
450 IEEE JOURNAL OF ROBOTICS AND AUTOMATION. VOL. 4. NO. 4. AUGUST 1988

3 4 5 6 7
path parameter s

The B-spline basis function b&). Fig. I O .

For example, if i = 5, a plot of b4s) is shown in Fig. 10. The
function b6(s) is simply a copy of b5(s) shifted to the right by one
interval. Note that for any s, only four of the b, in (Al) will be
nonzero. This property allows one to vary the curvature in certain
portions of the path, without affecting others.

REFERENCES
R. H. Bartels, J. C. Beatty and B. A. Barsky, “An introduction to the
use of splines in computer graphics,” U . C. Berkeley Tech. Rep. TR
CSD, 831136, Aug. 1983.
J . E. Bobrow, S . Dubowsky and J . S. Gibson, “Time-optimal control
of robotic manipulators along specified paths,” Int. J . Robotics Res.,
vol. 4, no. 3 , Fall 1985.
R . A. Brooks, “Solving the find-path problem by good representation
of free space,“ in Proc. AAA1 2nd Annu. Nut. Conf. on Artificial
Intelligence (Pittsburgh, PA, Aug. 18-20, 1982). pp. 381-386.
S . Dubowsky and Z. Shiller, “Optimal dynamic trajectories for robotic
manipulators,” in Proc. V, CISM-IFToMM Symp. on Theory and
Practice of Robots and Manipulators (Udine, Italy, 1984).
S. Dubowsky, M. A. Norris and A. Shiller, “Time optimal trajectory
planning for robotic manipulators,” in 1986 IEEE Conf. on Robotics
and Automation (San Francisco, CA, Apr. 1986), pp. 1906-1912.
R . Fletcher and M. J. D. Powell, “A rapidly convergent method for
minimization,” Comput. J . , vol. 6, no. 2, pp. 163-168, 1963.
E. G. Gilbert and D. W. Johnson, “Distance functions and their
application to robot path planning in the presence of obstacles,” IEEE
J. Robotics Automat., vol. RA-I, pp. 21-30, Mar. 1985.
D. W. Johnson and E. G. Gilbert, “Minimum-time robot path planning
in the presence of obstacles,” in 24th Conf. on Decision and Control
(Ft. Lauderdale, FL, Dec. 1985), pp. 1748-1753.
M. E. Kahn and B. Roth, “The near-minimum time control of open-
loop articulated kinematic chains.” ASME J . Dynamic Syst., Meas.,
Contr., vol. 93, pp. 164172, Sept. 1971.
D. E. Kirk, Optimal Control Theory. Englewood Cliffs, NJ:
Prentice-Hall, 1970, pp. 245-246.
T. Lozano-Pkrez, ”Automatic planning of manipulator transfer move-
ments,” IEEE Trans. Syst. Man, Cybern., vol. SMC-11, pp. 681-
698, Oct. 1981.
J . Y. S . Luh and C. E. Campbell, “Minimum distance collision-free
path planning for industrial robots with a prismatic joint,” IEEE
Trans. Automat. Contr., vol. AC-29, pp. 675-680, Aug. 1984.
E. B. Meier and A. E. Bryson, “An efficient algorithm for time-
optimal control of a two-link manipulator,” in AIAA Conf. on
Guidance and Control (Monterey, CA, Aug. 1987), p ~ . 204-212.
V. T. Rajan, “Minimum time trajectory planning,” in ;985 IEEE
Conf. on RoboticsandAutomation (St. Louis, MO, Mar. 1985), pp.
759-764.
E. G. Shin and N. D. McKay, “Minimum-time control of robotic
manipulators with geometric path constraints,” IEEE Trans. Aufo-
mat. Contr., vol. AC-30, pp. 531-541, June 1985.
K. G. Shin and N. D. McKay, “Selection of near-minimum time
geometric paths for robotic manipulators,” IEEE Trans. Automat.
Contr., vol. AC-31. no. 6, pp. 501-51 I , June 1986.
G. N . Vanderplaats, ADS, “A Fortran program for automated design
synthesis. Version 0.0,” Naval Postgraduate School, Monterey CA,
1983.
G. N . Vanderplaats, Numerical Optimization Techniques for Engi-
neering Design: With Applications. New York, NY: McGraw-Hill,
1984.
A. Weinreb and A. E. Bryson, “Optimal control of systems with hard
control bounds,’’ IEEE Trans. Automat. Contr., vol. AC-30, no. I I ,
pp. 1135-1 138, Nov. 1985.

On Terrain Model Acquisition by a Point Robot Amidst
Polyhedral Obstacles

NAGESWARA S . V. RAO. S. S . IYENGAR. B. JOHN OOMMEN. ANI)
R . L. KASHYAP

Abstract-We consider the problem of terrain model acquisition by a
roving point placed in an unknown terrain populated by stationary
polyhedral obstacles in .two/three dimensions. The motivation for this
problem is that after the terrain model is completely acquired, navigation
from a source point to a destination point can be achieved along the
collision-free paths. And this can be done without the usage of sensors by
applying the existing techniques for the well-known find-path problem. In
this communication, the Point Robot Autonomous Machine (PRAM) i s
used as a simplified abstract model for real-life roving robots. W e present
an algorithm that enables PRAM to autonomously acquire the model of
an unexplored obstacle terrain composed of an unknown number of
polyhedral obstacles in two/three dimensions. In our method, PRAM
undertakes a systematic exploration of the obstacle terrain with its sensor
that detects all the edges and vertices visible from the present location,
and builds the complete obstacle terrain model.

I. INTRODUCTION
In recent times there has been an enormous spurt of research

activity in the algorithmic aspects of motion planning. The problem
of navigating a body through a terrain populated by a set of known
obstacles (i.e., the precise geometric characterization of the obstacles
is available) is solved in many cases. Lozano-Perez and Wes!ey [3],
O’Dunlaing and Yap [5] , Reif 171, and Schwartz and Sharir [8]
present some of the most fundamental solutions to this problem.
Whitesides [lo] presents a comprehensive treatment on these and
other solutions to the find-path and related problems. In all these
methods, the precise model of the obstacle terrain is known a priori,
and path planning is done entirely computationally. Once a path is
planned, the robot moves along the planned path, and no sensors are
used for navigational purposes.

Another interesting problem ia the navigation of a robot in an
unexplored or a partially explored terrain. In this case, the entire
terrain model may not be known, and the robot relies on its sensors
for navigation. Lumelsky and Stepanov 141 present sensor-based
navigation algorithms for navigating a point automaton to a destina-
tion point using “touch” type of sensor. In this inethod localized
sensor information is used to guide the point automaton, and this
information is not put to any further global use. In many applications,
incidental learning is shown to be an important enhancement in the
navigation planning. Here, a composite model of the terrain is built
by integrating the sensor information obtained as the robot executes
sensor-based and goal-directed navigation. Iyengar et al. [2],
Oommen et al. [6], Turchan and Wong 191 discuss different versions
of learned navigation in unexplored terrains. Here we consider the
problem of acquiring the terrain model by systematic exploration of
the terrain using a sensor. Our main motivation stems from the fact
that the availability of the terrain model enables us to plan the entire

Manuscript received February 26, 1987; revised December 7. 1987. A
preleminary version of this paper was presented at the 3rd IEEE Conference
on AI Applications, Orlando, FL. Feb. 1987. The work of B . J . Oomman was
partially supported by the National Sciences and Engineering Council of
Canada.

N . S . V. Rao is with the Department of Computer Science, Old Dominion
University, Norfolk, VA 23529-0162.

S . S. Iyengar is with the Department of Com:)uter Science, Louisiana State
University, Baton Rouge, L.4 70803.

B. J . Oommen is with the School of Computer Science. Carleton
University, Ottawa KIS SB6, Canada.

R. J. Kashyap is with the Department of Electrical Engineering. Purdue
University, West Lafayette, IN 47907.

IEEE Log Number 8820163.

0882-4967/88/0800-0450$C’ 1tO 0 1988 IEEE

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 4, AUGUST 1988 45 1

navigation path using the techniques of known terrains and without
using sensors. This is to be contrasted with the techniques based on
incidental learning, where sensors may have to be used for navigation
planning at every stage.

In this communication, we introduce the Point Robot Autono-
mous Machine (PRAMj as a simplified abstract model for a mobile
robot. Now, the terrain acqu n problem can be stated as
follows: The PRAM is initially placed in a completely unenplored
terrain populated by an unknown (but, finite) number of polyhe$rd
obstacles of unknown sizes and locations. The obstacles are known to
be polyhedra (finite in number and each with a finite number of
vertices). It is also known that the terrain is finite-sized, i.e., the
terrain can be inscribed in a circlelsphere of finite radius in twolthree
dimensions. No other information about the obstacles is available to
PRAM. Then, PRAM is required to scan the terrain and autono-
mously acquire the dimensions of all edges and the locations of all
vertices for each obstacle. In other words, the complete terrain model
should be obtained by PRAM with each obstacle described as a
polyhedron in twolthree dimensions. Our problem is similar, in
“spirit,” to that of Cole and Yap [l] where the shape of an n-gon is to
be detected by probing with a tactile sensor. Here, the main idea
behind the terrain acquisition is that after the terrain model is built,
the path planning can be carried out “computationally” using the
techniques for known terrains such that: a) the paths of navigation can
be made optimal in possible cases, b) no further usage of the sensor
equipment is necessary for navigation planning. In other words, the
terrain acquisition (in a way) is a precursory problem to the find-path
problem which is well-known in robotics.

One of the important requirements on any terrain acquisition
algorithm is to ensure that the model of every obstacle is completely
acquired. We prove the completeness of the acquisition process by
establishing that the visibility graph of the terrain is connected, and
making use of the fact that a depth-first search algorithm visits all
nodes of a connected graph.

The communication is organized as follows: Section II discusses
the problem definition and the abstract robot model. In Section 111,
we describe the terrain model acquisition algorithm. We analyze the
performance of the algorithm in terms of the robot motion parameters
and computational comple .-ty in Section IV. In Section V we present
an example to illustrate the process of terrain model acquisition in
simple terrain.

11. PRELIMINARIES
We now describe the Point Robot Autonomous Machine

(PRAM). PRAM is point-sized (in twolthree dimensions), and houses
a computing device with a finite storage capability. Formally, PRAM
supports two navigation instructions-SCAN(L) and MOVE(U)
which are described below:

a) The execution of SCAN@) is as follows: All obstacle vertices
that are visible from the present location of PRAM are returned in the
list L. Furthermore, if PRAM is located at an obstacle vertex U, all
obstacle edges that are incident at U are marked and returned.

b) The instruction MOVE(U) moves PRAM in a straight line to the
point U from its present location. Here U could be a point in the free
space or an obstacle vertex.

The execution of a single SCAN@) is termed as a scan operation.
Note that the scan operation is a very-high-level abstraction of
sensing operations performed by real-life robots. Such operations, in
general, involve the actual process of sensing and further processing;
both these activities could be time-consuming and computationally
complex. We keep this entire process as a single logical entity,
namely, the scan operation. By doing this we do not imply the
difficulty or ease with which such an operation can be carried out.
The execution of a single MOVE(u) is termed as an elementary
traversal. We assume that these instructions are executed without
errors. We characterize the performance of an algorithm for PRAM
in terms of the number of scan operations and elementary traversals.
We also consider the complexities of computations carried by the
computing device housed on PRAM. Our PRAM is very similar to
the Point Automaton (PA) proposed earlier by Lumelsky and

Stepanov [4]. But, whereas PRAM has memory, the PA does not
support this feature. Another difference is that PRAM is equipped
with a “scan” sensor as opposed to the “touch” sensor of PA.
Further, PRAM can navigate only along straight lines, whereas PA
can navigate along any arbitrary simple curve.

Visibility graphs have been extensively studied in computational
geometry and robot motion planning [3], [6] . Formally, the VisibiIity
Graph, VG(0) = (V, E), of an obstacle terrain 0 is defined as
follows (we assume that 0 is finite-sized and consists of a finite
number of polyhedral obstacles; each obstacle has a finite number of
vertices):

i) V is the union of vertices of all obstacles,
ii) a line joining the vertices ut and U, forms an edge (U,, U,) E E if

and only if it is either an edge of an obstacle or it is not
intersected by any obstacle.

Our solution to this problem is based on planning the motion of
PRAM in such a way that the order in which the new vertices are
visited corresponds to the depth-first search (DFS) traversal of
VG(0). Observe that the VG(0) is initially not known to PRAM.
The adjacency list of any vertex U of VG(0) can be obtained by
placing PRAM at U and obtaining the vertices visible from U (by
performing a scan operation). After this operation, the adjacency list
of U is stored in the Partial VisibiIity Graph, denoted by PVG(O),
which is available for further usage. The PVG(0) is augmented after
each visit to a new vertex. Note that in order to simulate a depth-first
search, at any stage, we only need to know the adjacency lists of the
vertices visited so far and the vertex at which PRAM is located at
present. These adjacency lists are known through scan operations
performed from appropriate vertices. We shall show that VG(0) is
connected, We then make use of the fact that a DFS traversal on a
connected graph visits all the vertices. Thus by simulating a DFS
using PRAM we make sure that all the vertices of the obstacles are
visited. At this stage PVG(0) converges to VG(0) from which the
complete terrain model is obtained by grouping the marked edges that
correspond to the individual obstacles.

III. TERRAIN MODEL ACQUISITION ALGORITHM
To describe the terrain model acquisition algorithm we shall

specify the steps that are executed and simultaneously allude to the
lines of code they represent in the algorithm ACQUIRE described
below. Initially PRAM performs a scan operation and moves to a
vertex UO. Then it systematically visits the obstacle vertices. Let
PRAM be presently located at a vertex U (initially U = uo). PRAM
performs a scan operation (from U) and stores the adjacency list of U
in PVG(0) (lines 1-2 of ACQUIRE). At this point the vertex U is
pushed onto a stack called PATH-STACK. Here, we have two cases.
In the first case, some of the adjacent vertices of U are not visited
earlier by PRAM. Then U*, an unvisited vertex in L nearest to U, is
computed wid PRAM moves to U* (lines 8-10 of ACQUIRE). From
U*, ACQUIRE is recursively invoked (line 11). In the second case,
all adjacent nodes of U are already visited by PRAM. Now the
algorithm PLAN-PATH is used to obtain a vertex U* to visit next, and
PRAM moves to U* (lines 4-5 of ACQUIRE). If U* # U,,, then
ACQUIRE is recursively applied from U* (lines 6-7), and ACQUIRE
terminates otherwise. At the termination of ACQUIRE, we appropri-
ately collect the edges that belong to individual obstacles (line 12). In
Lemma 1 we show that each obstacle gives rise to a connected
component in VG(0) entirely consisting of marked edges. These
components can be obtained in linear time (in number of edges and
vertices) using standard connected component algorithms. This
description provides the complete obstacle terrain model.

algorithm ACQUIRE(u);
begin
1. SCAN@);
2.

3.

update the PVG(0) with information from L and store U on

if (all nodes adjacent to U are visited) then
PATH-STACK;

4. PLAN-PATH(u*, P);

452 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 4, AUGUST 1988

5.
6. if (U* # u o) then
7. ACQUIRE(u*);

8. else
9.

move along the path specified by P,

end-if ;

U* +- unvisited vertex in L nearest to U;
10. MOVE(u*);
11. ACQUIRE(u*);

12.
end-if; .
appropriately group the marked edges corksponding to
individual obstacles;

end;
The algorithm PLAN-PATH essentially manipulates PATH-

STACK on which the path taken by PRAM is stored. The top of the
stack is repeatedly popped until a vertex uz with an unvisited adjacent
node is found (lines 2-4 of PLAN-PATH). A shortest path, in terms
of the number of edges, to an unvisited node U* adjacent to uz is
computed by using Dijkstra’s shortest path algorithm and is returned
in P (lines 9-10 of PLAN-PATH). The PRAM moves along this
shortest path to U* (line 5 of ACQUIRE). If no vertex with unvisited
adjacent nodes is found on PATH-STACK, then a shortest path to uo
is planned (as in line 7 of PLAN-PATH), and the acquisition process
is terminated. This process is formally described in the algorithm

At this stage, we wish to note a difference between the DFS
algorithm and ACQUIRE. Consider a stage at which PRAM is at
vertex U, and all nodes adjacent to U are visited. Let w be the vertex
on the stack obtained on PATH-STACK by PLAN-PATH and let U*
be the adjacent node of w chosen to visit next. The backtrack path
followed (conceptually) by the DFS algorithm is from U to w and then
to U*. Note that PRAM moves to U* along the path obtained by using
Dijkstra’s algorithm on PVG(0). This path may or may not coincide
with the path followed by the DFS algorithm.

PLAN-PATH .

algorithm PLAN-PATH(u*, P);
begin
1.
2.

3.
4.

5 .

7.
8. else
9.

10.

u2 + top element of PATH-STACK;
while (PATH-STACK in not empty) and (all nodes adjacent
to uz are visited) do

pop out the top of PATH-STACK;
u2 +- top element of PATH-STACK;

end-while;
if (all nodes of u2 are visited) then

return a shortest path to uo in P;

find a shortest path to an unvisited node adjacent to uz;
return the planned path in P,

6. U* uo

end-if;
end;

We now show the correctness of ACQUIRE. Our proof consists of
two steps: First, we prove that VG(0) is connected, i.e., there is a
path from every vertex to every other vertex in VG(0) (Lemma 1).
Then, we use the property that the execution of ACQUIRE by PRAM
is equivalent to performing a depth-first search on VG(0).

Lemma I : The graph VG(0) is connected.

Proof: Let EXT(0,) denote the exterior of an obstacle
polyhedron 0, E 0. Let VER(0,) and EDG(0,) be the sets of
vertices and edges, respectively, of the obstacle 0,. The graph G, =
(VER(O,), EDG(0,)) is connected because every vertex .of a
polyhedron 0, can be reached from every other vertex by traversing
along the edges of 0,. Hence, the connectivity of VG(0) can
be shown by showing that there exists at least one path between each
pair of graphs (VER(O,), EDG(0,)) and (VER(O,), EDG(Oj)), for
i # j.

First we show that VG(0) is connected if each 0, E 0 is a convex
polyhedron. Let VZSZ(u), for U E VER(0 ,) be the points visible
from U, when only the 0, is present in the obstacle terrain, i.e., for x

E VZSZ(u), the line segment joining x and U lies entirely in
EXT(0,) . We have

U VZSZ(u) =EXT(O,)
U € VER(0,)

for a convex polyhedron 0,. Let the obstacle terrain consist of exactly
two convex obstacles O1 and Oz. It is easily seen that at least one
edge exists (that coincides with line/plane of support) between one
vertex of O1 and one of the vertices of 0 2 . Thus 01 and 0 2 form a
connected graph.

Consider placing another obstacle 0 3 in the existing terrain. First
consider the two-dimensional case. For each vertex U of O3 let u I and
uZ denote the vertices adjacent to U such that O3 lies to the right of the
line segments and @ denotes the line segment joining two
points p and 4). Imagine a semi-infinite ray r originating from U and
containing G. Let us sweep r in the clockwise direction until r
contains G. By sweeping such rays from every vertex of O3 we
cover the entire EXT(O3). Since both O1 and 0 2 are contained in
EXT(03), the ray touches one of O1 and O2 in one of the
configurations shown in Fig. 1. The obstacle 0, and Oz may be
encountered separately by r as in Fig. l(a). Alternatively, one
obstacle may cover the other as in Fig. le). In the third case, the
obstacles may be as shown as in Fig. l(c). In all these cases at one
point of the r’s touches one of the vertices of O1 or 02. This implies
that there is an edge between one of the vertices of O3 and a vertex of
O1 or Oz. Now consider the three-dimensional case. Let U be vertex
and let f l , fz, - . , fk be the clockwise listing of faces that meet at U
when we look at U from outside of 03. Let e, be the edge (that
contains U) between f, and f,+ 1 (ek is the edge between fk and fl) .
Now consider the half-plane with e, as end line. Let us sweep this
.plane (in the exterior of 03) with e, as axis; initially, this plane
contains f, and after the sweep contains f,+ I . It is clear that by
sweeping all planes corresponding to all vertices of O3 we cover the
EXT(03). By using the earlier arguments at least one plane should
touch one of the vertices of either O1 or 02. This proves the existence
of the suitable edge. We observe that at least one vertex of O3 lies in
VZSZ(u), for U E VER(0l) U VER(02). Hence, VG(0) for 0 =
{ O1 , 0 2 , 03} is a connected graph. This argument can be extended
for any finite number of convex polyhedra. Hence, VG(0) is
connected if every obstacle polyhedron in 0, is a convex.

Consider the terrains with nonconvex obstacles. Consider the
convex hull CH(0,) formed by joining the “outer” vertices of 0, E
0. If two obstacles 0, and 0, are such that C H (0 ,) n CH(0,) # 4,
then at least one obstacle enters a “concavity” of the other. We can
apply the “sweeping” method (sweeping area restricted to the
concavity) to show that an edge exists between VG ((0,)) and VG
({O,}). Let us “conceptually” combine these two obstacles, and note
that VG ({O , , 0,)) is connected. Let us recursively apply this
technique on the resultant terrain to obtain a terrain of “combined”
obstacles denoted by

O ’ = { O ; , O ; , . - a , Oh}, rns(O(

and

By our construction

CH(O;) n CH(O;) = 4.

Consider a vertex U E VER(0i) and U I VER(CH(O/)). There is
always a path from U to U I along the edges of VG({ 0; }) and thus U
and U I are connected. Hence VG({O/ }) is connected for i = 1, 2,
e . . , m. Now VG({CH(O,’) , CH(O;) , e - . , CH(Ok)}) is con-
nected since each CH(0i) is convex. Thus VG(0) is connected. -

0

IEEE J O U R N A L OF R O B O ~ I C S A N D AUTOMATION. VOL. 4. NO. 4, AUGUST 1988 453

(b) (C)

Fig. I , Possible configurations of 0,. 02, and 0,

A close look at the algorithm ACQUIRE reveals the following
property:

Property I : The order in which the unexplored vertices of the
obstacle terrain 0 are visited by PRAM while executing AC-
QUIRE is exactly the same as the order in which the nodes of
VG(0) are visited when a depth-first-search traversal is per-

formed on VG(0) .
0

Note that the process of visiting an obstacle vertex by PRAM
involves physically locating PRAM at the vertex. Whereas the
process of accessing a graph node of V G (0) that corresponds to an
obstacle vertex (by say algorithm PLAN-PATH) involves an access
to the memory. The correctness of the algorithm ACQUIRE directly
follows from the Lemma 1 and Property 1 .

Theorem I : The algorithm ACQUIRE builds the complete
obslacle terrain model in a finite amount of time.

Proof: From Lemma 1 the V G (0) is a connected graph. Hence,
any depth-first traversal on V G (0) visits all the nodes in a finite
amount of time (note that V G (0) has finite number of nodes). Thus
using Property 1, we conclude that the entire V G (0) is built from the
sensor readings taken from each of the vertices of the obstacles.
Then, the terrain model is built from the VG(0) by appropriate
grouping of the obstacle edges.

U
IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of ACQUIRE in terms
of the number of scan operations and elementary traversals, and also
in terms of computational complexity. Let Ndenote the total number
of obstacle vertices.

Theorem 2: To acquire the complete model of the obstacle

a) the total number of scan operations required is N
b) the total number of elementary traversals is at most 2(N - I).

Proof: Part a) directly follows from Lemma I and Property I .
We now prove Part b). We observe that when PRAM accesses the
PATH-STACK for finding the next stop point w , a path to w always
exists along thc DFS tree. Thus in the worst case PRAM backtracks

terrain 0, using ACQUIRE,

along this path on the DFS tree. Any other path to w planned by
PLAN-PATH will have no more edges than this path. Note that
PRAM backtracks along a path at most once, because once the path is
removed from the PATH-STACK it will not be pushed onto it again.
In the worst case, all the paths planned by PLAN-PATH are along the
edges of the DFS tree. Thus in the worst case, each edge of the DFS
tree is traversed twice, hence the theorem.

U
The computational efforts involved in the execution of ACQUIRE

are estimated in Theorem 3. We maintain a table, called MAP-
TABLE, to obtain a node number in V G (0) for any obstacle vertex
specified by its coordinates. The MAP-TABLE is maintained as an
AVL-tree: the value of each node is obtained by concatenating the
coordinate values and treating it as a single value. Thus any vertex of
an obstacle is uniquely represented as a node specified by a single
value. Along with each node of the AVL-tree, the corresponding
node number in P V G (0) is stored. Additionally, the information
indicating whether a vertex is visited or not is also stored in the
corresponding node of the AVL-tree. Thus complexity of finding the
node number in P V G (0) for any vertex that is specified by its
coordinates is O(log N) .

Theorem 3: In acquiring the complete model of the obstacle
terrain 0 using ACQUIRE, the computational complexities of
various operations are as below:

a) the total number of node accesses is O(N3);
b) the complexity of constructing MAP- TABLE is O(N log N);
c) the number of accesses fo MAP-TABLE is O(E log N),

d) the complexity of storage is O(N2).
where E is the number of edges of VG(0);

Proof: a) The PVG(0) is accessed by the algorithm for
planning the shortest paths from the current vertex to another
unvisited vertex using Dijkstra’s shortest path algorithm (lines 9- I O
of algorithm PLAN-PATH). The planning of each path accesses
O (N 2) nodes, and the number of path planning operations is given by
O (N) . Thus total number of the node accesses in the complcte
execution of the algorithm ACQUIRE is O(N3) .

b) A vertex is inserted into MAP-TABLE when it is detected by a
SCAN operation. The cost of each insertion is O(log N), and there
are N such insertions. Thus part b) is proven.

c) The MAP-TABLE is accessed while inserting new vertices
detected as the result of a scan operations. The vertices are checked
for membership in MAP-TABLE before insertion. The number of
such operations is O(E) . Thus the complexity of this task is O(E log
N) . The MAP-TABLE is also accessed while finding whether all thc
nodes adjacent to a given node are visited (as in line 2 of the
algorithm PLAN-PATH). For each node on the stack the number of
accesses to MAP-TABLE is equal to its degree in P V G (0) . Hence,
the total number of times the MAP-TABLE is accessed for this
purpose is at most twice the sum of the degrees of all nodes in
PVG. Thus the MAP-TABLE is accessed O (E) times and the total
number of accesses to the MAP-TABLE is O(E log N) .

d) The complexity of storing the visibility graph is O (N 2) . The
storage complexity of PATH-STACK is O (N) and that of MAP-
TABLE is O (N) . Thus the total complexity is O (N 2) . Hcnce. the
theorem.

Ll
In the next section we present an example to illustrate the working

of the terrain acquisition algorithm.

V. EXAMPLE

Consider the two-dimensional obstacle terrain shown in Fig. 2.
Initially, PRAM is located at vertex 1, and PRAM does not have any
terrain model. Then PRAM scans the terrain from vcrtcx I . and
detects vertices 1 , , 1 2 , 1 3 , 1 4 , 2, I s , which are visible from vertex 1
(see Fig. 3(a)). At this point, the vertices 2 and l 5 in the adjacency list
of the vertex U are specially marked to indicate that (I , 1 5) and (I . 2)
are edges of an obstacle. Then, PRAM moves to vertex 2. which is
the nearest to vertex 1, The path taken by the robot is shown in hold

454 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 4, AUGUST 1988

PzZl
Fig. 2. The unexplored terrain.

1

Fig. 3 . Initial storage acquisition. (a) The PRAM is presently located at
vertex 2. (b) PVG(0) .

(b)

located at vertex 13. (b) PVG(0) .
Fig. 4. Intermediate stage of acquisition. (a) The PRAM is presently

lines with arrows. Then PRAM obtains the new vertices 2 , , 22r 2 3 ,
24. The PVG at this stage is shown in Fig. 3(b). Vertices 1 and 2 ,
shown by bigger circles, are marked as “visited.” The contents of
the PATH-STACK are I , 2 at this stage. In Fig. 4(a), we show an
intermediate stage of terrain acquisition. The PRAM has moved to
vertex 13. Until this stage, the procedure PLAN-PATH is not
invoked. At this point the contents of PATH-STACK are I , 2 , . . . ,
13, and also all vertices visible from 13 are visited. Then PATH-
STACK is popped, until a vertex with an unvisited neighbor vertex is
found. Vertex 4 is found as a result since its neighbor vertex 24 is not
visited. The path to 24 via 3 is found by Dijkstra’s algorithm. Let 24
be called 14 for convenience. Then the contents of the PATH-

(b)

vertex 1. (b) PVG(0) converges VG(0) .
Fig. 5. Completion of terrain model acquisition. (a) The PRAM returns to

STACK are changed to 1, 2, 3, 4 , 14. The present PVG is shown in
Fig. 4@). From vertex 14 PRAM moves to vertex 15 (call l 5 as 15
for convenience), and at this point all the neighbors of all the vertices
are visited. Then PRAM moves back to vertex 1 (see Fig. 5(a)). Note
that the number of MOVE(.) operations is 16. The complete
visibility graph is shown in Fig. 5(b), from which the terrain model
can be easily constructed.

VI. CONCLUSIONS
In this paper we consider the terrain model acquisition by a point

robot roving in an obstacle terrain populated by an unknown number
of polyhedral obstacles in two/three dimensions. We present a
method that enables the point robot to acquire the complete terrain
model in a finite amount of time. The implementation of the proposed
technique on a real-life robot involves modifying the algorithm
PATH-PLAN to account for the size and configuration of the robot.
Specifically, at any stage during terrain acquisition, the paths are to
be planned using the partially built terrain model. A two-dimensional
version of ACQUIRE has been implemented on the HERMIES-I1
robot at Oak Ridge National Laboratory in Fortran 77 language
running on an NCUBE control computer. The algorithm ACQUIRE
is also implemented in a simulated mode in C on a VAX 111780.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers whose careful
and extensive comments have greatly improved the presentation of
the material in the communication.

REFERENCES
R. Cole and C. K. Yap, “Shape from probing,” J . Algorithms. vol. 8,
no. 1 , pp. 19-38, 1987.
S. S . Iyengar, C. C. Jorgensen, S. V . N . Rao, and C. R . Weisbin.
“Robot navigation algorithms using learned spatial graphs.” Ro-
botica, vol. 4, pp. 93-10, 1986.
T. Lozano-Perez and M . A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Commun. A C M ,
vol. 22, no. 10, pp. 560-570, 1979.
V. J . Lumelsky and A. A. Stepanov, “Dynamic path planning lor a
mobile automaton with limited information on the environment,” IEEE
Trans. Automat. Contr., vol. AC-3 I , no. 11, pp. 1058- 1063, 1986.
C. O’Dunlaing and C. Yap, “A ‘retraction’ method for planning the
motion of a disc,” J . Algorithms. vol. 6, pp. 104-1 I I . 1985.
J. B. Oommen. S . S. lyengar, N. S. V . Rao, and R . L. Kashyap,
“Robot navigation in unknown terrains using learned visibility graphs.
Part I : The disjoint convex obstacle case,” lEEE J . Robotics
Automof.. vol. RA-3, no. 6, pp. 672-681, Dec. 1987.
J. Reif, “Complexity of the mover’s problem and generalizations.” in

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 4, AUGUST 1988 455

Proc. 20th Symp. on Foundation of Computer Science, 1979, pp.
421-421.
J . T. Schwartz and M. Sharir, “On the piano movers’ problem I: The
special case of a rigid polygonal body moving amidst polygonal
barriers,” Commun. Pure Appl. Math., vol. 36, pp. 345-398, 1983.
M. P. Turchen and A. K. C. Wong, “Low level learning for a mobile
robot: Environmental model acquisition,” in Proc. 2nd Conf. on
Artificial Intelligence Applications (Miami Beach, FL, Dec. 1985),

[8]

[9]

pp. 156-161.
S . Whitesides, “Computational geometry and motion planning,’’ in
Computational Geometry, G. Toussaint, Ed. Amsterdam, The
Netherlands: North-Holland, 1985.
N. S. V. Rao, S. S. Iyengar, B. J . Oommen, and R . L. Kashyap,
“Terrain acquisition by a point robot amidst polyhedral obstacles.” in

Proc. 3rd Conf. on Artificial Intelligence Applications (Orlando.
FL, Feb. 1987), pp. 170-175.

[lo]

[l l]

