed ringing metric uses the edge profiles of the observed image g and the edge profiles
of the images restored f̂k to isolate the ringing artifacts introduced during restoration. The area
surrounding the edge profiles of the original image are the regions to be observed for ringing
artifacts. The edge profile Eref(g) of the original image g can be extracted using the canny edge
detector.3 From the edge profile Eref(g), the ringing region around the edges can be defined by
dilating Eref(g) with an r × r structuring element (SE), where r is the approximate width in
number of pixels from an edge to cover the ringing artifacts. The dilation operation is defined
as follows:

(11)

where ⊕ is a binary dilation operator and ⊖ is a binary erosion operator defined as
 is the binary complement of Eref(g), SE is the structuring

element,  is the rotation of the structural element by 180°, and SEx is the translation of SE
by x.28 At the end of each iterative step k, an edge profile E(f̂k) of the restored image f̂k can be
determined. Now the edges and any ringing artifacts around the original edges Eref(g) can be
selected from E(f̂k) by a simple pixelwise logical AND operation between ERingRegion(g) and
E(f̂k). Since restoration preserves the edges present in the original image g, the additional edges
observed around the reference edge profile in the restored image typically represent the ringing
artifacts. The ringing metric is defined
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(12)

6 Results
The PSF of the WLCM was experimentally determined by imaging 5-micron-diameter
microspheres under the usual imaging conditions. Several frames of microsphere images at the
same focus were averaged to reduce the noise sensitivity of the PSF. A single microsphere was
isolated and cropped from the image and was used to determine the PSF of the WLCM. The
background of the cropped microsphere image was kept to a minimum to avoid oscillations in
locations of sharp intensity transitions in the restored images. Figure 3(a) shows the image of
a microsphere and Fig. 3(b) shows the surface plot of the PSF of the WLCM.

Figures 4(a)–4(c) show the image ensemble of a random cotton fiber at the same z-axis depth.
The KL basis computed using the reduced SVD method is shown in Figs. 4(d)–4(f). It is clear
from the optimal ensemble basis that the first principal vector retains most of the energy in the
ensemble (95.5%). Figure 4(g) shows the inverse restored image after temporal-average
prefiltering, and Fig. 4(h) shows the inverse restored image after adaptive KL prefiltering.
Restoration results on similar cotton fibers and images of lamina cribrosa of cow retina at 12
mmHg of intraocular pressure (IOP) level are shown in Fig. 5 and Fig 6. All the optical sections
included in this study and presented here are actual WLCM observations (and not simulations
using an artifical PSF and noise). A contrast measure plot in Fig. 7 shows the contrast measures
of the restored images after temporal-average and adaptive KL prefiltering. The adaptive KL
prefiltering outperforms the temporal-average prefiltering in all experimental cases. Also, a
visual evaluation of the image restored after adaptive KL prefiltering shows improvement over
the temporal-average prefiltered images. Ensembles of a random cotton fiber with ensemble
sizes of 5, 7, and 9 were used to study the performance of the temporal-average and adaptive
KL prefilter on increasing the ensemble size. Figure 8 shows an optical section image from the
ensemble, images restored, and contrast measure performance on increasing the ensemble size
for prefiltering. The contrast measures of the images restored using adaptive KL prefilter
increases upon increasing the ensemble size.

Figure 9(b) shows an image of random cotton fibers superimposed with its edge profile. Figure
9(d) shows the edge profile E(f̂6) of a restored image at iteration 6 of the LR deconvolution
algorithm superimposed with the reference edge profile Eref(g) and a binary edge mask
ERingRegion(g) for selecting the region around Eref(g). Ringing artifacts can be observed around
the edges in the restored image f̂6 in Fig. 9(c). Visual inspection of the images restored at higher
iterative steps of the LR deconvolution algorithm confirms the increasing trend of the ringing
metric plot shown in Fig. 9(e).

7 Conclusion
We have presented an adaptive noise filtering technique by discovering an optimal basis from
an ensemble of 3 images acquired per z-axis position. The noise and random components are
filtered by dropping the second and third principal components of the basis. A reduced SVD
or snapshot method of determing the basis makes this technique suitable for real-time
restoration of WLCM images. The noise-filtering algorithm proposed here does not require
prior knowledge of the type of noise present in the system and hence adaptive to the images
being restored. The adaptive KL prefilter significantly reduces the random image artificats and
noise in the WLCM images. The proposed adaptive noise-filtering algorithm can be used in
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the prefiltering stage of image deconvolution algorithms to improve the convergence of
iterative restoration algorithms and to improve the quality of the images restored using a simple
inverse restoration method. Also, the adaptive KL prefilter shows promises for further
improvement in the restored images on increasing the ensemble size of the raw optical sections
acquired per z-axis position. As indicated by the ringing metric, visual inspection of the images
restored at various iterative steps of the LR deconvolution algorithm confirms the increase in
the ringing artifacts during restoration. The proposed ringing metric is less sensitive to noise
amplification during restoration and is computationally efficient, making it suitable for real-
time image-quality evaluation. While the ringing metric was developed and demonstrated for
use with the iterative LR deconvolution algorithm, it should be applicable to other iterative
restoration algorithms that introduce prominent ringing artifacts in the restored images.
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Fig. 1.
Schematic representation of a white-light confocal microscope.
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Fig. 2.
Image of random cotton fibers restored using the Lucy–Richardson restoration algorithm;
contrast measure increases exponentially due to ringing artifacts.
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Fig. 3.
Experimental PSF of the WLCM determined by imaging 5-micron-diameter spheres.

Balasubramanian et al. Page 15

J Electron Imaging. Author manuscript; available in PMC 2010 February 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Ensemble of random cotton fiber images, their KL decomposition, and the inverse restored
images after temporal-average and adaptive KL prefiltering.
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Fig. 5.
Random cotton fibers (a, d, g) restored using inverse filter deconvolution after prefiltering
random artifacts using temporal averaging filter (b, e, h) and adaptive KL filter (c, f, i).
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Fig. 6.
Image of a random cotton fiber (a) and lamina cribrosa optical section at 60 mmHg IOP level
(d) restored using inverse filter deconvolution after prefiltering the image random artifacts
using temporal-averaging filter and adaptive KL filter.
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Fig. 7.
Contrast measure performance comparison of temporal-average and adaptive KL prefilters
while restoring the optical section images using inverse restoration algorithm.
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Fig. 8.
Effect of ensemble size in the performance of restoration with the temporal averaging prefilter
and adaptive KL prefilter. Optical section ensembles of size 5, 7, and 9, acquired at the same
z-axis position of a random cotton fiber, were used. There is an increase in the performance of
adaptive KL prefilter with the increase in the number of optical sections used at the prefiltering
stage.
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Fig. 9.
Computing the ringing metric of an image restored using the LR iterative restoration algorithm.
(color online only)
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