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Abstract-The Petersen graph is gaining popularity as an interconnection network because of 
its several interesting properties. The recursive Petersen architecture is very compact and has some 

very interesting topological properties. In this paper, we study its topological properties in detail. 
Two labeling schemes are suggested. Basic routing and broadcasting have been discussed. The most 

attractive features are its logarithmic (to the base 10) diameter and high symmetry. 
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1. INTRODUCTION 

The search for an ideal network topology for parallel processing has yielded several architectures. 

As is common with such problems, no architecture can claim to be the best possible one for all 

applications. Among the suggested architectures, the Hypercube (HC) is quite popular because 

of its high symmetry, good embedding properties and a logarithmic diameter. This has resulted 

in the evolution of several cube-oriented networks which incorporate the Hypercube within them. 

Examples of such networks are the Folded Hypercube [l], Cube-Connected Cycles [2], Banyan 

Hypercube [3], Bridged Hypercube [4], and the Hypertree [5]. Popular examples of non-cube- 

oriented architectures are the De Bruijn Multiprocessor network [6] and Shuffle Exchange [7,8]. 

These extensive studies have isolated properties that are considered desirable for architectures 

to have. It is well understood that the suggested topology should have a small diameter to 

economise communication; it should be easily extensible so that processors can be easily added 

to enhance the size of the network while preserving some of the fundamental properties of the 

network of the smaller size; it should have good embedding properties to be able to simulate well 

various architectures that are known to be good at particular applications, allowing it to be useful 

for more number of applications. In addition, every node should have a small degree, and the 

network should be highly connected. The Recursive Petersen architecture [9], a non-cube-oriented 

network and the object of this study, has several attractive properties. 

We are grateful to S. Kundu of the Department of Computer Science and B. Oporowski of the Department of 
Mathematics, Louisiana State University, for several fruitful discussions and insightful comments. We also thank 
J. Barhen (ORNL) for his suggestions regarding the presentation of the material. 
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2. THE PETERSEN GRAPH 

In this section, we introduce some graph-theoretic terminology and present some properties of 

the Petersen graph. 

2.1. Terminology 

We define some graph theoretic terms [lO,ll] that are relevant to subsequent discussions, 

following which, we examine some interesting properties of the Petersen graph. 

A graph G = (V, E) consists of a set of objects V = (~1,212, . . .} called vertices, and another 

set E = {el,e2, . . .}, w h ose elements are called edges, such that each edge ek is identified with an 

unordered pair (wi, vj) of vertices. 

When a vertex vi is an end vertex of some edge ej, vi and ej are said to be incident with each 

other. The number of edges incident on a vertex vi is called the degree of the vertex vi. A graph 

in which all vertices are of equal degree is called a regular graph. 

A graph in which there exists an edge between every pair of vertices is called a complete graph. 

K, denotes the complete graph on n vertices. 

The diameter of a graph is the largest distance between two vertices in the graph. The girth 

of a graph G, is the length of a shortest cycle (if any) in G. A graph is connected if every pair of 

points are joined by a path. 

A maximal connected subgraph of G is called a connected component or simply a component 

of G. A bridge is an edge whose removal increases the number of components. 

A graph g is said to be a subgraph of a graph G if all the vertices and all the edges of g are in G, 

and each edge of g has the same end vertices in g as in G. A spanning subgraph is a subgraph 

containing all the points of G. 

A factor of a graph G is a spanning subgraph of G which is not totally disconnected. An n- 

factor is regular of degree n. If G is the sum of n-factors, their union is called an n-factorisation 

and G itself is n-factorisable. 

An n-cage, n 1 3, is a cubic graph (regular with degree 3) of girth n with the minimum possible 

number of vertices. 

2.2. Properties of the Petersen Graph 

The Petersen graph, henceforth known as P, gets its name after its discoverer, Julius Petersen, 

a Danish mathematician, who used it to show that not every 3-regular bridgeless graph is l- 

factorable. Petersen also proved that every 3-regular graph (with at most two bridges) can be 

factored into a 2-factor and a l-factor. P is a bridgeless, cubic, regular graph of 10 vertices and 

15 edges, connected as shown (Figure 1). The graph has diameter 2. This is the best that can be 

achieved to accommodate 10 vertices, each of degree 3. This advantage stems from the fact that 

the pentagram has been connected to the pentagon. Should two pentagons be connected (one 

inside the other and corresponding vertices adjacent), the diameter of the graph would be 3. 

Figure 1. The Petersen graph. 
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2.3. Topological Properties 

P has several interesting features, some of which are listed here, without proof. The proofs 
can be found in any standard text on graph theory: 

1. P is the largest graph which is S-regular and has diameter 2. In other words, it is not 
possible to connect more vertices with these constraints. It is the most compact. 

2. P is the only 3-regular graph (apart from Kd), in which any two nonadjacent vertices are 
mutually adjacent to just one other vertex. 

3. P is the smallest graph with the property that, given three distinct vertices u, v and w, 
there is a fourth vertex adjacent to u, but not to w or w. 

4. P is vertex transitive, that is, it has automorphisms mapping any given vertex to any 
other. It is also distance transitive, in that, whenever the distance from w to w is the same 
as from v’ to w’, there is an automorphism taking v to v’ and w to w’. Actually, distance 
transitivity implies vertex transitivity. 

5. P is strongly regular, which means that the number of vertices mutually adjacent to any 
pair of adjacent vertices is constant and the number of vertices mutually adjacent to any 
pair of nonadjacent vertices is also constant. 

6. P is the smallest graph that contains a minor of K:, as well as a subdivision of K~,J, and is 
therefore nonplanar. 

7. P is the only 5-cage, the only 3-regular graph with girth 5. 

8. P is a bridgeless, cubic graph and a sum of a l-factor and a 2-factor. The pentagon and 
the pentagram together constitute a 2-factor, and the five lines joining the pentagon with 
the pentagram form a l-factor (Figure 2). 

9. P is non-Hamiltonian. 

Some interesting properties are listed in [12]. There are several other features which may be 
of more interest to graph theorists. Some other properties of P are presented with proofs. 

PROPOSITION 2.1. Any two adjacent vertices A and B of a Petersen graph are such that the 

vertices adjacent to A and those adjacent to B are not adjacent. 

PROOF. We can prove the proposition by contradiction. Let us assume that there exist a vertex A’ 

adjacent to A and a vertex B’ adjacent to B. Furthermore, let us assume that A’ and B’ are 
adjacent. In such a case, ABB’A’ form a cycle of length four. But the girth of the Petersen 
graph is five, and so it does not contain a cycle of length four. 

PROPOSITION 2.2. The vertex connectivity and the edge connectivity of the Petersen graph is 3. 

PROOF. Since the Petersen graph is a regular graph with each vertex of degree three, it follows, 
from Menger’s theorem, that the vertex connectivity as well as the edge connectivity of the graph 
is 3. 

PROPOSITION 2.3. There exist S-vertex disjoint paths between every pair of distinct vertices in 

the Petersen graph. 

PROOF. The proof follows immediately from Proposition 2.2. 

PROPOSITION 2.4. The Petersen graph can be expressed as the sum of a Pfactor and a l-factor 

in two different ways as shown (Figures 2(a) and 2(b)). 

PROPOSITION 2.5. Every pair of distinct vertices in a Petersen graph is included in a cycle of 

length five. 
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I \ 
(a) The a-factor and the l-factor of the Petersen graph. 

\ 

k 

(b) Another P-factor and the l-factor of the Petersen graph. 

Figure 2. 

PROOF. Consider a pair of vertices (2, y). Two cases, upto isomorphism, arise: 

1. Both of them belong to the pentagon or the pentagram in the 2-factor (Figure 2(a)). 

2. If they do not, then they belong to a pentagon in the 2-factor (Figure 2(b)). 

There is no other situation. 

2.4. Labeling 

For any architecture, the underlying graph structure has to be labeled because every vertex in 

the graph corresponds to a processor in the network and has an address. The labeling scheme 

should be aimed at optimising communication costs. At the same time, it should allow for 

simplicity in communication algorithms. We propose two labeling schemes (Figure 3). It is 

impossible to label P such that the addresses of neighbouring vertices differ in exactly one bit, 

because the graph contains cycles of odd length. Consider the factors of the Petersen graph as 

shown (Figure 2(a)). The set of vertices V can be partitioned into two disjoint subsets: V, (outer), 

the vertices of the pentagon, and Vi (inner), the vertices of the pentagram. 

Figure 3. The two labelings (1.21 of the Petersen graph. 

Each vertex, w. is identified by a 2-tuple (s, n), where 

s = 0, if 21 E V,, 
1, if 2, E V,, 

and 0 5 n 5 4. Also, Vi U V, = V and Vi cl V, = 4, where V = {i ( 0 < i 5 9). 
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Two possible labeling schemes, 1 and 2, are shown (Figure 3). Each set of vertices, K and V,, 

form a cycle of length five as can be seen from the two factor. 

LEMMA 2.1. The Petersen graph can be labeled in 20 different ways according to the above 

mentioned labeling method (Figure 3). 

PROOF. Consider the labels given (Figure 3). Without loss of generality, consider the vertex 

labeled (0,O). Any one of the set V, could be labeled (O,O), which gives five possibilities. The 

labeling can be done counterclockwise (instead of clockwise as shown), which would again give 

a graph isomorphic to the situation shown. That leads to two possibilities. The set Vi could be 

switched with the set V,, which again doubles the number of possible labels. Therefore, the total 

number of ways in which the Petersen graph can be labeled is 5 x 2 x 2 = 20. 

2.5. Distances 

The distance d(vi, vj) between any two vertices in an undirected graph is a metric, and there- 

fore, d(vi, vj) = d(vj, vi). In the Petersen graph, the distance has to be calculated from the labels 

(s~,Tx~) and (sj,nj) of th e t wo vertices, so we define a commutative operator, 0, as follows: 

1ZiOnj=njOni=min(niOnj,njOni), (1) 

where min denotes the minimum of the two values and o denotes subtraction modulo 5. Since 

min is commutative, so is 0. We first look at the adjacency condition between any two vertices; 

as from these, the distance formula can be easily derived. This is so because the distance between 

any two vertices in the Petersen graph cannot exceed 2. Therefore, just three conditions arise: 

1. The two vertices are not distinct (distance is 0). 

2. The two vertices are adjacent (distance is 1); and 

3. The vertices are nonadjacent (distance is 2). 

THEOREM 2.1. In labeling scheme 1, two vertices vi(Si, ni) and Vj(sj, nj) are adjacent iff 

0X$ (Vi, Vj) = 
{ 

??+ Onj = 1, if si = Sj, 

27Ii@nj=O, ifsi=O,Sj=l. 

PROOF. The proof is clear from the labeling scheme. 

THEOREM 2.2. The distance d(vi,vj) between any two vertices vi and vj, in labeling 1, is given 

if si = sj, 
d(vi7vj) =d(vj7vi) = znian. + 1, ifs. = 0 s. 

{ 

ni 0 nj, 
J 3 7 J=. 1 

PROOF. The proof is clear from the labeling scheme. 

THEOREM 2.3. According to labeling 2, two vertices vi = (Sirni) and 1-j = (Sj,nj) are adjacent 

iff 

adj (viyvj) = 
niOnj=l+Si, ifsi=Sj, 
n, = n, 

2 3’ otherwise. 

PROOF. The proof is clear from the labeling scheme. 

THEOREM 2.4. The distance d(vi, Vj) between any two vertices vi and vj, in labeling 2, is given 

by 

ni Onj, if Si = Sj = 0, 

d(vi,vj)=d(vj,vi)= 3-(ni@nj), ifsi=Sj=l, 
ni 0 nj + 1, otherwise. 
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PROOF. The diameter of the graph is 2. Hence, d(~,vj) = d(vj,vi) 5 2. If si = sj = 0, 

then ‘ui,q E Vo; and both lie on the outer cycle (pentagon). The operator 0 gives the distance 

between the two on the cycle. When si = sj = 1, then vi,q E Vi; and both lie on the inner 

cycle (pentagram). Since adjacent labels differ in their second tuple by 2 in the pentagram and 

nonadjacents differ by 1, the difference given by the operator is 3-complemented. When the 

vertices belong to different groups, if they have the same second tuple, they are at distance 1 

(adjacent), otherwise at distance 2. 

Either of the two labelings described above can be used. In the rest of the paper, we will follow 

labeling 2. Without affecting significant features, labeling 1 could have been used instead. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

3. TOPOLOGICAL PROPERTIES OF THE RECURSIVE 
PETERSEN GRAPH 

Number of Vertices(P): The total number of vertices in an RP of dimension p is lop. 

Number of Edges(E): The total number of edges in an RP of dimension p is 

lop x 3p 

2 . 

Degree(K): The degree of each vertex in a p-dimensional RP is 3p. 

Diameter(D): The diameter of a pdimensional RP is 2p. 

Connectivity(V): The node connectivity of a pRP is 3p. 

Cost(C): The cost is estimated by the product of the degree of any vertex and the diameter 

of the graph. For a pRP, it is 3p x 2p. 

Average Distance{&,,): To calculate the average distance, we need to calculate the total 

distance (ad) of all distances from any particular vertex. From [9, Theorem 21, we know 

that 

~d=nlxcd2+ngxUdl, 

where ni and n2 represent the number of vertices, ei and e2, the number of edges and cdl 

and g& represent the total distances in the graphs Gr and G2, respectively, and (Td denotes 

the total distance in Gr x G2. The number of edges in Gr x G2 is given by 

e = ni x e2 +nz x ei. 

Since, in the Petersen graph, dd = e, it follows from the above statements that for higher 

dimensions too, this property is preserved [9] ( see message traffic density next). The average 

distance is given by 
od e lop x 3p/2 3p -=-= 
n n lop = 2’ 

Message Traffic Density(M): The message traffic density of the pRP is 

(+l(P - I)) x P M . 
I 

eP 

The message traffic density (or the average message passing density) is optimal in the 
following sense. A value of M > 1 implies that there could be congestion of messages on a 
link, which would result in inefficiency. A value of M < 1 would indicate the presence of 

too many edges and hence an increase in cost. A value of M = 1 signifies that the message 
traffic density is optimal. The set of graphs with the property M = 1 are both economic 
and efficient in the aforementioned sense and are denoted by E2. It has also been shown 

that the set E2 is closed under the Cartesian product operation and that in the class of 
Moore graphs K1, K2 and P are the only ones which belong to E2 [9]. It has been shown 
in [13] that in the class of the generalised Petersen graphs, only the 2-cube and P belong 

to &2. 
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Figure 4. The 2-RP (thick lines denote links connecting corresponding pairs of the Petersen 
graphs). 

3.1. Labeling 

The RP can be labeled in a recursive fashion by extending the strategy of labeling the Petersen 

graph. A p-RP would therefore require p 2-tuples described above. A pRP can be visualised as 

a Petersen graph with every vertex of the Petersen graph being a (p - l)-RP. The first 2-tuple 

isolates a (p - l)-RP, the second two-tuple isolates a (p - 2)-RP within it, and so on. The pth 

2-tuple indicates the vertex. Thus, the address is complete. Figure 4 shows the 2-RP. 

3.2. Routing and Broadcasting 

To do routing and broadcasting efficiently, we first try to find a shortest path algorithm for 

any pair of vertices in P. Then we modify the algorithm to route and broadcast in any pRP. 

3.3. Shortest Path Algorithm 

THEOREM 3.1. There exists a unique shortest path between any pair of vertices in the Petersen 

graph. 

PROOF. Let us assume that the shortest path between any two vertices is not unique. Since the 

path length of any path in the graph cannot exceed 2 (since 2 is the diameter of the graph), the 

paths can be of length 0, 1, or 2. Since there are no self-loops in the Petersen graph, all paths 

of length 0 are unique. There are no parallel edges either; therefore, all paths of length 1 are 

unique. A nonunique path of length 2 implies the existence of a cycle of length four in the graph, 

but the Petersen graph has girth five. 

ALGORITHM FOR COMPUTING THE SHORTEST PATH IN THE PETERSEN GRAPH. Let V denote 

the set of vertices and E the set of edges in the Petersen graph. Consider the graph to be labeled 

according to labeling 2. The computation of the shortest path can be divided into two cases. 

Let the source vertex be ‘ui(si, ni) and the destination vertex, vj(sj, nj). The case where i = j is 

trivial. In the case of distinct vertices, the following possibilities arise: 

1. si = s3 = 0. If 72, 0 nJ = ni 0 nJ, the shortest distance is from j towards i; therefore, 

the path taken should be (si,ni) - (sj,ni o l)... --+ (sj, nj). Else, the shortest distance 

is from i to j, and the shortest path is (si,ni) + (sj,ni @ l)... -+ (sj,nj), where @ is 

addition modulo 5. 

2. si = sj = 1. If ni @ nj = ni 0 nj, the shortest distance is from j towards i; therefore, the 

path taken should be (Si, ni) -+ (sj, ni 0 2) *.. -+ (sj, nj). Else, the shortest distance is 

fromitoj,andtheshortestpathis(si,ni)-’(sj,ni~2)...-(~j,nj). 

3. si # sj. We consider three subcases. 
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(a) ni = nj. The vertices are adjacent and the shortest path is (si,ni) -S (sj,nj). 
(b) si = O,sj = 1. If ni @nj = 1, the shortest path is (si,ni) 4 (si,nj) + (sj,nj). Else, 

the shortest path is (si, ni) + (sj, ni) * (sj , nj). 
(c) si = 1, sj = 0. If ni @ nj = 2, the shortest path is (s~,vQ) 4 (si, nj) --* (sj, nj). Else, 

the shortest path is (s~,Q) 4 (Sj,ni) + (sj,nj). 

PROOF. The case i = j is trivial. In case 1, ni o nj indicates whether vj is closer to vi along the 
clockwise or the counterclockwise direction; that is, whether a sequence of modulo 5 additions or 
a sequence of modulo 5 subtractions gives the shortest path. The same is true for case 2, except 
that in this case, adjacent vertices differ by 2 in their second tuple and not by 1 as in case 1. 
Case 3(a) and 3(b) differ for exactly the same reason. Case 3(a) is obvious from the labeling. 

3.4. Algorithms for Routing and Broadcasting 

Owing to the fact that the RP is the product of the Petersen graph with itself, it is not 
surprising that almost everything that is applicable to the Petersen graph can be recursively 
applied to the RP. 

An algorithm for routing in the RP follows. The idea is based on the following notion. A 
pdimensional RP can be looked upon as P where every vertex of P actually denotes a (p - l)- 
dimensional RP. Formally, the p 2-tuples of the source and the destination are used as follows. 
Without loss of generality, let the first (most significant) i 2-tuples be identical in the two ad- 
dresses. This implies that the source and destination belong to the same (p - i)th RP. Using the 
links of the (p - i)th RP, the procedure route-Petersen reaches the destination (p - i - l)th RP. 
The address of the current node differs from the destination in one less tuple than the source and 
so on. 

ALGORITHM FOR ROUTING IN RP. 

route_rp(src,dest) 

/* 
* src : pZtuple address of source. 
* dest : p2-tuple address of destination. 

*/ 
begin 

while (src -dest) 
begin 

end 

d := the most significant differing Ptuple in src and dest. 
i := dth ZtupJe of src 
j := dth Ztuple of dest 
route-Petersen (d,i,j) 

end 

route-Petersen (d,ij) 
begin 
/* use links of the dth dimension RP, i.e., RP of dimension (d-l) is considered as a vertex */ 

if (i= j) 
send message to local processor 

elseif (group(i) = group(j)) /* they both belong to set Vi or V, */ 
calculate module difference 
send message over the shorter path 

/* otherwise, the src and the destination belong to different groups */ 
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elseif (i and j adjacent) 
send message to j 

else 

end 

find a common neighbour, u 
send message through neighbour u 

PROOF. The correctness of route_petersen() comes from Section 3.4.1. The procedure route_rp() 
calls route_petersen() for all differing 2-tuples, starting with the most significant, till there are 
no differing tuples left. After each call to route-Petersen, it is clear that the distance between 
the intermediate destination and the final destination decreases by at least 1. So, wute_rp() will 
eventually stop and dest will be reached. 

For the purpose of broadcasting, it is convenient to define a Petersen tree. 

3.5. Petersen Tree 

The Petersen tree is a spanning tree of the Petersen graph. It is ternary. The tree is shown in 
Figure 5. The Petersen tree (henceforth p-tree) is a complete 3-ary tree where every vertex is of 
degree 3. The depth of the tree is 2. 

Figure 5. The Petersen tree. 

If all ports transmit and receive is allowed, then a message can reach all the vertices in 2 time 
units. If single port transmit and/or receive is allowed, a message can reach in 5 time units. 

Figure 6 shows a p-tree of dimension 2. The p-tree is the broadcasting tree. The depth of the 
ptree of dimension 2 is only 4, which means that it takes only 4 units of time to broadcast a 
message assuming it is possible to simultaneously send a message over all links. The recursive 
nature of the ptree is evident. To draw a ptree of dimension 2, one can draw a ptree of 
dimension 1 with all the nodes of the tree being replaced with ptrees of dimension 1. Similarly, 
a ptree of dimension 3 can be drawn by replacing each node of a ptree of dimension 1 with a 
ptree of dimension 2 and so on. 

Figure 6. The broadcasting p-tree for the 2-RP. 

The basic idea of the broadcasting algorithm is as follows. Each node is a vertex of a Petersen 
‘th graph in several dimensions. The z 2-tuple of the p 2-tuple (assuming a pRP) indicates the 
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Table 1. Comparison of topological features. 

Topology P E KDVC d 

position of the node in the i th dimension(leve1) Petersen graph. To broadcast, any node must 

send the message to its 3 neighbours at every level. Every receiving node must then send it to 

its neighbours (at the same neighbour-level as that of the sender) and to all neighbours at lower 

levels. To prevent the same message from reaching the same node more than once, a table of 

10 ptrees (dimension 1) with every node being the root should be stored. From the table, each 

node can decide its i-level neighbours given the address of the node they receive the message 

from. For each lower level, the originator decides the tree (1 of 10) according to which messages 

should be sent. After each iteration, it is assured that subsequent tuples will be serviced and 

thus eventually all nodes will receive the message. 

ALGORITHM FOR BROADCASTING IN THE RP. 

broadcast 0 

if originator then send message to all neighbours 

else 

i = level of sender address 

send messages to all neighbours at level i from the selected tree 

send messages to all neighbours at lower levels 

end 

4. CONCLUSIONS 

The RP compares and competes well with the hypercube. Table 1 summarises the comparisons 

of the hypercube, some of its variants and the RP. The RP is very compact and highly symmetric. 

It has a logarithmic diameter (to the base 10). Due to its structure, for the same degree, it can 

accommodate many more vertices. A 3-RP has 1000 nodes, each of degree 9 and a diameter 

of only 6! From the table, it is evident that, for nearly the same number of nodes compared to 

the HC and the FCC, the HP has fewer edges, lesser diameter, optimal average message passing 

density for the same connectivity. Its cost is significantly lower than the hypercube. Over CCC, 

it has the advantage that it is for enhancement, and no existing connections have to be altered. 

For implementation purposes, the neighbour computation need not be done every time; instead, 

a table can be stored to save computation. The embedding properties of the RP have not been 
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explored in this paper, but the RP appears to be promising by the virtue of its symmetry. Also, 

it is known that a complete binary tree can be embedded in P with dilation-l, expansion-l. The 

hope is that the recursive nature of RP should therefore be able to embed a complete binary tree 

with expansion-l, dilation-l. 

From the study of the Generalised Petersen graphs [13] and Moore graphs [9], it appears that 

K1, Kz, and the Petersen graph are unique (P(4,l) can be obtained from the Cartesian product 

of K2 with itself). The natural and very interesting question that arises is: Are K1, Kz ad 

P, taken with the Cartesian product operation, suficient to generate all distance degree regular 
graphs that are optimal in this property? This question is still open. 
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