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Abstract

Standard wireless sensor network models emphasize energy efficiency and distributed decision-making by considering untethered

and unattended sensors. To this we add two constraints—the possibility of sensor failure and the fact that each sensor must tradeoff

its own resource consumption with overall network objectives. In this paper, we develop an analytical model of energy-constrained,

reliable, data-centric information routing in sensor networks under all the above constraints. Unlike existing techniques, we use

game theory to model intelligent sensors thereby making our approach sensor-centric. Sensors behave as rational players in an N-

player routing game, where they tradeoff individual communication and other costs with network wide benefits. The outcome of the

sensor behavior is a sequence of communication link establishments, resulting in routing paths from reporting to querying sensors.

We show that the optimal routing architecture is the Nash equilibrium of the N-player routing game and that computing the optimal

paths (which maximizes payoffs of the individual sensors) is NP-Hard with and without data-aggregation. We develop a game-

theoretic metric called path weakness to measure the qualitative performance of different routing mechanisms. This sensor-centric

concept which is based on the contribution of individual sensors to the overall routing objective is used to define the quality of

routing (QoR) paths. Analytical results on computing paths of bounded weakness are derived and game-theoretic heuristics for

finding approximately optimal paths are presented. Simulation results are used to compare the QoR of different routing paths

derived using various energy-constrained routing algorithms.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Recent engineering advances in micro-miniaturization
along with robust low-power hardware for processing
and wireless communication have led to the develop-
ment of small multi-modal sensing devices. These
sensors are capable of being deployed in large numbers
in a variety of extreme environments, such as seismic
zones, ecological contamination sites or battlefields.
Equipped with compact energy-efficient operating sys-
tems, these devices (self-) organize to form distributed
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sensor networks that are capable of sensing and in situ
processing of spatial as well as temporally dense
data over the deployment zone [1]. Information is
extracted from the network through the dissemination
of ‘interest’ queries originating from control nodes
(called sinks) and resulting in responses from those
sensors (called sources) whose sensed information
satisfy the query attributes [9]. Sensors within the
network collaborate to route queries and responses to/
from sink and source nodes [3,16]. Here, the sensor
network can be perceived as a reverse multicast tree with
information aggregated or fused at intersecting nodes
and routed to the sink node at the root. The technique
of data aggregation is used to solve the problems of data
implosion and overlap [15].

Sensors in wireless sensor networks operate under a
set of unique and fundamental constraints which
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1Note that there are many possible alternative interpretations of pi

for different network optimization objectives. For example, path

security can be modeled by assuming pi to be the probability that a

sensor node is compromized by an adversary. This compromization

may mean that data passing through the sensor can be undetectably

corrupted or even deleted. Thus pi represents the degree of preference

for routing information through node si; with
Q

pi on a path the

probability that the data is not received or received in a compromized

fashion at the receiving end. Similarly, aggregate route quality of

service measure such as delay can be used to compute payoffs and
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make collaborative information routing challenging.
These are:

1. Sensors have limited and unreplenishable power
resources making energy management a critical issue
in wireless sensor networks. In particular, routing
protocols must be energy-aware and designed to
prolong the lifetime of individual sensors (and
indirectly network lifetime in terms of network
connectivity/information utility). When a sensor
receives a packet to be forwarded, the selection of
the next-hop node must be based in part on the
communication energy costs. For example, routing
on the basis of minimizing aggregate energy costs on
the path is one possible metric [10,17,23].

2. Sensors are unattended. Nodes must make decisions
independently without recourse to a central authority
because of the energy needed for global communica-
tion and latency of centralized processing. In
particular, sensors must have the capacity to inde-
pendently decide whether to participate in a routing
path and if so, select the next-hop destination based
on some (local) energy considerations.

Clearly, the untethered and unattended nature of
sensors constrain their actions as individual devices,
since they must independently and efficiently utilize
their limited energy resources. However, designing
sensor network solutions that only optimize energy
consumption will not always lead to efficient archi-
tectures, since the above constraints do not account
for collaborative tradeoffs between groups of sensors.
Note that collaborative interaction among sensors
provides some network-wide benefits (as opposed to
‘energy’ benefits to individual sensors), where net-
work-wide is a semantic term referring to overall
goals of the entire network or a sufficiently large
group of sensors. Consider for example, collaborative
data mining/information fusion among sensors to
respond meaningfully to queries [2,5]. Too many
sensors simultaneously participating in the collabora-
tive decision making required for aggregation of
mined data will lead to excessive routing paths in the
network, thereby increasing energy consumption
and competition for communication resources. On
the other hand, too little collaborative data aggrega-
tion will make distributed mining inaccurate and
ineffective.

This motivates the primary theme of our paper: the
information utility of the sensor network (in terms of
data collecting and processing ability) decreases as
nodes die out. Thus sensors are implicitly constrained
by a third factor: to increase information utilization
of the network, sensors must cooperate to maximize
network-wide objectives while maximizing their
individual lifetimes. We label this paradigm for broad
sensor network operation as sensor-centric.
The choices for untethered and unattended sensors
under this paradigm are a natural fit for a game-
theoretic framework. Thus in this paper, we provide
an analytical model of sensor node actions in which
sensors are modeled as rational/intelligent agents
cooperating to find optimal network architectures
that maximize their payoffs in a network game, where
sensor payoffs are defined as benefits to the network
of this sensor’s action minus individual costs (as
opposed to aggregate path costs). It is to be noted
that the sensor-centric paradigm is general enough to
model sensor payoffs under a variety of network
game scenarios. However, in this paper we restrict
ourself to routing interactions between sensors, where
the network-wide benefits of the routes formed in the
game correspond to quality of service metrics such as
path reliability, as explained below.

There are many applications where sensors are
deployed in hazardous and hostile environments in
which they can fail to operate or be destroyed with
certain probabilities. Wireless sensor networks are
also extremely vulnerable to data loss under denial of
service (DoS) attacks [25]. In these cases the task of
routing a query response from observing sensors to
querying nodes should not be compromised by the
inhospitability of the environment. Consider sensor
networks for monitoring environmentally toxic situa-
tions, or seismic sensor networks in earthquake or
rubble zones or even sensors in military battle-
grounds under enemy threat. For such networks to
carry out their tasks meaningfully, sensors must route
strategic and time-critical information via the most
reliable paths available. Hence, we can introduce an
additional constraint on sensor operation.

3. Sensor si can fail with probability qi ¼ 1� pi:

In this paper, we model the problem of finding
maximally reliable, energy-constrained routes/trees in
the network and use the sensor-centric paradigm to
develop a game-theoretic metric called path weakness.
This path performance metric is used to evaluate the
quality of reliable routing trees obtained. As described
later, we use the probability measure pi primarily for
ease of analytical treatment. Our results can be easily
modified to use overall path reliability measures (which
can be either measurement based/estimated or probabil-
istic) rather than using node failure probabilities.1
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We summarize the contributions of this paper below:

* A game-theoretic model of routing in sensor net-
works is developed. Rational, intelligent sensors
select routing paths by evaluating the tradeoffs
between reliability and the costs of communication.

* A sensor-centric paradigm for evaluating the quality
of routing trees (QoR: also called tree/path weakness)
for data-aggregated routing in sensor networks, is
proposed. This QoR concept captures the participa-
tion suboptimality of a node on the given tree, i.e.,
how much would a node gain by deviating from the
current tree to an optimal one. Routing heuristics
based on team versions of the routing game called
Team-RQR are presented.

* Analytical results on the complexity of computing
paths with bounded weakness are derived along.
Sufficient conditions on costs and probabilities for
well known routing algorithms (such as most reliable
path and least cost neighbor) to be congruent to the
optimal sensor-centric route are also presented.

* Simulation results comparing the QoR of paths
obtained using some well known routing algorithms
and identifying ranges of costs and probabilities in
which they perform favorably are shown.

The paper is organized as follows: Section 2 motivates
the idea of path weakness by considering the problem of
energy-constrained reliable query reporting2 (RQR) in
sensor networks along with some previous work in
sensor network routing. Section 3 describes the details of
our game-theoretic model set-up. Section 4 contains
analytical as well as complexity results on path
congruence and optimal path computability. Section 5
explains the quality of routing (QoR) paradigm and
some theoretical QoR complexity results. Simulation
results comparing the QoR of different algorithms are
also presented in Section 4. Finally, Section 5 concludes
the paper.
2. Reliable query reporting

Energy-constrained routing (of queries and query
responses) is essential for increasing sensor network
lifetime. The problem of sensor energy conservation can
be addressed at multiple layers in the protocol stack.
For example, [11,14,21,24] describe techniques for
minimizing energy losses at the medium access control
(MAC) layer. The primary goal of most energy-
conserving MAC protocols is to allocate the shared
(footnote continued)

derive optimal routes/trees in the network game for certain classes of

sensor networks, as we have shown in [12].
2We use the term query reporting and query routing interchangeably

in the paper.
wireless channels among sensor nodes as fairly as
possible and ensure that no two interfering nodes
transmit at the same time. In this paper, we focus on
the routing layer problem of finding good (i.e. energy-
efficient) routes in the network, independent of the
underlying MAC layer protocol. A good choice of next-
hop nodes is critical for energy-efficiency, since nodes
consume transmission power proportional to physical
distance to the selected next-hop neighbor [1]. More-
over, nodes that are not part of any routing path can
save energy by sleeping during those periods.

While the energy-efficiency of routes is an important
parameter, maximizing network information utility and
lifetime implies that the reliability of a data transfer path
from reporting to querying sensor is also a critical
metric. This is especially true given the susceptibility of
sensor nodes to DoS attacks and intrusion by adver-
saries who can destroy or steal node data [26]. The
possibility of sensor node failure due to operation in
hazardous environments cannot be discounted, espe-
cially for environmental monitoring and battlefield
sensor network applications. From an abstract point
of view, path reliability can be modeled by assigning
probabilities to the compromizability of data passing
through a node/node failure probabilities. Path relia-
bility can also be measurement based, using periodic
observation of DoS patterns with statistical inference
tools, to determine reliability at each node.

In datacentric information routing [9,15], interest
queries are disseminated through the sensor network for
retrieving named data, i.e., data satisfying specific
attributes. Further, data can be aggregated or combined
at intersecting nodes along the route to reduce data
implosion. Thus the sensor network can be perceived as
a reverse multicast tree rooted at the originating node.
There are many popular datacentric routing algorithms
for minimizing energy consumption such as MECN [19]
and diffusion routing [9], which use local gradients to
identify paths for sending information. LEACH [18]
proposes a clustering-based protocol that accomplishes
load balancing by rotating local cluster heads. The
underlying assumption of this protocol is that the cluster
heads directly talk to the gateway node and the
transmission power is adjustable at each node. Another
protocol similar in spirit is GEAR [23], which uses an
energy-aware metric and also the geographical position
of each node to determine a route. Most of these
algorithms attempt to minimize overall energy con-
sumption costs. This may result in uneven energy
consumption patterns across sensor nodes. Conse-
quently, some nodes could deplete their energy resources
sooner than necessary, thereby reducing the information
utility of the sensor network.

In [22,20], the authors describe elegant routing
algorithms for sensor networks that take energy
constraints and quality of service considerations into
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account. The authors in [20] show that the lowest energy
path may not always be optimal for long-term network
connectivity. Their scheme probabilistically uses sub-
optimal paths to provide substantial gain. However,
these models contrast from ours in not being sensor-
centric. They do not analytically model optimal route
reliability in conjunction with minimizing communica-
tion costs.

2.1. Sensor-centric reliable query reporting

In this paper, we formalize the concept of relating
network-wide path performance metrics to communica-
tion energy costs in sensor networks by developing a
new model of information routing. Unlike existing
techniques, we use game theory to model rational/
intelligent sensors thereby making our approach sensor-
centric. Sensors route over the most reliable paths while
minimizing their own power/energy consumption,
rather than some aggregate path energy criterion. In
effect, each sensor independently assumes itself as
critical to the network’s survival and therefore attempts
to reduce its energy costs, while still satisfying network-
wide objectives.

The sensor-centric paradigm of reliable energy-con-
strained routing has two intuitive benefits: First, it is in
the interests of long-term network operability that nodes
survive even at the expense of somewhat longer (but not
excessively so!) paths. The network will be better served
when a critical sensor can survive longer by transmitting
via a cheaper link rather than a much costlier one for a
small gain in reliability or delay. Second, it takes the cost
distributions of individual sensors into account while
choosing good paths. The advantages of modeling
rational, self-interested sensors can be seen easily from
the following example. Given a path involving three
sensors with absolute communication costs in the low,
medium and high ranges, respectively, choosing a
reliable path subject to minimizing overall costs might
lead to the first two nodes having to select their highest
cost links as the third node is dominant in the overall
cost. This would run counter to the long-term oper-
ability goal of the network.

We can now formally define the problem of reliable
query reporting (RQR) in a sensor network in game-
theoretic terms: Given that data transmission in the
network is costly and nodes are not completely reliable,
how can we induce the formation of a maximally
reliable data aggregation tree from data reporting
sensors (sources) to the query originating node (sink),
where every sensor is ‘smart’, i.e., it can tradeoff
individual costs with network wide benefits. This
optimally reliable data aggregation tree (henceforth the
optimal RQR tree) will naturally be distinct from
standard multicast trees, such as the Steiner tree [6] or
shortest path trees, which minimize overall network
costs, and therefore cannot represent the outcome of
self-interested sensors. The solution to this problem lies
in designing a routing game with payoff functions, such
that its Nash equilibrium [6] corresponds to the optimal
RQR tree. In what follows, we define the components of
this game using a model of additive data aggregation at
intersecting nodes, based on information value quanti-
fication. We show that computing the optimal paths/tree
(which maximizes payoffs of the individual sensors) is
NP-Hard with and without data-aggregation.

This leads us to consider two important questions.
First, are there easily computable routing algorithms
which produce approximately optimal routing paths/
trees? Secondly, in a sensor-centric network what is an
approximately optimal routing path? There is as yet no
formal framework for quantifying and comparing the
merits of different routing algorithms in terms of the
QoR paths obtained. We use the term QoR path from
the game-theoretic or individual sensor’s perspective
rather than the well-known quality of service (QoS)
based path (least cost or least delay path, for example)
which is an end-to-end concept. Given the increasing
prevalence of networks with ‘smart’ components, it is
necessary to evaluate the performance gain of individual
components within the overall objective. Traditional
measures such as quality of service do not suffice in
capturing this concept. Therefore, we require new
techniques for computing the QoR of routing paths,
i.e. ranking them. At a more specific level, given that the
optimal path is a vector of payoffs of individual nodes,
how do we characterize approximately optimal paths?

In this paper, we derive a game-theoretic path
performance metric labeled path weakness. We use this
to evaluate the suboptimality of any routing path in the
network from the point of view of individual sensor
payoffs. We propose a heuristic called Team-RQR
which has low path weakness and address the following
issues: How well do standard routing algorithms
perform when compared to the optimal analytical
solution and are there distributions of costs, probabil-
ities and values under which some routes are ‘less
weaker’ than others.
3. Game-theoretic RQR model

We model reliable data-centric routing with data-
aggregation in sensor networks. In data-centric routing,
interest queries are disseminated through the network to
assign sensing tasks to sensor nodes. Attribute based
naming is used to resolve these queries by using the
attributes of the phenomenon to trigger responses from
appropriate sensor nodes. Further, data aggregation at
intersecting nodes can be used to reduce implosion and
overlap problems in the network. With data-aggrega-
tion, the sensor network can be perceived as a reverse
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multicast tree with information fused at intersecting
nodes and routed to the sink node at the root.

Let S ¼ fs1;y; sng denote the set of sensors, modeled
as players in the routing game defined below, with
generic members i and j: For ordered pairs ði; jÞAS � S;
the shorthand notation ij is used. Assume that a query
has been sent from the sink node sq ¼ sn to the nodes in
S: The query may match the attributes of data stored at
each si to varying degrees. This data has to be reported
back to sq and aggregated along the way, if feasible.
Information is routed to sq through an optimally chosen
set S0DS of intermediate nodes who form neighbor
communication links. Sensors in S may be initially
deployed in an arbitrary topology after which they self-
organize themselves into groups of neighbors [22].
Communication between neighboring sensors is imple-
mented via an underlying MAC protocol. There is an
associated energy cost to transmitting as well as
receiving packets. The energy cost of transmission is
proportional to the distance between sensors [1]. We
abstract the ij transmission link cost metric by cij40
(cij ¼ N if si and sj do not belong to the same
neighborhood group). Note that alternate link cost
metrics such as delay at the next node or link cost
inversely proportional to remaining battery life can also
be used. Also, for ease of presentation of our model, we
assume that packet reception costs are zero. As will be
seen later, incorporating non-zero reception costs is
straightforward.

Our model should select data transfer paths based on
the importance of the data being reported. For example,
popular data items representing successful query
matches must be treated differently and routed over
more reliable paths even at higher costs, as the penalty
for non-delivery is more severe. We abstract this idea of
information retrieval by attaching a value viAR to the
data retrieved from each sensor si; 1pion; (vi ¼ 0 for
nodes whose sensor data does not satisfy the specified
attributes of the query). Thus link formation in the
network occurs by a process of simultaneous reasoning3

at each node, leading to a path from each si with non-
zero value vi to sq: We assume that node si can fail with a
probability ð1� piÞA½0; 1Þ: We make no assumptions
about correlations in these probabilities while formulat-
ing our abstract model, since the model primarily
requires the values of path reliability, which we assume
can be obtained.4 For ease of calculation in our
simulations (Section 5), we do assume independent
failure probabilities. Also, for simplicity, we assume that
the sink node sq never fails.
3 It can be shown for this particular game that sequential reasoning

by nodes in order of selection will also produce exactly the same

equilibrium paths.
4While we assume static failure probabilities in developing our

model, a dynamic extension would view the network in terms of failure

probability snapshots in successive operational periods.
Thus the graph G ¼ ðS;E;P;CÞ represents an in-
stance of a data-centric sensor network in which data of
value vi is to be optimally routed from node si to node
sq; with S the set of sensors interconnected by edge set
E; PðsiÞ ¼ pi the node success probabilities and
Cðsi; sjÞ ¼ cij ; the cost of links in E: We denote a path
from any node sa to sb in G by the node sequence
ðsa; s2;y; sbÞ:

There are several possible ways to model payoffs
to sensor nodes, based on deterministic, probabilistic,
or distributed learning algorithms for measuring
path reliability, delay or data security. These
have different implications on the type of resultant
query reporting architectures [12]. Here we describe a
simple reliability payoff model for clarity. We now
describe the different components of the strategic RQR
game.

Strategies: Each node’s strategy is a vector li ¼
ðli1;y; lii�1; liiþ1;y; linÞ and lijAf0; 1g for each
jAS\fig: The value lij ¼ 1 means that nodes i and j

have a link initiated by i whereas lij ¼ 0 means that
sensor i does not send information to j: The set of all
pure strategies of player i is denoted by Li: We focus
only on pure strategies in this paper. In general, node i

has the option of forming or not forming a link with
each of di � 1 nodes, where di is the degree of i in G; the
number of strategies available to node i is jLij ¼ 2di�1:
The strategy space of all nodes is given by L ¼ L1 �
?� Ln: Notice that there is a one-to-one correspon-
dence between the set of all directed networks with n

vertices or nodes and the set of strategies L: In order to
keep the analysis tractable, in this model we assume that
each sensor can only establish one link to a neighboring
node. Note that while diffusion routing based algo-
rithms start off with nodes sending query responses to
the sink over multiple paths [9], eventually a single route
is established once interest gradients are determined.
Our objective in this paper is to compare and evaluate
these final routing paths from the game-theoretic
optimality point of view and hence our restriction is
valid. Further, the overall strategy space L obviously
includes routing loops. These can be avoided by
ensuring that strategies resulting in a node linking to
one of its ancestors yield a payoff of zero and are thus
inefficient. Under these assumptions each meaningful
strategy profile l ¼ ðl1;y; lnÞ becomes a reverse tree T ;
rooted at the sink sq: We now proceed to model the
payoffs in this game.

A standard noncooperative game assumes that
players are selfish and are only interested in maximizing
their own benefits. This poses a modeling challenge
as we wish to design a decentralized information
network that can behave in a collaborative manner
to achieve a joint goal while taking individual opera-
tion costs into account. Since the communal goal
in this instance is reliable data transmission, the
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benefits to a player must be a function of path reliability
but costs of communication need to be individual link
costs.

Payoffs: Consider a strategy profile l ¼ ðli; l�iÞ
resulting in a tree T rooted at sq; where l�i denotes
the strategy chosen by all the other players except
player i: Since every sensor that receives data has
an incentive in its reaching sq; the benefit to any
sensor si on T must be a function of the path reliability
from si onwards. Since the network is unreliable, the
benefit to player si should also be a function of the
expected value of information at si: Hence we can write
the payoff at si as

PiðlÞ ¼
giðv1;y; vn�1ÞRi � cij if siAT ;

0 otherwise;

�

where Ri denotes the path reliability from si onwards to
sq and gi the expectation function, is explained below.

Consider the data-aggregation tree shown in Fig. 1.
Let V i ¼ giðv1;y; vn�1Þ denote the expected value of the
data at node i and FðiÞ the set of its parents. Then V i ¼
vi þ

P
jAFðiÞ pjV j ; i.e., si gets information from its

parents only if they survive with the given probabilities.
The expected benefit to sensor si is given by V iRi; i.e., i’s
benefits depend on the survival probability of players
from i onwards. Hence the payoff to si is Pi ¼ RiV i �
cij: For example, the payoff to sensor s5 in the figure is
P5 ¼ R5ðv5 þ p1v1 þ p2v2Þ � c56:

Definition 1. A strategy li is said to be a best response of
player i to l�i if

0pPiðli; l�iÞXPiðli 0; l�iÞ for all li
0ALi:
5 In the case of routing paths, payoff ties at a node can be broken by

selecting the edge that lead to higher reliability. However, this is not

always possible in the case of trees.
Let BRiðl�iÞ denote the set of player i’s best response
to l�i: A strategy profile l ¼ ðl1;y; lnÞ is said to be an
optimal RQR tree T if liABRiðl�iÞ for each i; i.e., sensors
are playing a Nash equilibrium. In other words, the
payoff to a node on the optimal tree is the highest
possible, given optimal behavior by all other nodes. A
node may get higher payoffs by selecting a different
neighbor on another tree, however, it can only do so at
the cost of suboptimal behavior by (i.e reduced payoffs
to) some other node(s).

Note that under the definitions above, although
each sensor can form only one link, multiple equilibrium
trees can exist.5 However, it can be shown formally
that restricting the strategy of each sensor to one link
(that does not form any routing loops in the network)
will eliminate trivial scenarios where any (short)
path/tree forms a Nash equilibrium [12] Such
equilibria are meaningless from the routing context.
Thus the optimal strategy requires each node to select
that node as next-neighbor, the optimal tree through
which it gets the highest payoff. Given the additive
nature of data aggregation, note that many of the results
that hold for multiple sources are also true when
considering a single source, routing to the sink. Hence,
we present our results mainly in terms of single source-
sink paths and when necessary the result is stated in
terms of trees.
4. Results

This section contains results on two aspects of the
RQR problem. We first analyze the complexity of
computing the optimally reliable (or equilibrium) data
aggregation tree in a given sensor network. Note that
the overhead in terms of collecting network state for this
protocol is quite high, since each node needs to know
global path reliability and link cost values. Moreover,
finding the optimal RQR tree is computationally
intensive. While it can be shown that polynomial time
solutions requiring limited state information for com-
puting optimal RQR trees for large classes of graphs
exist [12], in this paper, we derive some analytical results
that establish congruence between the optimal RQR
path and other well-known path metrics such as the
most reliable path and other energy conserving paths,
along with some good heuristics for almost optimal
paths.

4.1. Complexity results

We begin with the following general result.

Theorem 1. Given an arbitrary sensor network G with

sensor success probabilities P; communication costs C;
and data of value viX0 to be routed from each sensor si to

the sink sq; computing the optimaly reliable data

aggregation tree T (the RQR tree) is NP-Hard.
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Proof. Given any solution T 0 to the RQR problem,
verifying the optimality of the successor for each
node in T 0 requires exhaustively checking payoffs
via all possible trees to sq: Thus RQR does not
belong to NP. That the RQR problem is NP-
Hard follows by reduction, using the following
lemma which considers the special case of finding
an optimal path, given a single source. (Note that
this is equivalent to finding routing trees without
data-aggregation.) &

Lemma 1. Let P be the optimal RQR path for routing

data of value vr from a single reporting sensor sr to the

sink node sq in a sensor network G where vi ¼ 0 8iar:
Computing P is NP-Hard.

Proof. As before, verifying the optimality of
the successor for each node in P requires ex-
haustively checking payoffs via all possible paths
to sq: Thus the RQR path problem does not belong
to NP.

We show that the problem is NP-Hard by considering
a reduction from Hamiltonian path [7]. Let G0 ¼
ðV 0;E0Þ be any graph in which a Hamiltonian path is
to be found, where jV 0j ¼ n: We convert G0 into another
graph G ¼ ðS;E;P;CÞ on which an instance of RQR
path with value vr ¼ 1; must be computed6 as shown in
Fig. 2.

Introduce n þ 1 new vertices to form S ¼ V 0 ST
S

sq;
where jT j ¼ n and sq is the other new vertex. The new
edge set E consists of the original edge set E0 along with
n2 new edges from E2 ¼ T � V 0 and n new edges from
E3 ¼ T � sq: Edges in E0; E2 and E3 are assigned costs
c1; c2 and c3; respectively. All vertices uAV 0 and wAT

are assigned success probabilities p1 and p2 respectively.
The relationships between the probabilities and costs are
6We set vr ¼ 1 for notational simplicity since results for any vr can

be obtained by scaling edge costs appropriately.
as follows:

p1p24
3

4

� � 1
n�1

; ð1Þ

c1 ¼
ðp1p2Þn

3
; ð2Þ

c2 ¼
2ðp1p2Þn

3
; ð3Þ

c3 ¼ ðp1p2Þn: ð4Þ

Let sr and st be any two nodes in V 0: We claim that
there exists an optimal RQR path of reliability pn

1p2

from sr to sq in G if and only if there exists Hamiltonian
path from sr to st in G0:

For the first part of the claim, assume there is a
Hamiltonian path H ¼ ðsr;y; stÞ in G0: Consider the
path H followed by the edges ðst; xÞ and ðx; sqÞ in G0;
where x is any node in T : This path has reliability
RðHÞ ¼ pn

1p2: The payoff of node st is RðHÞ � c2
obtained by linking to node x; which is optimal since
there does not exist any other unvisited node in V 0:
Similarly the payoff of node x is also optimal since it can
only link to sq: Now consider the kth node in H;
1pkpn � 1: The two choices for this node are either to
link to some node xAT or the node in G0 that lies on the
Hamiltonian path H: If the first option is chosen, the
most reliable alternate path (and hence the maximum
possible alternate payoff) is given by pk

1p2 � c2 which is
less than RðHÞ � c1 by conditions (1)–(3). Thus, the
second choice is optimal for this node.

For the second part of the claim, we need to show that
if no Hamiltonian path exists in G0; there cannot be an
optimal RQR path of reliability pn

1p2: Note that linking
to any available node in V 0 with cost c2 is always
preferable for any node siAT : The worst case payoff to
si via a link of cost c2 is pn

1pn
2 � c2; which outweighs the

best possible payoff via a link of cost c3 which is p1p2 �
c3: So the optimal path must visit all nodes in V 0: To
maximize payoffs, the optimal path must have the
shortest possible length. This will require minimizing
visits to T : The optimal path will thus consist of
sequences of long paths in V 0 (the longest possible since
any node in V 0 will always prefer to link to another node
in V 0; if feasible), interspersed with visits to T : Since G0

does not contain a Hamiltonian path there will be at
least two visits to nodes in T and hence the reliability of
such a path will be at most pn

1p2
2 which is less than pn

1p2 as
claimed. &

It can be seen easily that the above reduction is still
valid when all nodes in V 0 and T have the same success
probability p: Consequently, the RQR path and tree
problems remain NP-Hard for the special case when
nodes have equal success probabilities. The case when
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all edges have the same cost is much simpler, however,
as will be shown below.

4.2. Analytical results

Given the complexity of computing the optimal RQR
tree, we try to analytically derive conditions that
establish congruence between the optimal and other
well known, easily computable trees, such as the most
reliable tree (i.e., the union of the most reliable paths)
from sources to the sink and energy-conserving trees.
Identifying these conditions on network parameters will
save the overhead of computing optimal (or approxi-
mately optimal) RQR trees in these cases. For simpli-
city, we present these congruence results in terms of
paths from a single source to the sink; the results can be
easily extended to trees.

Let G be an arbitrary sensor network with a single
source node having data of value vr (vi ¼ 0 for all other
nodes). Then the following results hold. Note that the
results describe only sufficient conditions for congruence
with the optimal path.

Observation 1. Given piAð0; 1� and cij ¼ c for all ij; then

the most reliable path (tree) always coincides with the

optimal RQR path (tree). For uniform pi; the equilibrium

RQR path is also the path with least overall cost.

Before proceeding further, we now introduce some
notation. For any node si; let ci ¼ fcijg; cmax

i ¼ maxfcijg
and cmin

i ¼ minfcijg: Also cmax ¼ maxifci
maxg and cmin ¼

minifci
ming: We use Pl

i to denote a path of length l from
si to sq and benefits along this path by Pl

i :

Proposition 1. Given G and PðsiÞ ¼ pAð0; 1�; for all i; the

most reliable path from sr to sq will also be the optimal

path if

cmax
i � cmin

i ovrp
mð1� pÞ

for all si on the most reliable path Pm
r :

Proof. Consider an arbitrary node si at a distance i

from sr: Since we have uniform p; reliability is
now inversely proportional to path length. Let l

be the length of the shortest path from si to sq;
on which siþ1 is the next neighbor of si: For si; Pl

i is
optimal if

vrp
iþl � ciiþ14 vrp

iþlþl � cij; l ¼ 1; 2;y

) cij � ciiþ1

vr

opiþlð1� plÞ;

where sj is a neighbor of si through which there
is a simple path of length l þ l: Since m ¼ i þ l on
Pm

r ; the reliability term above is minimized for
l ¼ 1; whereas the cost term is maximized
at ci

max � ci
min: &
Note that the above result identifies sufficient
constraints on costs for the most reliable path to also
be optimal. The result shows that while the most reliable
path can be costlier than other paths, to be optimal it
cannot be ‘too’ much more expensive. From the above
result, it also follows that when cmax � cminopmð1� pÞ
this path coincides with the optimal, thereby providing a
global bound on costs for congruence. The equivalent
result for the most reliable tree can be obtained by
substituting V i; the expected aggregated data value at si;
for vr in the above proposition.

We now look at the situation when the probabilities
of node survival are non-uniform. Let si and siþ1 be
subsequent nodes on the most reliable path. Denote by
Ri; the reliability of the most reliable path from si to sq

with Ri
0 being the reliability along any alternative path

from si: Let Dci ¼ ciiþ1 � cij where sj is any neighbor not
on the optimal path and DRi is defined similarly.

Proposition 2. Given G and PðsiÞ ¼ piAð0; 1�; the most

reliable path from sr to sq will be optimal if

Dciþ1

Dci

o
DRiþ1

DRi

for all si and siþ1 on the most reliable path.

Proof. Let %Ri represent the reliability on the portion of
the most reliable path P from sr to si: Since P is optimal,
si cannot benefit by deviating if

vr %RiRi � ciiþ14 vr %RiRi
0 � cij

) vr %Ri4
Dci

DRi

:

It follows that vr %Riþ14
Dciþ1

DRiþ1
: Since %Riþ1 ¼ piþ1 %Ri; we

have vrpiþ1 %Ri4
Dciþ1

DRiþ1
: This can be rewritten as

1Xpiþ14
Dciþ1

Dci

DRi

DRiþ1
; which gives us Dciþ1

Dci
oDRiþ1

DRi
as de-

sired. &

The easiest way to interpret this result is by
rearranging the terms so that we can write it as
Dciþ1

DRiþ1
oDci

DRi
: Then each fraction can be interpreted as the

marginal cost of reliability of deviating from the optimal
path. Since each subsequent node on the optimal path
has lower expected value of information, this results
suggests that the marginal cost of deviation in terms of
reliability must be higher for each node’s ancestor where
the expected value of information is also higher.

We define the cheapest neighbor path (CNP) from sr

to sq as the simple path obtained by each node choosing
its successor via its cheapest link (that connects to sq). In
a sense, this path reflects the route obtained when each
node has only limited network state information (about
neighbor costs and probabilities), and in the absence of
gradient information or route quality feedback, should
merely minimize its local communication costs. The



ARTICLE IN PRESS
R. Kannan et al. / J. Parallel Distrib. Comput. 64 (2004) 839–852 847
following proposition identifies when CNP will coincide
with the optimal path.

Proposition 3. Given G and PðsiÞ ¼ pAð0; 1Þ; for all i; the

optimal RQR path is at least as reliable as the cheapest

neighbor path. Furthermore, the CNP will be optimally

reliable if

minfck\c
min
k g � cmin

k 4vrp
lð1� pt�lÞ;

where l is the length of the shortest path from sr to sq and t

is the length of the CNP.

Proof. Consider an arbitrary node sk which is k hops
away from sq on the CNP. Clearly, for the CNP to be
optimal sk should not get higher payoff by deviating to
an alternative path. Also, we do not need to consider
alternative paths that have lengths greater than k to sq

since that would decrease benefits and the CNP already
has the lowest cost edges. Let m be the path length along
the CNP from sr to sk: For alternative paths of length
i ¼ 1;y; k � 1; from sk to sq to be infeasible, we need

ci4co þ vrp
mþið1� pk�iÞ;

where co is the edge cost along the CNP, and ci the edge
cost along alternative paths. By definition, for any node
on the CNP m þ iXl: Also at sk we have co ¼ ck

min; with
ci being at most minfck

\ck
ming: Thus, when

minfck
\ck

ming � ck
min4vrp

lð1� pt�lÞ; the CNP will coin-
cide with the optimal path. &

The above proposition illustrates that the CNP does
not have to be the most reliable in order to be optimal, it
only needs to be sufficiently close. For networks in
which some paths (edges) are overwhelmingly cheap
compared to others, routing along CNPs may be
reasonable. However, in networks where communica-
tion costs to neighbors are similar, routing based on
local cost gradients is likely to be less reliable.
7See [22] however, for an elegant model in which the authors

develop data-centric routing algorithms for sensor networks that take

both energy constraints and quality of service considerations into

account. However, the model contrasts from ours in not being sensor-

centric.
5. Quality of routing

We divide this section into two subsections. In the
first subsection, we present our route evaluation metric
and some theoretical results. The second half provides
heuristics with low path weakness followed by simula-
tion results about the quality of routes obtained using
different routing algorithms. Throughout this section,
we assume that there is a single source and destination
pair. Thus results are presented in terms of paths instead
of trees.

5.1. Evaluation metric

In an ideal sensor-centric network, optimal RQR
paths are computed by individually rational sensors who
maximize their own payoffs. On the other hand,
traditional routing algorithms optimize using a single
(end-to-end) distinguishing attribute such as total cost
or overall latency.7 From a sensor-centric perspective
these approaches are inadequate and sub-optimal since
they use a single network wide criterion. How then do
we compare different suboptimal paths? For example,
one path may yield high payoffs for sensor i with low
payoffs for sensor j; while the exact opposite situation
may prevail on another path. Clearly in a framework
where rational, independent sensors maximize their own
payoff subject to the overall network objective, we need
a new metric for evaluating the quality of different paths
from an individual sensor’s point of view. We introduce
a metric called path weakness which captures the
suboptimality of a node on the given path, i.e., how
much a node would have gained by deviating from the
current path to an optimal one. We believe this provides
a new sensor-centric paradigm for evaluating the quality
of routing in sensor networks.

We formally define our QoR metric as follows: Let P
be any given path from the source sensor sr to the sink
node sq: Assume that the source contains information of
value vr and all other nodes have value vi ¼ 0: Consider
any node si on P with ancestors fsr;y; si�1g: Let #Piq be
the optimal RQR path for routing information of value
V i ¼ vr

Qi
t¼r pt (i.e., the expected value) to sq from si in

the subgraph G\fsr;y; si�1g; assuming such a path
exists. Thus #Piq represents the best that node si can do,
given the links already established by nodes sr;y; si�1

and assuming optimal behavior from nodes si onward,
downstream. Define DiðPÞ ¼ Pið #PiqÞ �PiðPÞ as the
payoff deviation for si under the given strategy profile
(path) P: A negative deviation represents the fact that si

is benefiting more from this path (perhaps at the expense
of some other sensor). Conversely, a positive deviation
indicates si could have done better. We set DiðPÞ ¼ vr

whenever PiðPÞ is negative. This positive deviation from
the optimal payoff is intended to represent the fact that
si is participating in a path which is giving it negative
payoffs, i.e., the communication cost on the edge out of
si in P outweighs the benefits to si of participating in this
route. Also note that it is possible that no optimal path
from si exists, even if its payoff on P is positive. For
example, all of si’s neighbors might have very high
communication costs and cannot participate in any
optimal path, making si in a sense isolated. In such
cases, we set DiðPÞ ¼ �PiðPÞ:

%DðPÞ ¼ maxi DiðPÞ represents the payoff deviation at
the node which is ‘worst-off’ in P: What can be said
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about this parameter for optimal and sub-optimal
paths?

Observation 2. 0o %DðP0Þpvr for all non-optimal

paths P0:

However, observe that DiðP0Þ—the weakness of
individual nodes on sub-optimal paths can take both
positive and negative values. On the other hand, %DðPÞ ¼
0 if and only if P is the Nash equilibrium path of the
game. Thus from a global point of view, %DðPÞ identifies
the maximum degree to which a node on the path can
gain by deviating. This allows us to rank the ‘vulner-
ability’ of different paths, which embodies the idea that
a path is only as good as its weakest node. We label this
QoR measure path weakness.

Note that the weakness metric can be similarly defined
for data-aggregation trees. Given a sensor on any tree
T ; its weakness can be calculated as its payoff deviation
from the optimal tree that would have been obtained,
given the expected value at that sensor along with the
distribution of values in the remaining nodes in the
graph. As mentioned before, we focus on single-source
single-destination paths in the rest of this paper.

We now present bounds for finding paths with low
path weakness. We state in the following theorem that
there exist networks not containing paths of bounded
weakness.

Theorem 2. For an arbitrary sensor network, there exists

no polynomial time algorithm to compute approximately

optimal RQR paths of weakness less than ðvr

3
� eÞ unless

P ¼ NP:

The proof relies on constructing a specific sensor
network whose best polynomial time computable sub-
optimal paths satisfy the above weakness characteristics.
Details of the proof are in [13].

5.2. Path weakness heuristics

Theorem 2 indicates the feasibility of finding approxi-
mately optimal RQR paths of bounded weakness. While
this problem still remains open for arbitrary sensor
networks, it can be shown that polynomial time
solutions requiring limited state overhead exist for
computing optimal RQR paths/trees for geographically
routed sensor networks [12]. Here, we present some easy
to compute heuristics based on a team version of the
RQR game (called TRQR), for finding approximate
RQR paths. Simulation results presented in the next
subsection verify that the team-RQR heuristic has low
path weakness and compares favorably with other
standard routing algorithms.

The TRQR path can be interpreted game-theoreti-
cally as a ‘team’ version of the RQR game in which all
nodes on the path share the payoff of the worst-off node
on it. Rather than selecting a neighbor to maximize their
individual payoffs as in the original game, nodes in the
team-RQR model compromize by maximizing their least
possible payoff. As before, each sensor’s strategy is to
select at most one next-neighbor (if the payoffs exceed
its participation cost). Choices resulting in routing loops
have zero payoffs. Formally, the payoffs to nodes in the
network are defined as follows:

PiðlÞ ¼
vrRðPÞ � max

ðsi ;sjÞAP
cij if siAP;

0 otherwise;

(
ð5Þ

where RðPÞ is the reliability of path P from sr (with
value vr) to sq formed under strategy choice l: The Nash
equilibrium of the TRQR game is the path from source
to destination containing the node with the highest least
cost-reliability tradeoff over all paths. In case of
multiple equilibria, the path with highest reliability is
selected.

Formally, let Pc represent the most reliable path from
sr to sq that does not traverse any link exceeding cost c:
Then the optimal TRQR path P is given by

P ¼ arg max
ciAC

fvrRðPci
Þ � cig ð6Þ

for each distinct edge cost ci in C: P can be computed by
repeatedly determining the most reliable path in the
graph that is obtained by successively removing edges of
decreasing distinct cost. In the worst case m most
reliable path calculations are made, where m is the
number of distinct edge costs in the network.

5.3. Experimental results

In this section, we simulate the performance of
different routing algorithms to answer the following
question: What are the quality of paths compared to
that of the optimal RQR path? This allows us to identify
the different ranges of node reliabilities and edge costs in
which a particular algorithm performs better than the
others.

The setup for our experiments is as follows: In every
iteration a random graph with 20 nodes and edge
density of 30% is generated. The source and destination
pair are randomly chosen and the value of data at the
source node is normalized to one. For each run, we
choose a node survival probability, which is identical for
all nodes. Communication costs over each edge are
drawn randomly from a given parameter range in every
iteration. For each set of node success probabilities and
edge costs, we have presented results for 15 different
source and destination pairs (we have verified that this is
a representative sample). In each simulation run, for a
particular source and destination pair, routing paths are
generated by several algorithms and the corresponding
path weakness (QoR) is calculated. The data have been
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Fig. 3. Case I: p ¼ 0:99; cp0:05:
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used to construct graphs which are presented at the end
of the paper. We have used the following algorithms:

1. Most reliable path (MRP): This produces the most
reliable path from source to the sink. Since, in our setup,
each node has the same success probability the MRP is
always the shortest path as evaluated by Djikstraa’s
standard shortest path algorithm.

2. Overall cheapest path (MCP): This algorithm is also
Dijkstraa’s shortest path algorithm, with the weight of
each edge being the communication cost.

3. Cheapest next node path (CNP): This provides a
path where each node chooses its cheapest available
edge leading to the sink node.

4. Team RQR path (TRQR): This is calculated as
defined previously.

5. Genetic algorithm path (GA): Here, we use a genetic
algorithm for solving the optimal RQR problem based
on the GA for the bicriteria shortest path problem
provided in [8]. A path has been encoded according to
the priority-based method. In this procedure, a set of n

random numbers (n being the total number of sensor
nodes) is generated so that the ith random number is the
priority of the ith node. A path is sequentially
constructed led by the highest priority feasible nodes,
i.e., nodes which do not lead to a dead end or a cycle.
The genetic operators used here are position-based
crossover and swap mutation. A next generation is
chosen by tournament method. We stop if the difference
between the fitness values of the best paths of two
adjacent generations is equal to zero.

The first three algorithms are standard routing
algorithms. The fourth algorithm is our heuristic derived
from a game theoretic point of view. Genetic algorithm
is a standard technique applied to problems which are
NP-complete or NP-hard. We have used it here to check
if there is any range of node success probabilities and
costs where it does well.
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Fig. 4. Case II: p ¼ 0:99; cp0:01:
6. Interpretation of results

Our simulation results are illustrated in Figs. 4–7.
In the first five graphs, nodes are assigned very high

success probabilities. Edge costs are low and chosen
from a distribution such that every path is feasible (all
node payoffs are positive). In case I and II, we keep the
node success probability fixed at 0.99 and vary the
maximum edge cost from 0–0.05 to 0–0.01, respectively
(Fig. 3).

In case I, the path weakness ranges from 0 to 0.6.
MCP and TRQR have average weaknesses 0.08 and
0.05, respectively. Since the cost range and hence the
cost differences among various edges are not signifi-
cantly large, all three cost-based algorithms (TRQR,
MCP and CNP) that try to reduce the overall cost in
different ways behave reasonably well. However, the
range of path weakness of MRP (0–0.4) suggests that
the cost range is so high that a path which relies solely
on maximizing reliability (MRP) cannot perform well.

In case II, the maximum edge cost is reduced to 0.01.
Consequently, the overall range of path weakness
reduces to 0–0.14. Significant improvement takes place
in the behaviour of MRP and TRQR as they coincide
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with the optimal path for more than 90% of the source
and destination pairs. The fact that MRP always
coincides with the optimal path indicates that the very
high node success probability and very small cost range
together have reduced the length of the optimal path.
The diminished variation within different edge costs
allows MCP to perform well. Since the behaviour
pattern and the range of path weakness of CNP do
not vary significantly from case I to case II, we can
conclude that performance of CNP is invariant over a
large cost range when reliability is kept very high.

For Cases III–V, we make the maximum edge cost a
decreasing function of the node success probability.
Then, we slowly increase node success probability to
observe the impact. In case III, where the node success
probability is 0.992 and the cost range is 0–0.12, the
range of path weakness is quite high (0–0.35). When we
raise the value of the success probability, the optimal
paths can have longer lengths without sacrificing too
much reliability. Therefore CNP, which tends to have a
longer length, has lower path weakness now (average
weakness being 0.035 approximately). The TRQR
heuristic, which tradesoff both the overall path relia-
bility and the overall cost performs as well as CNP
producing an average path weakness of 0.32. The above
mentioned feature of the optimal path can also explain
MRP’s unstable pattern and the high range of path
weakness in spite of very high node success probabilities.
In case IV, the success probability is increased to 0.998
and the cost range is reduced to 0–0.058. This accounts
not only for the relatively small range of path weakness
(0–0.1) but also for the good performance of MCP, CNP
and TRQR. The congruence of TRQR and MCP is well
explained by the significantly large difference between
the success probability and the maximum edge cost. In
case V, we explore the consequences of restricting the
likely optimal path length using one low node success
probability (0.5) and maximum edge cost 0.065. MRP,
the shortest path, always coincides with the optimal
path even though the success probability is quite low. So
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do TRQR and MCP. However, since the CNP usually
has longer path lengths, its QoR is quite weak, in most
cases.

When we compare the first 5 graphs, we observe that
the increment in the node success probabilities together
with the decrement in the maximum edge costs gradually
leads to improvements in the behavior of all five
algorithms. In general, MRP will be a good heuristic
for obtaining good QoR paths only when path
reliabilities are low. The behaviors of TRQR and
MCP are quite stable (with a little variation in the
weakness ranges) in all the ranges of our experiment and
on average, provide better QoR. CNP provides good
QoR when the success probability increases and the
maximum edge cost decreases accordingly.
7. Conclusion

In this paper, we formulate a sensor-centric model of
intelligent sensors using game theory. The problem of
routing data in such a network is studied under the
assumption that sensors are rational and act to
maximize their own payoffs in the routing game.
Further, nodes in our model are susceptible to failure
and each node has to incur costs in routing data. To
evaluate the contribution of individual nodes in the
routing tree, we develop a metric called path weakness.
This individual-sensor oriented evaluation criteria pro-
vides a new paradigm for examining paths, which we
label QoR. While the optimal routing problem has high
state overhead and is computationally hard, our
experimental results show that standard path routing
mechanisms like MRP and MCP usually find reasonably
good paths. Our game-theoretically oriented algo-
rithm—Team RQR compares favorably to the other
standard routing algorithms.

For future work, we plan to develop bounded,
approximately optimal RQR paths/trees for general
sensor networks (the problem is still open), along with
extensions using distributed and cooperative game
models. Polynomial time solutions for the optimal
RQR and delay constrained paths/trees are presented
in [12] for special classes of sensor graphs. We also plan
to investigate the efficiency and practicality of imple-
menting optimal RQR protocols in hierarchical (clus-
tered) sensor networks. Is it beneficial to compute
optimal paths within each cluster for routing to gateway
nodes (that handle inter-cluster routing).
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