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Abstract—The process of gradually settling a combinatorial system into configurations of globally
minimum energy has variously been called simulated annealing, statistical cooling, and so on. In the
past, very large combinatorial optimization problems have been solved using this technique. It has
also been shown that this method Is effective in obtaining close-to-optimal solutions for problems
known to be NP complete. Further, this technique'is applicable to a whole class of problems that
satisfy a few requirements,

The purpose of this paper is to illustrate an efficlent version of the simulated annealing method
as applied to a variant of the bin-packing problem. The computational complexity of the method is
linear in input size similar to various well-known heuristic methods for the problem. The solutions
obtained, however, are much better than any of the heuristic methods. The particular variant of the
bin-packing problem we consider has several practical applications such as static task allocation in
process scheduling and batch processing, At the time of this writing, we have not yel seen a stochastic
solution to the bin-packing problem in the literature. -

One of the distinguishing features of our research is the high quality of solutions obtained by our

" method. Extensive simulation experiments we have carried out show that the solutions obtained by
the stochastic method show a significant improvement over those obtained by any of the well-known
heuristic methads,

Keywords—-«—Bin-Packing, Combinatorial optimization, Global minimum, Monte Carlo methods,
NP completeness, Simulated annealing, Statistical cooling,

1. INTRODUCTION
1.1, The Bin-Packing Problem

The classical definition of the bin-packing problem involves packing a list of items of (possibly)
different sizes into the smallest number of bins, each of which has a given maximum capacity.
Coffman et al. [1] is a good survey of several approximation algorithms for bin-packing that yield.
quick sub-optimal solutions.

The variant of the classical problem we solve, deals with a fixed number of bins each with
an unlimited capacity and the objective is to pack the items into these bins so that each bin
has about the same total allocation. In other words, our attempt is to find the most equable
distribution of items to bins, Our problem differs from the classical problem in the following two
ways.

1. The bin sizes are not constrained. The rationale behind this particular variation of the
problem is the fact that this model is appropriate in certain real-world situations. For
example, in a batch processing environment, it is sometimes necessary to complete a fixed
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A typical instance of the annealing experiment involves two important choices for the control
parameter corresponding to the high temperature and the low temperature regimes of a physical
system and & method of varying the control parameter so that the system is driven to optimality.
A set of choices for these critical parameters is known as an annealing schedule. There is evidence
in the literature that the global optimum of a combinatorial optimization problem can be found
with probability one provided that the annealing schedule satisfies certain conditions [8~10].

In practical applications such as circuit placement in VLSI, the computing resources needed
to obtain ‘good’ solutions are excessive. To remedy this, several approaches have been proposed
in the literature. Greene et al. [6] have suggested a schedule which involves annealing without
rejected moves. Their method offers a significant speed-up at the expense of increased mem-
ory usage. Lam et al.[5], White [11], and Huang et al. [12] have proposed techniques to make
annealing schedules efficient. _

The various approaches that attempt to remedy the massive computational time required
by the annealing method, may be grouped into three broad categories—parallel annealing
techniques (13}, efficient annealing schedules [5,6,11,12] and controlled move generation meth-
ods. ‘This last category of methods is usually problem-instance dependent and is not widely
applicable to combinatorial optimization. The more popular techniques in the literature employ
efficient annealing schedules and this paper also describes one such schedule,

2. PROBLEM FORMULATION

We define an instance of the bin-packing problem as consisting of
1. M bins, each of which has an unlimited capacity;
- 2. N items (sizes) tl,té,...,tN;_O <t Stpaxy 1 <i <N,
3. an objective function (also refered to as the cost or the energy function) defined as

M

c({a}) =) (B; -T), ey

j=1

where B; is the sum of the sizes of the items allocated to the j t bin and {a;} is an allocation
sequence ag,az,...,0n; 1 < a; < M. An allocation sequence determines which bin each
item is allocated to Thus, every allocation sequence represents a feasible solution to the
problem. The resulting distribution of items to bins is also called a configuration (state)
of the problem (system). T is the total allocation at each bin that globally minimizes the

cost function, Thus,
— 1
== 5 ts; . (2)

in general, though a particular instance of the probiem may not render itself to such a
perfect allocation scheme. Hence, there is the minimization problem.

" The following lemma follows directly from the problem formulation.

LEMMA 1. The magnitude of the objective function does not exceed M (M - I)Tg.

The maximum value for the objective function is obtained by allocating all the items in the
item list to one bin and leaving the other M —1 bins empty. Such an allocatlon vields an objective
function of (MT —T)2 -+ (M — 1) T* which is the same as M (M-1)T T2, It is easy to see that no
other allocation can yield a larger value for the objective function since moving any item from
the bin to which all items are allocated now, would decrease the objective functlon at both the
bin to which it is allocated now and the bin to which it is being moved.

CAYA 27:5-F
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4. ANNEALING SCHEDULE

The annealing schedule is described by quantitative cholces for the three parameters—the start-
ing value of the temperature T, the stopping value of the temperature Ty, and the decrement
function F(¢) which determines the profile of the temperature from the beginning ili the end of
the annealing process. _

The annealing curve obtained from a good schedule typically displays three broad areas of
interest—a high energy area characterized by high temperature, an intermediate energy area, and
a low energy area characterized by low temperature. The intermediate energy area is well defined
and spans a relatively small portion of the temperature axis of the curve. We will refer to the
behavior of the system described by the high energy region of the curve as the High Temperature
Regime and that described by the low energy region of the curve as the Low Temperature Regime.
These are further described in the following sections,

During the actual simulation, we first carry out an exploratory search of the configuration
space where we assume that the temperature is infinite and accept each generated configuration.
From this data we obtain fundamental statistical quantities about the problém. In particular,
we are interested in the average value of the cost {C(T)) and the standard deviation ¢ of the the
density of states distribution. The density of states information may later be used to select an
appropriate starting value for the temperature parameter.

4.1, High Temperature Regime

This region of the annealing curve (and the corresponding behavior of the system) is marked
by the acceptance of most generated states. The value of the temperature parameter is so high
that the Metropolis criterion is always satisfied. Thus, the average energy in this regime is very
high. Just how high the starting temperature must be, for a good annealing schedule, is usually
determined by monitoring the acceptance ratio at each temperature. The acceptance ratio (the
fraction of generated states that are accepted) is arbitrarily fixed at some high value such as 0.9
and the temperature is increased to a value where the acceptance ratio is high enough,

‘While this serves as a problem-independent method of fixing the starting value of the temper-
ature, often it yields a temperature value that is too high thus ylelding an annealing schedule
that is wasteful of computational resources. For the bin-packing problem, Lemma 1 gives the
theoretical maximum for the objective function. If the control parameter is just high enough
to accept the configuration with this maximum energy, then it follows that the temperature is
high enough to accept any configuration. This is the technigue we use to arrive at the high
temperature limit for the schedule. :

If ¢, is the item with the largest size in the item list, then the configuration that allocates i,
alone to a bin and all the other items to another bin has the property that it is within one move®
of the maximum energy configuration. The energy of this configuration is given by

C=(MT =ty -T2+ (M -~ 2)“1“2 d(ty — TV = M(M - 1)T2 tak(MT“m i), (5)

and the difference in energy, AC, between this conﬁgﬁration and the maximum energy configu-
ration is given (from Lemma 1} by

AC =2, (MT — t4).

Assuming without loss of generality that there exists only one configuration with the max-
imum energy, an uphill move from & configuration with energy given by equation (5) will be
accepted only if e"2C/T < 1/N (only one out of N possible moves results in the maximum
energy configuration). This gives'the high terrperature condition as

CoMT-t)

3Moves are described in Section 4.3.
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1. relocation of a sinzia r.::.lomly selected item from the bin to which it is currently allocated
to a randomly selected »in, the associated change in energy being given by

AC = (B, —ti = T)2 + (Bj + t: = T)? — (Bo, = T)% ~ (B; - T)?
= 2tt (BJ - Ba.- + tg), (8)

2, randomly selecting two items currently allocated to two different bins and exchanging their
positions, the associated change in energy in this case being '

AC = (Bo, —ti+t; =TV + (By+ ti —t; = T)? = (Ba, ~ T)? ~ (B; = T)*
=2(t ~ t:) (Ba — By — ti +1;)- ©)

At high temperatures, e~2¢/T = 1 and state changes involving relocation of items with large
sizes are likely to be accepted. At low temperatures, e~ 2C/T ~ ( and generated configurations
are likely to be accepted only when they have a smaller energy.

Typically, the choice of an acceptance criterion such as the Metropolis criterion means that the
acceptance ratio® tends to become very small at low temperatures. To counteract this effect, our
annealing schedule uses both kinds of move generation strategies above. At high temperature,
we use moves of Type 1 above which coarsely optimize allocation, while at low temperatures we
switch to moves of Type 2 which make finer adjustments to the objective function. We have
also tested schedules which employ both kinds of moves all the time, increasing the proportion of
Type 2 moves applied at lower temperatures. The simulation results indicate that this method
of hybrid move generation yields only slightly better solutions when compared to schedules that
employ only one kind of move generation.

4.,4. Temperature Decrement

The rate at which the control parameter is varied has a profound impact on the quality of the
final solution obtained by annealing. Too slow a rate wastes computational time while too fast
a cooling rate quenches the system and yields local minima. The optimal cooling rate is hard to
determine although there have been schedules in the literature [5] using dynamically determined
temperature decrements. Typically, the temperature is decremented according to a logarithmic
scheme [12]. The idea is that in the absence of a good guideline, our best bet is to ensure that
the average cost decreases smoothly, thus, increasing the chance of obtaining a good annealing
curve.

We will use a temperature decrement function of the form

F(T)=~T, (10

where - lies in the interval [0.9,1.0). The closer it is to 0.9, the faster is the rate of cooling and
the closer it is to 1.0, the slower is the cooling rate. In our simulation experiments, we have
obtained very good solutions with a -y value of about 0.95.

5. SIMULATION RESULTS

We have applied the algorithm described in Section 3 to the bin-packing problem and have
run extensive simulation experiments. In this section, we present a representative cross section
of our results. :

5This is the fraction of generated configurations that are accepted according to the Metropolis criterion.
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Figure 3. Annealing curves.
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