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ABSTRACT 

In this paper, a new construct called connection graph, Gc, is 
proposed. An efficient geometric algorithm for constructing Gc is 
given. We present a framework for designing a class of time and 
space efficient maze-running and line-search rectilinear shortest path 
and rectilinear minimum spanning tree algorithms based on Gc. We 
give several example maze-running and line-search algorithms based 
on Gc to demonstrate the power of Gc in designing good sequential 
VLSI routing algorithms. 

Keywords: VLSI routing, maze-running algorithm, line-search 
algorithm, rectilinear shortest path and rectilinear minimum spanning 
tree. 

1. Introduction 

Most existing VLSI computer-aided design systems are based 
on the uniform grid model. With the grid model, wires connecting 
signal nets are considered as subgraphs of the grid. The major 
constraints, such as the minimum wire width and the minimum 
separation between wires, imposed by the current VLSI technologies 
are ensured by an automatic process once the abstract layout is 
generated. The objectives of the VLSI layout problems include 
finding a circuit layout such that the total area used is small and the 
wires interconnecting signal nets are short. 

One of the most classic, but still up-to-date, method for VLSI 
routing is called sequential routing. In this method, a Steiner tree is 
constructed for each net in a sequential order. Once a Steiner tree 
connecting a net is constructed, the routing space is updated so that 
the constrains for routing subsequent nets can be enforced. The 
sequential routing method has received the most attention in practice. 
It is widely used for global routing and detailed routing, as well as 
printed circuit board (PCB) design. There are two basic classes of 
sequential routing algorithms: maze-running algorithms and line- 
search algorithms. Most of these algorithms are aimed at finding an 
obstacle-avoiding path, preferably a shortest one, on the grid between 
two given grid points. Generalizations of these algorithms to the 
problem of finding a spanning or Stein tree connecting multiple grid 
points are usually straightforward. In this paper, we first consider the 

problem of finding rectilinear obstacle-avoiding shortest paths. Then 
we generalize our results to the minimum rectilinear obstacle- 
avoiding spanning tree problem. 

Let R be an n x n grid that consists of a set of grid nodes ( 

( x ,  y )  I x ,  y arc integers such that 1 I x ,  y 5 n ), and grid edges that 
connects grid nodes that are unit  distance apart. A horizontal 
(vertical) grid line segment is a path consists of horizontal (vertical) 
grid edges. Let B = [ B,,  . . . , B",) be a set of mutually disjoint 
rectilinear polygonal obstacles whose boundaries lie on the grid lines 
of R. Each B, is represented by a set of grid line segments whose 
endpoints are the corners of B,. Let R-B denote the partial grid of R 
(i.e. subgraph of R )  that consists of grid nodes that are not contained 
in the interior of any B,, and grid edges that are not incident to any 
grid nodes contained in the intcrior of any B,. In the context of VLSI 
design, grid R reprcsents a rectangular area for the circuit layout. 
Circuit components and previously laid out wires are characterized 
by rectilinear polygons B, with boundaries lie on the grid lines. The 
grid nodes and edges covered by the interior of these polygons are 
considered not available for subsequent routing steps. Thus, what 
available for completing the routing is a partial grid of R, and the 
portion of the grid that are not usable are treated as obstacles. Given 
a soiirce node s and a turget node t in R - B, R - B is the entire 
search space for all possible obstacle-avoiding paths from s to t. It is 
sometimes convcnicnt to use another planar graph derived from grid 
R - B to represent the layout space. Let H be an ( n  + 1) x ( n  + 1)  grid 
consists of grid node set [ ( x ,  y )  I x = i - 0.5, y = j - 0.5, i and j are 
integers such that 1 5 i, j 5 n + 1 ) and grid edgcs connecting two 
grid nodes that are unit apart. Each face formed by four grid nodes 
of H is called a cell. We define the offset reprvsentution of R - B as 
the the portion of grid H with all cells in  the interior of portions 
corresponding B,'s removed. Then, a path from a source node s to a 
target node t in R - B corresponds to a sequence of cells in the offset 
representation of R - B,  each contains a grid node of R - B on the 
path from s to t .  In figure 1, we show an instance of R - B, and in 
figure 2 we give the offset representation of R - B of figure 1. 

The maze-running algorithms can be characterized as target 
directed grid expansion. The first such algorithm is Lee's algorithm 
[8], which is an application of the breadth-first shortest path search 
algorithm by Dijkstra [ 191 to the grid routing graph. In the worst 
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case, Lee's algorithm takes O(n2) time. Several improved maze- 
running algorithms have been proposed [3, 4, 7, 8, 10-13, 15, 161. 
Hadlock [4] applied the idea of using lower bound on distance to the 
target to direct the search proposed in [6] to the maze-running 
method. He gave a f/Jini/llllf?Z detour algorithm [4]. He used a new 
labeling measure, called detour number, for each node. Let M ( s ,  1)  

denote the Manhattan distance (i.e. the distance in Ll metric) 
between s and t .  For a path P connecting s and t ,  the detour number 
d ( P )  is the total number of units on P direct away from t. Then, the 
length of P is M ( s , t ) + 2 c / ( P ) .  The minimum detour algorithm 
searches paths in the increasing order of detour numbers. It 
guarantees to find the shortest path using time between O(n) and 
O(n2) for an n x n grid R. Soukup [ 161 proposed a fast algorithm 
that combines the depth-first-search with the breadth-first-search. 
This algorithm guarantees to find a path if it exists, but not 
necessarily an optimal path. Soukup's algorithm executes a depth- 
first-search from the source node toward the target node using "don't 
change direction" heuristic until an obstacle is hit or a target node is 
found. If an obstacle is hit, then a breadth-first-search is used for 
searching around the obstacle until a node directs to the target node is 
reached. Then, depth-first-search is continued. In figures 3, 4, and 5, 
we show the expanded nodes generated by Lee's algorithm, 
Hadlock's algorithm and Soukup's algorithm, respectively, using the 
offset grid representations. In these figures little circles and solid 
dots are the expanded nodcs, and the dots represent a path from s to 

achieve better expected performance by restricting the search on a 
graph that is much smaller than the given grid. For example, the line- 
search algorithm given in [18] is as follows. First, a special grid 
graph. called ~ J W C ~  graph GT, is constructed from R and B .  Then, a 
path from s to t on GT is constructed by applying Dijkstra's 
algorithm. Since GT is usually much smaller than the original grid, 
and GT can be constructed efficiently, the time and space 
performances better than that of maze-running algorithms can be 
expected. However, the path found using GT may not be the shortest 
one. 

The major contributions of this paper are as follows: 

(1) We introduce a new construct called connection graph, Gc, 
to reduce the size of search space. 

(2) We show that there always exists a simplest minimum 
spanning tree connecting a set S of nodes in Gc with total 
edge length equal to the length of a minimum spanning tree 
of S in R - B. 

(3) We give an efficient geometric algorithm for constructing 
the Connection graph Gc. 

(4) We present a frmcwork for designing a class of time and 
space efficient maze-running and line-search shortest path 
and minimum spanning tree algorithms based on Gc. 

(5) We give several example maze-running and line-search 
algorithms based on Gc to demonstrate the power of Gc in 

1. 
designing good sequential VLTI routing algorithms. 

Since the search space of all previous maze-running algorithms 
are represented as dense grid graphs, they are inherently inefficient in 
both time and space. The line-search algorithms have been proposed 
to achieve better performance. These algorithms use powerful 
computational geometry techniques to represent the search space by 
a set of line segments rather than unit grid edges. Consequently, they 

(6) Since the connection graph Gc is much sparser than grid 
R - B  in practice, and updating Gc after the wires 
connecting a net are introduced can bc efficiently done by 
locally modifying Gc, our approach provide a powerful 
and versatile tool for designing cfficicnt sequential VLSI 
routing algorithms. 

save space and quickly find a simple-shaped paths. The major 
drawback of the line-search algorithms is that they usually do not 

2. Connection Graph 

guarantee finding a shortest path. Early line-search algorithms are 
reported in [5] and [9]. The basic operations of algorithm by Mikami 
and Tabuchi [9] are as follows. First, straight lines are emanated 
from node s and node I in all possible directions. These search lines 
arc called level-0 trial lines and stored in  a temporary storage. Then, 
the path search is conductcd by a iterating process. At the ith 
iteration, the following operations are preformed: pick u p  level-i trial 
lines one by one from the temporary storage. Along each such trial 
line, trace all grid nodes, and emanate new lines perpendicular to the 
trial line from these nodes. These newly generated line segments, 
which end either at the boundary of an obstacle B, or the boundary of 
the grid R,  arc identified as level+ + 1) trial lines. This process 
continues until a trial line from s mects a trial line from t .  This 
algorithm finds a path from s to t if there exists one, but the path is 
not generated to be the shortest one. Figure 6 shows a running 
example of this algorithm. The line-search algorithm given in [5 ]  is 
similar to the one in [9]. Another type of line-search algorithms 

In this section, we introduce the connection graph Gc for the 
shortest path problcni. More general form of Gc will be discussed 
later. Let HL(R,  B )  and VL(R,  B )  be the seb of horizontal and 
vertical line segments of the boundaries of R and obstacles in B ,  
respectively. We define a horizontal (vertical) line segment 1 = ( U ,  v )  
in R - B as a rnaxinial horizontal ( vertical) line segment of G - B if 
1 does not cross any B ,  in B, and U and v are the only two points on 1 

that are also on the boundaries of R or obstacles in B. Let 
HL(R - B )  = { 1 I I = (u ,  v )  is a maximal horizontal line segment of 
R - B such that at least one of its endpoints u and v is a corner of 
some B, in B }  and VL(R - B )  = ( I I I = (U, v )  is a maximal vertical 
line segment of R - B such that at least one of its endpoints U and v 
is a corner of some B, in B ] .  Let I&) ( I&)) be the maximal 
horizontal (vertical) line segment of R - B that contains s. the source 
node. We similarly define two line segment and l&), which are 
the maximal line segments containing t ,  the target. The nodes of Gc 



are the intersection points of the line segments in 

{ l ) t ( s ) ,  lv(s) ,  l&), l v ( f ) } ,  and the edges of Gc are the subsegments 
generated by these line intersections. The connection graph Gc for 
the example of figure 1 is given in figure 7. 

H L ( R u B ) u V L ( R u B ) H L ( R  - B)uVL(R - B)u 

The main purpose of introducing connection graphs is to reduce 
the search space in which a shortest path can be found. This should 
lead to shortest path algorithms that require less storage and time 
resources. The following thcoreni shows that the problem of finding 
a shortest path in R - B can be reduced to the problem of finding a 
shortest path in Gc. 

Theorem 1: If there exists a path from s to t in R - B,  then the 
length of shortest path from s to t in Gc is equal to the length of the 
shortest path from s to t in R - B. 

In the context of VLSI layout, i n  addition to minimizing the 
length of the path connecting two nodes, it is desirable to minimize 
the number of turning points on the path. We say that a shortest path 
P between s and t is a simplest shortest path if P contains minimum 
number of turning points among all shortest paths between s and t .  

Theorem 2: If there exists a path from s to t in R - B ,  then a 
simplest shortest path in R - B can be found in Gc. 

We observe the following additional properties of Gc: (i) For 
practical VLSI layout problems, Gc is much sparser than R - B. (U) 
In the context of VLSI layout, a path P between s and t in Gc 
corresponding to a wire connecting a net of two terminals, s and t ,  

and once this wire is included into the routing solution, it will be 
considered as a obstacle for subsequent routing steps. Then, updating 
Gc to include P as an obstacle can be efficiently done by locally 
changing the structure Gc. Based on theorem I ,  theorem 2 and these 
two properties, a class of rectilinear shortest path algorithms for 
VLSI routing can be designed using the connection graph Gc, 
instead of R - B. 

3. Construction of Connection Graphs 

We show how to efficiently construct the connection graph Gc. 
from given rectangular boundary R and a set B of mutually disjoint 
rectilinear polygonal obstacles in  R. The construction of Gc uses the 
/dane-sweep techniciue from computational geometry [22 ] .  Gc can be 
constructed by first construct HL(R ,  B ) u H L ( R  - B )  and 
VL(R,  B ) u V L ( R  - B). Then, all intersection points of line segments 
in HL(R, B ) u H L ( R  - B )  and VL(R, B )uVL(R  - B )  are generated. 
Finally, line segments l / , ( s ) ,  l v ( s ) ,  / , , ( t )  and l , ( t )  and their 
intersections with the segments in HL(R,  B ) u H L ( R  - B )  U 

V L ( R , B ) u V L ( R -  B )  are generated. We assume that Gc is 
represented by the adjacency lists. Since the methods for 
constructing HL(R,  B ) u H L ( R  - E) and VL(R,  B ) u V L ( R  - B )  are 

similar, we only describe the procedure for constructing 
HV(R,  B)uHV(R - B). 

The set H V ( R , B )  is given as part of input. We only need to 
generate H V ( R  - B )  to complete the construction of 
VL(R,  B)uVL(R - B). To facilitate our discussions, we introduce a 
couple of new notions. We call a vertical boundary line segment 1 of 
an obstacle B, a left (right) srgnient of B, if the interior of B, is to the 
right (left) of 1. We call a corner point w formed by two orthogonal 
boundary segment 1 ,  = ( t i ,  w )  and l2 = ( w ,  v )  of B, a convex comer if 
there exists a line segment 1’ = (a, b )  such that a is on l I  and b is on 
/ 2 ,  a # w,  b # w, and all point on /‘except a and b arc in the interior 
of B,. If such a line segment docs not exist, w is called a concave 
coiner of B,. The lollowing procedure generates all segments in  
VL(R  - B). In this proccclurc, we use s(/) to denote the x-coordinate 
of vertical segment 1. We use /ow(/) and high(/)  to represent the 
lower and upper endpoints of I ,  respectively, and use x(u)  and y(rr) to 
represent the x-  and y-coordinates of point t i ,  respectively. 

procedure VERTICA L-SGMT 
Sort all vertical boundary segmcnts of obstacles in B in 

lexicographical order by their lower endpoints into a queue Q ;  
x’ := x ( / ) ,  where / is the first segment i n  Q; 
while Q is not empty do 

I := cfequeue(Q); 
i f  x’ # x(1) then x’ := x ( / ) ;  
case 

: I  is a left boundary segment and /ow(/) is a convex comer: 
find the largest element y’ i n  T that is smaller than 
V ( / O W ( / ) )  

let ti = ( x ,  y‘) and v = (x, y(low(1)); 

T := T U ( y ( / o w ( / ) ) ] ;  
VL(R  - B )  := VL(R - B )  U ( ( U ,  v ) ] ;  

: I  is a left boundary segment and low(1) is a concave 
corner: 

T := T - ( y ( / o w ( / ) ) } ;  

:I is a right boundary scgmcnt and /ow(l) is a convex 
corner: 

find the Iaugcst element y’ in T that is smaller than 

let t i  = (x. y’) and v = ( x ,  y( /ow( / ) ) ;  
y(low(1)) 

VL(R  - B )  := VL(R - B )  U ((U, v ) } ;  
T := T - ( y(low(1))); 

: E  is a right boundary segment and low(/) is a concave 
corner: 

T := T U (y( /ow( / ) ) ) ;  
endcase 
case 

: E  is a left boundary segment and high( / )  is a convex 
corner: 

find the smallest element y’ in T that is larger than 
y(high(l)) 



let II = ( x ,  y’) and v = ( x ,  y(high(/)); 

T := T - ( y ( h i g b ( l ) ) ] ;  
VL(R - B )  := VL(R - B )  U ( ( 1 1 ,  v ) ] ;  

: I  is a left boundary segment and high([) is a concave 
corner: 

: I  is a right boundary segment and high(l) is a convex 
corner: 

find the smallest element y‘ in  T that is larger than 
y(high(l))  
let II = (x, y’) and v = ( x ,  y(high(l)); 

T := T - ( y (h igh ( l ) ) } ;  

T := T U { y(high( l ) ) ) ;  

V L ( R  - B )  := VL(R - B )  U { ( U ,  v ) ] ;  

:I is a right boundary segment and high(1) is a concave 
corner: 

T := T U ( y (h igh ( l ) ) } ;  
endcase 

endwhile 
end VERTICAL-SGMT 

Theorem 3: Connection graph Gc can be constructed in 
O(n, log n, + e )  time, where n, is the total number of corner points of 
B and e is the total number of edges in Gc. 

4. Maze-Running and Line-Search Algorithms Based on 
Connection Graphs 

Using the connection graph Gc, we can obtain a class of 
efficient modified shortest path algorithms. These algorithms may use 
maze-running techniques, or line-search techniques, or the 
combination of these techniques. We discuss a few possibilities. 

Let ( R  - B )  n Gc denote the partial uniform grid defined on 
Gc. Clearly, ( R  - B )  n Gc can be constructed from Gc by breaking 
each edge of Gc into grid edges of unit length. The time required for 
this construction is O(I,) and the space for ( R  - B )  n Gc is O(1,), 
where 1, is the total edge length of Gc. In figure 8 we show ( R  - B )  
n Gc for the example of figure 1 by marking its cells with x’s .  
Then, all existing maze-running algorithms can be applied to the 
partial grid ( R  - B )  n Gc. Since ( R  - B )  n Gc is always consists of 
less cells (in the offset grid representation) than G - B ,  these 
modified maze-running algorithms are more time and space efficient 
than their original ones. In figures 9, 10 and 11, we show the 
improved performance of modified Lee’s algorithm, Hadlock’s 
algorithm and Soukup’s algorithm. The meaning of little circles and 
solid dots is the same as in  figures 3, 4 and 5. Compared with figure 
3,  4 and 5, the number of expanded nodes by each of these modified 
algorithms is much smaller than that of the original algorithm. 
Similar improvements can be observed in the modified versions of 
other existing maze-running algorithms. It should be mentioned that 
all previously introduced coding methods for reducing the storage 
requirement are valid on the grid graph ( R  - B )  n Gc. 

Theorem 4: An obstacle-avoiding shortest path from s to 1 can be 
computed by modified maze-running algorithms in no more than 
O(1,) time and space from the connection graph Gc,  where 1, is the 
total edge length of Gc. 

Modified maze-running algorithms may still require excessive 
storage and time in the worst case. The connection graph Gc can be 
considered as a “supergrid”, which consists of much less number of 
grid nodes and edges than R - B (Note: in any grid graph the number 
of nodes and the number of edges are about the same since the 
degree of each node is no more than 4.) Based on Gc, we can obtain 
a set of modified line-search algorithms from the existing ones. We 
give two examples. By applying the line-search algorithm of 
Mikami and Tabuchi to the connection graph Gc, we obtain a 
modified line-search algorithm which only generate trial lines that 
are in Gc. Since Gc is much sparser than G - B ,  finding a path from 
s to f in Gc requires much less time and space. Note that the original 
algorithm in [9]  cannot be directly applied to the problem instances 
in which the obstacles are not defined on a uniform grid. Using the 
connection graph Gc, this restriction is removed. As the original 
algorithm by Mikami and Tabuchi, this modified algorithm does not 
guarantee a shortest path. The performance of this modified 
algorithm for the example of figure 6 is shown in figure 12. 

Using the connection graph Gc. most of existing maze-running 
algorithm can be transformed into line-search algorithms. The 
performance of the line-search versions of Lee’s algorithm, 
Hadlock’s algorithm and Soukup’s algorithm for the example of 
figure 1 are shown in figures 13, 14 and 15, respectively. In these 
figures, little circles and solid dots are the expanded nodes, and the 
dots represent a path from s to f .  In these line-search algorithms, 
edges of Gc. each of them may consist of many unit grid edges of 
G - B,  are consider one at a time. Since the number of edges (and 
nodes) is much smaller than the number of grid edges of G - B, these 
line-search algorithms are much more time and space efficient than 
their maze-running versions on (G-B)nGc. Note that the line- 
search version of Lee’s algorithm here is exactly Dijkstra’s shortest 
path algorithm applied to Gc. Although in general the size of the 
track graph GT introduced in [18] is smaller than the connection Gc, 
applying the the Dijkstra’s or Hadlock’s algorithm to GT does not 
always guarantee a shortest path. In contrast, by theorem 1, using 
Dijkstra’s algorithm and Hadlock’s algorithm on Gc a shortest path 
is always guaranteed. This leads to the following claim. 

Theorem 5: An obstacle-avoiding shortest path from s to r can be 
computed from Gc in no more than O(e + m log m) time and O(e) 
space, where e is the total number of edges (and nodes) in the 
connection graph Gc,  and m is the total number of nodes of Gc 
expanded when a shortest path is found. 

It is important to note that the line-search versions of Lee’s 
algorithm, Hadlock’s algorithm and Soukup’s algorithm can be 



applied to problem instances in which the boundaries of obstacles in 
B are not defined on a uniform grid. 

5. Generalizations 

A direct generalization of the shortest path algorithms presented 
in this paper is the design of efficient maze-running algorithms and 
line-search algorithms for constructing obstacle-avoiding minimum 
length rectilinear Steiner trees and spanning trees. The Steiner tree 
problem corresponds to the problem of introducing wires to connect 
a multi-terminal net on a VLSI chip or a printed-circuit board. The 
minimum rectilinear Steiner tree problem is NP-complete [20]. It is 
known that the ratio between a the length of a rectilinear minimum 
spanning tree ( M S T )  and the length of a rectilinear minimum Steiner 
tree is no more than 3/2 [21]. In practice, a rectilinear minimum 
spanning tree is first constructed, and then modified to obtain a 
Stciner tree. Given a rectangle boundary R, a set B of mutually 
disjoint rectilinear polygonal obstacles in R and a set S = ( t , ,  . . . , t p ]  
of points in R - B,  the objective of the MST problem is to construct a 
rectilinear MST T of minimum total length that connects all points in 
S, and any line segments in T does not cross any boundary segment 
of R and B. The Connection graph Cc for this problem is defined as 
follows. For each tl E S construct two line segments, horizontal 
segment l a ( t l )  and vcrtical segment l,,(r,), passing through t, such that 
their two endpoints are the only points on them that are the boundary 
points of R and/or obstacles in B. Then, the intersection points of 

1, 2, .... p )  are the nodes of Gc and the line segments with endpoints 
from these intersection points are the edges of Gc. If we treat each t ,  
E S as a corner point, we can obtain an efficient algorithm for 
constructing Gc wing the plane-sweep technique. 

HL(R,  B )  U VL(R, B )  U HL(R  - B )  uVL(R - B) U [l/,(t,), l&,) I i = 

Theorem 6: Given R,  B and S, the connection graph Gc can be 
constructed in O((n, + s) log& + s) + e )  time, where n, is the total 
number of corner points of B, s is the number of points in S and e is 
the total number of edges in Gc. 

The following properties of generalized Gc are important for 
designing efficient maze-running and line-search algorithms for 
constructing obstacle-avoiding MST's.  

Theorem 7: If there spanning tree S in R - B, then the length of the 
MST of S in Gc is equal to the length of the MST of S in R - B. 

In a spanning tree T i n  the grid graph, we call a node with 
degree greater than 3 ajcmction. In the context of VLSI layout, it is 
desirable to minimize the the number of junctions and the number of 
turning points in a spanning trce. We say that an MST T of S is a 
simplest MST if the sum of the number of junctions and the number 
of turning points is the minimum among all MST's of S. 

Theorem 8: If there exists a spanning tree of S in R - B, then a 

simplest minimum spanning tree of S in R - B can be found in Gc. 

By these three theorems, a class of maze-running and line- 
search algorithms for the rcclilinear MST problem can be designed 
using the Connection graph Gc, instead of R - B. The performance 
improvements in these MST algorithms should be similar to the 
shortest path algorithms we demonstrated in the previous section. As 
a special example, based on the techniques proposed in [18], we have 
the following claim: 

Theorem 9: A minimum spanning tree of S in R - B can be found in 
Gc in no more than O(e log e )  lime, where e is the number of edges 
in Gc. 

The connection graph Gc can be quite dense. One opun 
problem is to identify and characterize a graph whose size is much 
smaller than Gc. yet good enough to guarantee the existence of 
shortest paths and minimum spanning trees. If such a connection 
graph can be constructed from R and B elficicntly, more effective 
maze-running and line-search algorithms are possible. 
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I: Soum Node. I: Target Nodc. 0: Extended Nodes 

Figure 3: Expanded Nodes by Lee Algorithm 
%: Source Node. I: Target Node, 0: Extended Nodes 

Figure 4: Expanded Nodes by Hadlock Algorithm 
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I: Swrce Node. t: Tugcr Nodc. 0: Extended Nodes 

Figure 5: Expanded Nodes by Souhp Algorithm Figure 6 Line Search Algorithm of 
Mikami and Tabuchi 

Figure 7: The connection graph G, 

Figure 9 Expaudcd Nodcr by the modsied Lce AgoriUlm Figure 10 Expanded Noda by lhc modifled Hadlock AgoriUun 

figure 1 1: Expanded Nodes by the modlficd Scukup Agonthm 



Agun 13: The Performance of Ihe Line-Search 
Version of Le Algorithm 

Figure IS: The Perfonnmx of the LinGSearch 
Version of Saulolp Algorithm 


