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3 4 5 6 7 
path parameter s 

The B-spline basis function b&). Fig. I O .  

For example, if i = 5, a plot of b4s) is shown in Fig. 10. The 
function b6(s) is simply a copy of b5(s) shifted to the right by one 
interval. Note that for any s, only four of the b, in (Al)  will be 
nonzero. This property allows one to vary the curvature in certain 
portions of the path, without affecting others. 
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On Terrain Model Acquisition by a Point Robot Amidst 
Polyhedral Obstacles 

NAGESWARA S .  V.  RAO. S. S .  IYENGAR. B. JOHN OOMMEN. ANI) 
R .  L. KASHYAP 

Abstract-We consider the problem of terrain model acquisition by a 
roving point placed in an unknown terrain populated by stationary 
polyhedral obstacles in .two/three dimensions. The motivation for this 
problem is that after the terrain model is completely acquired, navigation 
from a source point to a destination point can be achieved along the 
collision-free paths. And this can be done without the usage of sensors by 
applying the existing techniques for the well-known find-path problem. In 
this communication, the Point Robot Autonomous Machine (PRAM) i s  
used as a simplified abstract model for real-life roving robots. W e  present 
an algorithm that enables PRAM to autonomously acquire the model of 
an unexplored obstacle terrain composed of an unknown number of 
polyhedral obstacles in two/three dimensions. In our method, PRAM 
undertakes a systematic exploration of the obstacle terrain with its sensor 
that detects all the edges and vertices visible from the present location, 
and builds the complete obstacle terrain model. 

I. INTRODUCTION 
In recent times there has been an enormous spurt of research 

activity in the algorithmic aspects of motion planning. The problem 
of navigating a body through a terrain populated by a set of known 
obstacles (i.e., the precise geometric characterization of the obstacles 
is available) is solved in many cases. Lozano-Perez and Wes!ey [3], 
O’Dunlaing and Yap [ 5 ] ,  Reif 171, and Schwartz and Sharir [8] 
present some of the most fundamental solutions to this problem. 
Whitesides [ lo]  presents a comprehensive treatment on these and 
other solutions to the find-path and related problems. In all these 
methods, the precise model of the obstacle terrain is known a priori, 
and path planning is done entirely computationally. Once a path is 
planned, the robot moves along the planned path, and no sensors are 
used for navigational purposes. 

Another interesting problem ia the navigation of a robot in an 
unexplored or a partially explored terrain. In this case, the entire 
terrain model may not be known, and the robot relies on its sensors 
for navigation. Lumelsky and Stepanov 141 present sensor-based 
navigation algorithms for navigating a point automaton to a destina- 
tion point using “touch” type of sensor. In this inethod localized 
sensor information is used to guide the point automaton, and this 
information is not put to any further global use. In many applications, 
incidental learning is shown to be an important enhancement in the 
navigation planning. Here, a composite model of the terrain is built 
by integrating the sensor information obtained as the robot executes 
sensor-based and goal-directed navigation. Iyengar et al. [2], 
Oommen et al. [6], Turchan and Wong 191 discuss different versions 
of learned navigation in unexplored terrains. Here we consider the 
problem of acquiring the terrain model by systematic exploration of 
the terrain using a sensor. Our main motivation stems from the fact 
that the availability of the terrain model enables us to plan the entire 
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navigation path using the techniques of known terrains and without 
using sensors. This is to be contrasted with the techniques based on 
incidental learning, where sensors may have to be used for navigation 
planning at every stage. 

In this communication, we introduce the Point Robot Autono- 
mous Machine (PRAMj as a simplified abstract model for a mobile 
robot. Now, the terrain acqu n problem can be stated as 
follows: The PRAM is initially placed in a completely unenplored 
terrain populated by an unknown (but, finite) number of polyhe$rd 
obstacles of unknown sizes and locations. The obstacles are known to 
be polyhedra (finite in number and each with a finite number of 
vertices). It is also known that the terrain is finite-sized, i.e., the 
terrain can be inscribed in a circlelsphere of finite radius in twolthree 
dimensions. No other information about the obstacles is available to 
PRAM. Then, PRAM is required to scan the terrain and autono- 
mously acquire the dimensions of all edges and the locations of all 
vertices for each obstacle. In other words, the complete terrain model 
should be obtained by PRAM with each obstacle described as a 
polyhedron in twolthree dimensions. Our problem is similar, in 
“spirit,” to that of Cole and Yap [l] where the shape of an n-gon is to 
be detected by probing with a tactile sensor. Here, the main idea 
behind the terrain acquisition is that after the terrain model is built, 
the path planning can be carried out “computationally” using the 
techniques for known terrains such that: a) the paths of navigation can 
be made optimal in possible cases, b) no further usage of the sensor 
equipment is necessary for navigation planning. In other words, the 
terrain acquisition (in a way) is a precursory problem to the find-path 
problem which is well-known in robotics. 

One of the important requirements on any terrain acquisition 
algorithm is to ensure that the model of every obstacle is completely 
acquired. We prove the completeness of the acquisition process by 
establishing that the visibility graph of the terrain is connected, and 
making use of the fact that a depth-first search algorithm visits all 
nodes of a connected graph. 

The communication is organized as follows: Section II discusses 
the problem definition and the abstract robot model. In Section 111, 
we describe the terrain model acquisition algorithm. We analyze the 
performance of the algorithm in terms of the robot motion parameters 
and computational comple .-ty in Section IV. In Section V we present 
an example to illustrate the process of terrain model acquisition in 
simple terrain. 

11. PRELIMINARIES 
We now describe the Point Robot Autonomous Machine 

(PRAM). PRAM is point-sized (in twolthree dimensions), and houses 
a computing device with a finite storage capability. Formally, PRAM 
supports two navigation instructions-SCAN(L) and MOVE( U) 
which are described below: 

a) The execution of SCAN@) is as follows: All obstacle vertices 
that are visible from the present location of PRAM are returned in the 
list L. Furthermore, if PRAM is located at an obstacle vertex U, all 
obstacle edges that are incident at U are marked and returned. 

b) The instruction MOVE( U) moves PRAM in a straight line to the 
point U from its present location. Here U could be a point in the free 
space or an obstacle vertex. 

The execution of a single SCAN@) is termed as a scan operation. 
Note that the scan operation is a very-high-level abstraction of 
sensing operations performed by real-life robots. Such operations, in 
general, involve the actual process of sensing and further processing; 
both these activities could be time-consuming and computationally 
complex. We keep this entire process as a single logical entity, 
namely, the scan operation. By doing this we do not imply the 
difficulty or ease with which such an operation can be carried out. 
The execution of a single MOVE(u) is termed as an elementary 
traversal. We assume that these instructions are executed without 
errors. We characterize the performance of an algorithm for PRAM 
in terms of the number of scan operations and elementary traversals. 
We also consider the complexities of computations carried by the 
computing device housed on PRAM. Our PRAM is very similar to 
the Point Automaton (PA) proposed earlier by Lumelsky and 

Stepanov [4]. But, whereas PRAM has memory, the PA does not 
support this feature. Another difference is that PRAM is equipped 
with a “scan” sensor as opposed to the “touch” sensor of PA. 
Further, PRAM can navigate only along straight lines, whereas PA 
can navigate along any arbitrary simple curve. 

Visibility graphs have been extensively studied in computational 
geometry and robot motion planning [3], [6] .  Formally, the VisibiIity 
Graph, VG(0) = (V, E), of an obstacle terrain 0 is defined as 
follows (we assume that 0 is finite-sized and consists of a finite 
number of polyhedral obstacles; each obstacle has a finite number of 
vertices): 

i) V is the union of vertices of all obstacles, 
ii) a line joining the vertices ut and U, forms an edge (U,, U,) E E if 

and only if it is either an edge of an obstacle or it is not 
intersected by any obstacle. 

Our solution to this problem is based on planning the motion of 
PRAM in such a way that the order in which the new vertices are 
visited corresponds to the depth-first search (DFS) traversal of 
VG(0).  Observe that the VG(0)  is initially not known to PRAM. 
The adjacency list of any vertex U of VG(0) can be obtained by 
placing PRAM at U and obtaining the vertices visible from U (by 
performing a scan operation). After this operation, the adjacency list 
of U is stored in the Partial VisibiIity Graph, denoted by PVG(O), 
which is available for further usage. The PVG(0) is augmented after 
each visit to a new vertex. Note that in order to simulate a depth-first 
search, at any stage, we only need to know the adjacency lists of the 
vertices visited so far and the vertex at which PRAM is located at 
present. These adjacency lists are known through scan operations 
performed from appropriate vertices. We shall show that VG(0)  is 
connected, We then make use of the fact that a DFS traversal on a 
connected graph visits all the vertices. Thus by simulating a DFS 
using PRAM we make sure that all the vertices of the obstacles are 
visited. At this stage PVG(0) converges to VG(0) from which the 
complete terrain model is obtained by grouping the marked edges that 
correspond to the individual obstacles. 

III. TERRAIN MODEL ACQUISITION ALGORITHM 
To describe the terrain model acquisition algorithm we shall 

specify the steps that are executed and simultaneously allude to the 
lines of code they represent in the algorithm ACQUIRE described 
below. Initially PRAM performs a scan operation and moves to a 
vertex UO. Then it systematically visits the obstacle vertices. Let 
PRAM be presently located at a vertex U (initially U = uo). PRAM 
performs a scan operation (from U) and stores the adjacency list of U 
in PVG(0) (lines 1-2 of ACQUIRE). At this point the vertex U is 
pushed onto a stack called PATH-STACK. Here, we have two cases. 
In the first case, some of the adjacent vertices of U are not visited 
earlier by PRAM. Then U*, an unvisited vertex in L nearest to U, is 
computed wid PRAM moves to U* (lines 8-10 of ACQUIRE). From 
U*, ACQUIRE is recursively invoked (line 11). In the second case, 
all adjacent nodes of U are already visited by PRAM. Now the 
algorithm PLAN-PATH is used to obtain a vertex U* to visit next, and 
PRAM moves to U* (lines 4-5 of ACQUIRE). If U* # U,,, then 
ACQUIRE is recursively applied from U* (lines 6-7), and ACQUIRE 
terminates otherwise. At the termination of ACQUIRE, we appropri- 
ately collect the edges that belong to individual obstacles (line 12). In 
Lemma 1 we show that each obstacle gives rise to a connected 
component in VG(0)  entirely consisting of marked edges. These 
components can be obtained in linear time (in number of edges and 
vertices) using standard connected component algorithms. This 
description provides the complete obstacle terrain model. 

algorithm ACQUIRE(u); 
begin 
1. SCAN@); 
2. 

3. 

update the PVG(0)  with information from L and store U on 

if (all nodes adjacent to U are visited) then 
PATH-STACK; 

4. PLAN-PATH(u*, P); 
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5.  
6. if (U* # u o )  then 
7. ACQUIRE(u*); 

8. else 
9. 

move along the path specified by P, 

end-if ; 

U* +- unvisited vertex in L nearest to U; 
10. MOVE(u*); 
11. ACQUIRE(u*); 

12. 
end-if; . 
appropriately group the marked edges corksponding to 
individual obstacles; 

end; 
The algorithm PLAN-PATH essentially manipulates PATH- 

STACK on which the path taken by PRAM is stored. The top of the 
stack is repeatedly popped until a vertex uz with an unvisited adjacent 
node is found (lines 2-4 of PLAN-PATH). A shortest path, in terms 
of the number of edges, to an unvisited node U* adjacent to uz is 
computed by using Dijkstra’s shortest path algorithm and is returned 
in P (lines 9-10 of PLAN-PATH). The PRAM moves along this 
shortest path to U* (line 5 of ACQUIRE). If no vertex with unvisited 
adjacent nodes is found on PATH-STACK, then a shortest path to uo 
is planned (as in line 7 of PLAN-PATH), and the acquisition process 
is terminated. This process is formally described in the algorithm 

At this stage, we wish to note a difference between the DFS 
algorithm and ACQUIRE. Consider a stage at which PRAM is at 
vertex U, and all nodes adjacent to U are visited. Let w be the vertex 
on the stack obtained on PATH-STACK by PLAN-PATH and let U* 
be the adjacent node of w chosen to visit next. The backtrack path 
followed (conceptually) by the DFS algorithm is from U to w and then 
to U*. Note that PRAM moves to U* along the path obtained by using 
Dijkstra’s algorithm on PVG(0).  This path may or may not coincide 
with the path followed by the DFS algorithm. 

PLAN-PATH . 

algorithm PLAN-PATH(u*, P); 
begin 
1. 
2. 

3. 
4. 

5 .  

7. 
8. else 
9. 

10. 

u2 + top element of PATH-STACK; 
while (PATH-STACK in not empty) and (all nodes adjacent 
to uz are visited) do 

pop out the top of PATH-STACK; 
u2 +- top element of PATH-STACK; 

end-while; 
if (all nodes of u2 are visited) then 

return a shortest path to uo in P; 

find a shortest path to an unvisited node adjacent to uz; 
return the planned path in P, 

6. U* uo 

end-if; 
end; 

We now show the correctness of ACQUIRE. Our proof consists of 
two steps: First, we prove that VG(0) is connected, i.e., there is a 
path from every vertex to every other vertex in VG(0) (Lemma 1). 
Then, we use the property that the execution of ACQUIRE by PRAM 
is equivalent to performing a depth-first search on VG(0).  

Lemma I :  The graph VG(0) is connected. 

Proof: Let EXT(0,) denote the exterior of an obstacle 
polyhedron 0, E 0. Let VER(0,) and EDG(0,) be the sets of 
vertices and edges, respectively, of the obstacle 0,. The graph G, = 
(VER(O,), EDG(0,)) is connected because every vertex .of a 
polyhedron 0, can be reached from every other vertex by traversing 
along the edges of 0,. Hence, the connectivity of VG(0) can 
be shown by showing that there exists at least one path between each 
pair of graphs ( VER(O,), EDG(0,))  and ( VER(O,), EDG(Oj)), for 
i # j. 

First we show that VG(0)  is connected if each 0, E 0 is a convex 
polyhedron. Let VZSZ(u), for U E VER(0 , )  be the points visible 
from U, when only the 0, is present in the obstacle terrain, i.e., for x 

E VZSZ(u), the line segment joining x and U lies entirely in 
EXT(0, ) .  We have 

U VZSZ(u) =EXT(O,)  
U €  VER(0,) 

for a convex polyhedron 0,. Let the obstacle terrain consist of exactly 
two convex obstacles O1 and Oz. It is easily seen that at least one 
edge exists (that coincides with line/plane of support) between one 
vertex of O1 and one of the vertices of 0 2 .  Thus 01 and 0 2  form a 
connected graph. 

Consider placing another obstacle 0 3  in the existing terrain. First 
consider the two-dimensional case. For each vertex U of O3 let u I  and 
uZ denote the vertices adjacent to U such that O3 lies to the right of the 
line segments and @ denotes the line segment joining two 
points p and 4). Imagine a semi-infinite ray r originating from U and 
containing G. Let us sweep r in the clockwise direction until r 
contains G. By sweeping such rays from every vertex of O3 we 
cover the entire EXT(O3). Since both O1 and 0 2  are contained in 
EXT(03),  the ray touches one of O1 and O2 in one of the 
configurations shown in Fig. 1. The obstacle 0, and Oz may be 
encountered separately by r as in Fig. l(a). Alternatively, one 
obstacle may cover the other as in Fig. le). In the third case, the 
obstacles may be as shown as in Fig. l(c). In all these cases at one 
point of the r’s touches one of the vertices of O1 or 02. This implies 
that there is an edge between one of the vertices of O3 and a vertex of 
O1 or Oz. Now consider the three-dimensional case. Let U be vertex 
and let f l  , fz, - . , fk be the clockwise listing of faces that meet at U 
when we look at U from outside of 03. Let e, be the edge (that 
contains U) between f, and f,+ 1 (ek is the edge between fk and fl) .  
Now consider the half-plane with e, as end line. Let us sweep this 
.plane (in the exterior of 03) with e, as axis; initially, this plane 
contains f, and after the sweep contains f,+ I .  It is clear that by 
sweeping all planes corresponding to all vertices of O3 we cover the 
EXT(03).  By using the earlier arguments at least one plane should 
touch one of the vertices of either O1 or 02. This proves the existence 
of the suitable edge. We observe that at least one vertex of O3 lies in 
VZSZ(u), for U E VER(0l) U VER(02). Hence, VG(0)  for 0 = 
{ O1 , 0 2 ,  03} is a connected graph. This argument can be extended 
for any finite number of convex polyhedra. Hence, VG(0)  is 
connected if every obstacle polyhedron in 0, is a convex. 

Consider the terrains with nonconvex obstacles. Consider the 
convex hull CH(0, )  formed by joining the “outer” vertices of 0, E 
0. If two obstacles 0, and 0, are such that C H ( 0 , )  n CH(0,) # 4, 
then at least one obstacle enters a “concavity” of the other. We can 
apply the “sweeping” method (sweeping area restricted to the 
concavity) to show that an edge exists between VG ((0,)) and VG 
({O,}).  Let us “conceptually” combine these two obstacles, and note 
that VG ( {O , ,  0,)) is connected. Let us recursively apply this 
technique on the resultant terrain to obtain a terrain of “combined” 
obstacles denoted by 

O ’ = { O ; ,  O ; ,  . - a ,  Oh}, rns(O( 

and 

By our construction 

CH(O; ) n CH(O; ) = 4. 

Consider a vertex U E VER(0i) and U I  VER(CH(O/ )). There is 
always a path from U to U I  along the edges of VG({ 0; }) and thus U 
and U I  are connected. Hence VG({O/ }) is connected for i = 1, 2, 
e . . ,  m. Now VG({CH(O,’) ,  CH(O; ) ,  e - . ,  CH(Ok)} )  is con- 
nected since each CH(0i) is convex. Thus VG(0) is connected. - 

0 
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(b) (C) 

Fig. I ,  Possible configurations of 0,.  02, and 0, 

A close look at the algorithm ACQUIRE reveals the following 
property: 

Property I :  The order in which the unexplored vertices of the 
obstacle terrain 0 are visited by PRAM while executing AC-  
QUIRE is exactly the same as the order in which the nodes of 
VG(0) are visited when a depth-first-search traversal is per- 

formed on VG(0) .  
0 

Note that the process of visiting an obstacle vertex by PRAM 
involves physically locating PRAM at the vertex. Whereas the 
process of accessing a graph node of V G ( 0 )  that corresponds to an 
obstacle vertex (by say algorithm PLAN-PATH) involves an access 
to the memory. The correctness of the algorithm ACQUIRE directly 
follows from the Lemma 1 and Property 1 .  

Theorem I :  The algorithm ACQUIRE builds the complete 
obslacle terrain model in a finite amount of time. 

Proof: From Lemma 1 the V G ( 0 )  is a connected graph. Hence, 
any depth-first traversal on V G ( 0 )  visits all the nodes in a finite 
amount of time (note that V G ( 0 )  has finite number of nodes). Thus 
using Property 1, we conclude that the entire V G ( 0 )  is built from the 
sensor readings taken from each of the vertices of the obstacles. 
Then, the terrain model is built from the VG(0)  by appropriate 
grouping of the obstacle edges. 

U 
IV. PERFORMANCE ANALYSIS 

In this section, we analyze the performance of ACQUIRE in terms 
of the number of scan operations and elementary traversals, and also 
in terms of computational complexity. Let Ndenote the total number 
of obstacle vertices. 

Theorem 2: To acquire the complete model of the obstacle 

a) the total number of scan operations required is N 
b) the total number of elementary traversals is at most 2(N - I). 

Proof: Part a) directly follows from Lemma I and Property I .  
We now prove Part b). We observe that when PRAM accesses the 
PATH-STACK for finding the next stop point w ,  a path to w always 
exists along thc DFS tree. Thus in the worst case PRAM backtracks 

terrain 0, using ACQUIRE, 

along this path on the DFS tree. Any other path to w planned by 
PLAN-PATH will have no more edges than this path. Note that 
PRAM backtracks along a path at most once, because once the path is 
removed from the PATH-STACK it will not be pushed onto it again. 
In the worst case, all the paths planned by PLAN-PATH are along the 
edges of the DFS tree. Thus in the worst case, each edge of the DFS 
tree is traversed twice, hence the theorem. 

U 
The computational efforts involved in the execution of ACQUIRE 

are estimated in Theorem 3. We maintain a table, called MAP- 
TABLE, to obtain a node number in V G ( 0 )  for any obstacle vertex 
specified by its coordinates. The MAP-TABLE is maintained as an 
AVL-tree: the value of each node is obtained by concatenating the 
coordinate values and treating it as a single value. Thus any vertex of 
an obstacle is uniquely represented as a node specified by a single 
value. Along with each node of the AVL-tree, the corresponding 
node number in P V G ( 0 )  is stored. Additionally, the information 
indicating whether a vertex is visited or not is also stored in the 
corresponding node of the AVL-tree. Thus complexity of finding the 
node number in P V G ( 0 )  for any vertex that is specified by its 
coordinates is O(log N ) .  

Theorem 3: In acquiring the complete model of the obstacle 
terrain 0 using ACQUIRE, the computational complexities of 
various operations are as below: 

a) the total number of node accesses is O(N3); 
b) the complexity of constructing MAP- TABLE is O(N log N); 
c) the number of accesses fo MAP-TABLE is O(E log N), 

d) the complexity of storage is O(N2). 
where E is the number of edges of VG(0); 

Proof: a) The PVG(0)  is accessed by the algorithm for 
planning the shortest paths from the current vertex to another 
unvisited vertex using Dijkstra’s shortest path algorithm (lines 9- I O  
of algorithm PLAN-PATH). The planning of each path accesses 
O ( N 2 )  nodes, and the number of path planning operations is given by 
O ( N ) .  Thus total number of the node accesses in the complcte 
execution of the algorithm ACQUIRE is O(N3) .  

b) A vertex is inserted into MAP-TABLE when it is detected by a 
SCAN operation. The cost of each insertion is O(log N ), and there 
are N such insertions. Thus part b) is proven. 

c )  The MAP-TABLE is accessed while inserting new vertices 
detected as the result of a scan operations. The vertices are checked 
for membership in MAP-TABLE before insertion. The number of 
such operations is O(E) .  Thus the complexity of this task is O(E log 
N ) .  The MAP-TABLE is also accessed while finding whether all thc 
nodes adjacent to a given node are visited (as in line 2 of the 
algorithm PLAN-PATH). For each node on the stack the number of 
accesses to MAP-TABLE is equal to its degree in P V G ( 0 ) .  Hence, 
the total number of times the MAP-TABLE is accessed for this 
purpose is at most twice the sum of the degrees of all nodes in 
PVG. Thus the MAP-TABLE is accessed O ( E )  times and the total 
number of accesses to the MAP-TABLE is O(E log N ) .  

d) The complexity of storing the visibility graph is O ( N 2 ) .  The 
storage complexity of PATH-STACK is O ( N )  and that of MAP- 
TABLE is O ( N ) .  Thus the total complexity is O ( N 2 ) .  Hcnce. the 
theorem. 

Ll 
In the next section we present an example to illustrate the working 

of the terrain acquisition algorithm. 

V. EXAMPLE 

Consider the two-dimensional obstacle terrain shown in Fig. 2. 
Initially, PRAM is located at vertex 1, and PRAM does not have any 
terrain model. Then PRAM scans the terrain from vcrtcx I .  and 
detects vertices 1 , ,  1 2 ,  1 3 ,  1 4 ,  2, I s ,  which are visible from vertex 1 
(see Fig. 3(a)). At this point, the vertices 2 and l 5  in the adjacency list 
of the vertex U are specially marked to indicate that ( I ,  1 5 )  and ( I .  2 )  
are edges of an obstacle. Then, PRAM moves to vertex 2.  which is 
the nearest to vertex 1, The path taken by the robot is shown in hold 



454 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 4,  AUGUST 1988 

PzZl 
Fig. 2. The unexplored terrain. 

1 

Fig. 3 .  Initial storage acquisition. (a) The PRAM is presently located at 
vertex 2.  (b) PVG(0) .  

(b) 

located at vertex 13. (b) PVG(0) .  
Fig. 4.  Intermediate stage of acquisition. (a) The PRAM is presently 

lines with arrows. Then PRAM obtains the new vertices 2 , ,  22r 2 3 ,  
24. The PVG at this stage is shown in Fig. 3(b). Vertices 1 and 2 ,  
shown by bigger circles, are marked as “visited.” The contents of 
the PATH-STACK are I ,  2 at this stage. In Fig. 4(a), we show an 
intermediate stage of terrain acquisition. The PRAM has moved to 
vertex 13. Until this stage, the procedure PLAN-PATH is not 
invoked. At this point the contents of PATH-STACK are I ,  2 ,  . . . , 
13, and also all vertices visible from 13 are visited. Then PATH- 
STACK is popped, until a vertex with an unvisited neighbor vertex is 
found. Vertex 4 is found as a result since its neighbor vertex 24 is not 
visited. The path to 24 via 3 is found by Dijkstra’s algorithm. Let 24 
be called 14 for convenience. Then the contents of the PATH- 

(b) 

vertex 1. (b) PVG(0)  converges VG(0) .  
Fig. 5. Completion of terrain model acquisition. (a) The PRAM returns to 

STACK are changed to 1, 2, 3, 4 ,  14. The present PVG is shown in 
Fig. 4@). From vertex 14 PRAM moves to vertex 15 (call l 5  as 15 
for convenience), and at this point all the neighbors of all the vertices 
are visited. Then PRAM moves back to vertex 1 (see Fig. 5(a)). Note 
that the number of MOVE(.) operations is 16. The complete 
visibility graph is shown in Fig. 5(b), from which the terrain model 
can be easily constructed. 

VI. CONCLUSIONS 
In this paper we consider the terrain model acquisition by a point 

robot roving in an obstacle terrain populated by an unknown number 
of polyhedral obstacles in two/three dimensions. We present a 
method that enables the point robot to acquire the complete terrain 
model in a finite amount of time. The implementation of the proposed 
technique on a real-life robot involves modifying the algorithm 
PATH-PLAN to account for the size and configuration of the robot. 
Specifically, at any stage during terrain acquisition, the paths are to 
be planned using the partially built terrain model. A two-dimensional 
version of ACQUIRE has been implemented on the HERMIES-I1 
robot at Oak Ridge National Laboratory in Fortran 77 language 
running on an NCUBE control computer. The algorithm ACQUIRE 
is also implemented in a simulated mode in C on a VAX 111780. 
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