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Abstract: Reducing sizes and increasing capabilities of wireless communication devices as well as electronic and electro-
mechanical systems have made it possible to not only continuously monitor a physical phenomenon by staying very close to 
or even inside it, but also to quickly and autonomously perform the required action upon sensing an event. Distributed, large-
scale networks that exhibit this capability are Wireless Sensor and Actor Networks (WSAN). Like wireless sensor networks 
(WSN), WSAN consist of dense deployment of large number of small, low-cost and low-power sensor nodes and additionally 
contain few powerful and resource-rich actor nodes. WSAN need to address issues pertaining to energy conservation and 
unattended, untethered operation present in WSN and additionally face challenges due to heterogeneity of nodes and real-
time requirements of the applications. 
Lifetime of sensor nodes determines lifetime of the network and is crucial for the sensing capability. Among the important 
techniques proposed for prolonging the network lifetime by exploiting redundant deployment is using hierarchical 
architecture or clustering. However, the primary drawback of hierarchical control is the control message overhead; it is 
essential that the overhead does not dominate the network operations cost. The clustering algorithm should also scale to the 
network sizes and the nodes that are awake at any point in time must preserve the desired sensing coverage of the entire 
network utilizing the redundant deployment. Also, it has been shown that in sensor networks, a fundamental tradeoff exists 
between energy and latency for data delivery [1]. If clustering should lead to efficient MAC and Routing protocols it could 
effectively address the real-time requirements posed by WSAN. 
The principle contributions of this paper are as follows. We propose ‘Ripples’, an extremely lightweight scalable clustering 
algorithm for clustering in WSN. Inspired by the cellular infrastructure model, ‘Ripples’ produces clusters of bounded 
geographic size (given a certain node distribution density this guarantees a bound on the number of nodes in a cluster as 
well), handles perturbations in the network locally in space and in time. The novelty of the algorithm lies in its deterministic 
operation to optimally exploit the redundant deployment and produce balanced clusters while retaining the desired sensing 
coverage with minimum possible control overhead. 
Extensive simulation has been conducted and results are presented. We compare the performance of ‘Ripples’ against 
‘Rapid’ and ‘Persistent’ [2]. These two algorithms achieve order of magnitude saving in terms of messages exchanged 
compare to the classical ‘Expanding Ring’ algorithm [3]. Of the two, ‘Rapid’ achieves better message efficiency at the cost 
of producing worst-case cluster sizes smaller than required. ‘Persistent’ produces clusters of desired size but is costlier. We 
demonstrate that ‘Ripples’ uses as less as 50% of messages compared to ‘Rapid’ to produce clusters of desired sizes, like 
‘Persistent’. 
The clustering approach used in ‘Ripples’ is similar to the one proposed in ‘GS3’ [4]. We compare the control overheads of 
‘Ripples’ with that of ‘GS3’, and prove that the overheads for ‘Ripples’ are as less as 25% of those for ‘GS3’. 
A sub-module ‘Bind’ has been outlined that associated the clusters to their nearest actor nodes; this is required for real-time 
response. ‘Bind’ works along with ‘Ripples’ and creates data tables that can be used by the data dissemination algorithm, 
medium access and routing protocols for efficient operation. 
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1 Introduction 

Reducing sizes and increasing capabilities of wireless communication devices as well as electronic and electro-mechanical 
systems have made it possible to not only continuously monitor a physical phenomenon by staying very close to or even 
inside it, but also to quickly and autonomously perform the required action upon sensing an event. Distributed, large-scale 
networks that exhibit this capability are Wireless Sensor and Actor Networks (WSAN). Like wireless sensor networks 
(WSN), WSAN consist of dense deployment of large number of small, low-cost and low-power sensor nodes that perform the 
sensing task and additionally contain few powerful and resource-rich actor nodes that perform action on the environment. 
Such networks can be an integral part of battlefield surveillance, microclimate control in buildings, nuclear, biological and 
chemical detection, habitat monitoring, home automation and many other surveillance and control applications. While 
seemingly similar to WSN, WSAN need to deal with different issues arising out of heterogeneity of nodes, requirement to act 
on the environment in real-time, mobility of actor nodes and other application-specific requirements [5]. 

1.1 Challenges and Opportunities 

Sensor nodes are mostly deployed in ad hoc manner. They need to form the network infrastructure to include connectivity, 
addressing and routing by themselves and subsequently handle network perturbations. Sensor nodes are small, battery-
operated devices that would rather be replaced than recharged, and the network needs to operate unattended and un-tethered 
for long time possibly in dynamic or hostile environment. The lifetime of the sensor nodes determines the lifetime of the 
network, and is critical for maximum field coverage; it directly affects the network’s sensing capacity. Among the important 
techniques proposed for prolonging the network lifetime are exploiting the trade-offs among energy, accuracy and latency, 
and using hierarchical architectures or clustering. While the trade-off depends largely on the application requirements, 
establishing a hierarchical control through clustering can be employed in the most general form to all of them. Nodes are 
grouped into a set of clusters and a leader is elected in each cluster to represent cluster at a higher level. 
Replacement of failed sensor nodes with new ones is expensive and often infeasible. In most cases a large number of 
redundant nodes are deployed. Clustering helps optimize the energy consumption in more than one ways. Clustering can be 
used to put the redundant nodes to sleep for most part of the time thereby preserve their energy. By grouping the nodes into 
clusters and letting the cluster head nodes coordinate the network operations the number of nodes contending for channel 
access is reduced. The information and updates are summarized at the cluster heads thereby suppressing redundant 
information. Routing through an overlay among cluster heads, which has a relatively small network diameter, also helps in 
energy saving; while transmission using many smaller hops is known to be more energy-efficient than that using few longer 
hops, this analysis ignores energy consumed by the RF components of the intermediate nodes [6]. 
However, the primary drawback of hierarchical networks is the control message overhead. Changes in topology due to node 
join, leave and failure require constant update of network infrastructure, and a high overhead will render ineffective the 
savings obtained by clustering. It is highly desirable that each of the algorithms and protocols employed minimizes control 
overhead, so that the network maintenance and management operations do not dominate the energy usage. Algorithms need 
to be lightweight, scalable and tolerant to node or link failures. Additionally, all the nodes that are awake at a given point in 
time must ensure the desired sensing coverage. 
If an efficient clustering algorithm requires costly maintenance phase, its advantages may easily be offset. In sensor networks 
where network dynamism is high and unpredictable, periodic maintenance requires as much careful planning as the initial 
configuration itself. 
In WSAN, taking timely action on the environment is crucial. This leads to two significant qualities that are required in a 
WSAN. Actor nodes will, in most of the applications, be mobile. It is required that the sensor nodes stay updated on the actor 
nodes’ position. Second, the sensed information must be communicated to the actor nodes in the least possible time. This 
requires efficient routing mechanism with guaranteed delays. 

1.2 Contributions of the paper 

We propose ‘Ripples’, a novel distributed algorithm for clustering the sensor nodes in WSAN with extremely low overheads. 
‘Ripples’ aims at producing clusters of bounded geographic size (given certain node distribution density this guarantees a 
bound on the number of nodes in a cluster as well) and on preserving the desired sensing coverage. Perturbations are handled 
locally for achieving scalability. We do not make any unreasonable assumption on the capabilities of the sensor nodes or on 
the network. 



 

We also outline ‘Bind’, an actor association mechanism that establishes links from the cluster heads to the closest actor 
node(s) and continuously updates this link as the actor nodes move. Associating sensor nodes to the nearest actor is required 
for achieving lowest possible latency, which is crucial for real-time response. While we do not propose a routing mechanism, 
the process significantly reduces the routing complexity since majority of the information flow in WSAN is from sensors to 
the actors.Detailed simulation has been carried out and simulation results are presented in the paper. 
The clustering mechanisms can be broadly classified into two categories. In a bottom-up approach, certain nodes decide to 
become cluster heads based on some criteria and other nodes join these clusters. Most of the existing work falls under this 
category. In top-down approach, some node initiates the clustering and hands over charge to ‘subordinates’ to carry on with 
the process. 
Many methods have been proposed in the literature for clustering in WSN [1-2, 4, 8-16]; we select three of these that focus 
on bounding the cluster sizes or on reducing the communication overheads for clustering for comparing ‘Ripples’ with. We 
show that ‘Ripples’ produces balanced clusters with significantly less communication overheads. 
To contrast our method with bottom-up approaches we compare the message efficiency of ‘Ripples’ with the algorithms 
‘Rapid’ and ‘Persistent’ presented by Krishnan and Starobinski [2]. These two methods show significant improvement over 
the classical expanding ring approach. ‘Rapid’ uses less message exchanges whereas ‘Persistent’ achieves the desired cluster 
size in most cases. We compare message efficiency of ‘Ripples’ with Rapid and cluster size with both Rapid and Persistent. 
Nearly all of the bottom-up approaches involve additional overhead to cater to network dynamism. Either separate modules 
need to be invoked or global reclustering is needed to accommodate the newly joined or damaged nodes. ‘Ripples’ caters to 
network dynamism with no additional overheads. 
Our work is similar to the top-down approach presented by Zhang and Arora [4]; however, ‘Ripples’ requires much less 
overheads and much simpler system model. We also present a theoretical analysis to substantiate our claim. 

1.3 Outline of the Paper 

In section 2 we describe a WSAN scenario, derive a system model and define the problem formally. Related work is 
discussed in section 3. In section 4 we describe and analyze the algorithms and also compare ‘Ripples’ with ‘Rapid’, 
‘Persistent’ and ‘GS3’. In section 5 we discuss how the post-deployment phase handles network dynamism. ‘Ripples’ can be 
adapted to a pure WSN scenario. We discuss this and some more possible variations in Section 6. Finally we conclude in 
section 7. 

2 Scenario, System Model and Problem Statement 

In this section we first consider an ideal application for wireless sensor and actor networks. Then we derive a system model 
for this scenario, define the problem formally and define some terminology. 

2.1 Scenario 

The army faces great challenges in maintaining the 
security of civilians and military personnel due to 
the threat of biological, chemical and radiological 
attacks. Situational awareness and reliable 
communications are critical to achieving today’s 
mission of detecting and combating such attacks. 
Wireless Sensor Networks provide a vital key to 
improving situational awareness. Different types of 
sensors could be deployed in an ad hoc manner 
inside own territory and could also be sent across 
the border, say, in an artillery shell. Being low-cost 
and untethered, the sensor nodes can be utilized for 
coverage of very broad area. The nodes can 
communicate the events of interest via secure and 
reliable radio frequency waveforms for operation 
in hostile environments bypassing blocked paths, if 
any. Consider the deployment scenario as in Fig 1. 
Sensor nodes are deployed all over the field. In battle scenario, army sets up forward bases or quasi-permanent 

: Mobile Node 

: Gateway 

: Sensor Web

Fig 1: Distributed Battleside/ Sensor Network
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communication stations. In peacetime there are command stations at key locations. These stations act as gateways to the 
operational headquarter, which could in turn be connected to the military headquarter, possibly on the Internet. Soldiers carry 
communication equipment on them, so do the vehicles. These stations, soldiers and military vehicles are the actor nodes. 
Sensor nodes upon detecting an event of interest pass on this information to one or more actor nodes, which perform the 
required actions. 

2.2 System Model 

The scenario described above requires/ enforces the following system properties: 
Sensor Nodes: Sensor nodes are stationary, deployed in large numbers in the battlefield. Failure rate of nodes in active 
battlefield is likely to be high and replenishment not always easy, requiring deployment denser than usual1. The entire 
battlefield needs to be covered by the sensor nodes and hence the deployment is nearly uniform. All nodes have equal 
significance; death of sensor nodes in a certain area could lead to loss of sensing capacity of the network in that area. This 
motivates the need for extending the lifetime of every node. 
Actor Nodes: Some actor nodes such as the forward base are stationary while others like soldiers, tanks and other vehicles 
are mobile with varying speeds. These nodes can communicate and coordinate with each other at long distances, and will 
typically possess GPS-enabled devices. Depending on the action at the moment, stretches of a few square kilometers in the 
field could have just a couple of actor nodes (vehicles or observation camps) whereas in other areas several troops could be 
present at the same time. We make no assumption on the density or uniformity of deployment of the actor nodes. 
Localization: While it is very critical to know the location where an event took place in the battlefield, use of GPS at each 
sensor node is impractical due to the size, power and cost factors. However, many lightweight location discovery 
mechanisms for WSN have been proposed in the literature [Ref]. In the scenario under consideration, actor nodes can possess 
GPS-enabled devices whereas sensor nodes can calculate their location – absolute or relative to some reference point – with 
the help of these actor nodes and through a simple location discovery mechanism. 
Wireless Transmission: The need for precise alignment for line of sight in optical or infrared communication devices 
leaves their use impractical in the scenario described above; RF is preferred. 
The size and power requirements of sensor nodes coupled with low frequencies of operation and mass scale deployment do 
not allow use of sophisticated antennae system at sensor nodes and most present-day sensor nodes use a very simple antenna 
model. We assume that the sensor nodes are equipped with simple and less powerful omni-directional antennae. However, a 
typical sensor node has a fixed number of transmission power levels2 and we make use of this feature in ‘Ripples’. 
The actor nodes can use highly sophisticated technology including directional antennae with longer transmission ranges; 
however ‘Ripples’ does not need this. 
Perturbations: Network dynamism (node failure and join, temporary or permanent) and node mobility are considered as 
perturbations. Both the sensor and actor nodes in the model are prone to damages, and more nodes can be added when 
required and when possible. Actor nodes will be on the move more often than not; static actor nodes are only special case of 
mobile ones. 
Characteristics of Self-Organization Algorithm: The algorithm should be completely distributed and localized 
because a centralized solution is not scalable for WSAN. It should be simple, without excessive overheads because sensor 
nodes typically have limited energy sources. It should allow multi-hop routing to actor nodes, should allow most nodes to 
sleep most of the times, preferably in a deterministic manner. In any WSAN in general and for the scenario in particular, time 
to act is a very important parameter. It is highly desirable that target localization and message routing be deterministic and 
performed in the fastest possible manner. 

2.3 Problem Statement 

In order to effectively and efficiently manage the scarce resources like the frequency spectrum, the bandwidth and power, the 
redundant deployment of sensor nodes is exploited and nodes are organized into clusters. The characteristics of the resultant 

 

1 Required node density is a function of the required sensing coverage, perceived failure rates and required network lifetime. See [7] for 

analysis on the critical density threshold for WSN. In our simulations, we use densities of 0.01 to 0.1 nodes/m2. 

2 e.g. Berkeley motes support this feature. It’s usually straightforward to set the transmission power level via standard system calls [6]. 
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clusters as well as the algorithm used in forming them directly affects the energy efficiency of the network as well as the 
complexity of the medium access and routing protocols that can be employed. 
We consider the sensor network as the graph GS = (VS, ES), where VS is the set of vertices or nodes and |VS| = n. ES is set 
of edges; an edge (u, v) ∈ ES exists iff u and v can communicate with each other. 
Each node vi has a residual energy level of eli. 
The actor network similarly forms another graph GA = (VA, EA). 
The goal is to partition GS into subgraphs GSi = (VSi, ESi) where each subgraph represents a cluster that holds certain 
properties. Assuming that the abovementioned system model holds, it is required that: 
1. ∀ vj ∈ VSi, vj ∉ VSk ∀ k, k≠i, i.e. each node belongs to one and only one cluster; ∀ GSi, ∃ unique vh called the cluster 

head3. 

2. The cluster heads form a connected network i.e. the graph represented by the cluster heads GCh = (VCh, ECh) is such 
that VCh ⊂ V, ECh ⊂ E, and GCh does not represent a disjoint graph. Communication takes place only through the 
cluster heads; this requires that the maximum distance between two neighboring cluster heads does not exceed the range 
that can be reached by a sensor node using its maximum transmission power. 

3. A node is able to directly communicate with its cluster head (single hop). Since every node can become the cluster head 
at some point in time, this requirement means that ∃ edge (u, v) ∈ ESi between each u and v ∈ VSi ∀ GSi. This way both 
the intra- and inter-cluster communications do not require non-clusterhead nodes to participate in routing or in route 
update procedures. Coupled with the requirement in serial 2 above, this places a bound on the maximum distance 
between nodes within a cluster, limiting the transmission energy required for intra-cluster communication. 

4. In the event of some nodes failing or edges getting perturbed due to obstacles or noise, a new set of subgraphs GSi is 
obtained automatically that meets the abovementioned requirements. Additionally, if the disturbance is around a 
particular subgraph GSn, only GSn and its neighboring subgraphs need to be altered. Also, the subsequent operations on 
the graph are not affected by this reorganization. In other words, the network is self-healing in the event of perturbations, 
and the self-healing operations are local in time and space in order to achieve stability and scalability. 

5. In each GSi, nodes take turn to become cluster head. Election of a cluster head vk = CHi is such that elk ≥ eli ∀ i that is vk 
has the maximum residual energy among all members. This balances load among nodes and prolongs the network 
lifetime while preserving the desired sensing coverage. 

6. The clustering process requires minimal overheads and thus is efficient in terms of message complexity as well as 
processing complexity. 

7. There is a mapping from each cluster GSi to one or more vai ∈ VA i.e. the cluster is associated with one or more actors. 
Distance between a cluster and an actor is calculated by number of intermediate clusters (number of hops through 
clusters). The associated actors are among the ones closest to the cluster4 and the cluster has a way to reach these actor(s) 
through intermediate clusters5. 

8. The clustering must preserve the desired sensing coverage when only the cluster heads are awake. 

9. Cluster characteristics must enable efficient design of network protocols. 

3 Related Work 

The field of sensor networks has attracted many researchers and the issue of clustering has been addressed in many different 
ways, to address different system requirements. Some of the clustering methods for WSN have been examined by Ahmed, 
Shi and Shang [8] and by Akyildiz et al. [9]. 

 

3 All nodes in a cluster take up the role of cluster head by rotation for energy balance, but at a given time there is only one cluster head. 

4 The distance can change, say, due to perturbations in the network when messages may have to take alternate, or longer, routes. Since 

these perturbations can’t be predicted, we select the actor on the shortest available path. 

5 This is ensured by requirement 2. 
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Heinzelman, Chandrakasan and Balakrishnan [10] have proposed a clustering method called Low-Energy Adaptive 
Clustering Hierarchy (LEACH). LEACH makes two assumptions: i) there exists a unique and stationary Base Station (BS) 
with which all the sensors want to communicate. ii) all the sensor nodes are able to communicate directly with the BS. Each 
node elects itself to be a cluster head at the beginning of the setup phase starting at time ‘t’ with probability Pi(t). Pi(t) is so 
chosen that the expected number of cluster heads for this round is ‘k’. The parameter ‘k’ is a function of ‘N’, the number of 
nodes distributed through an MxM region of space. Nodes broadcast ‘Hello’ messages to reach certain number of hops; the 
number of Hello messages received is an estimate of the number of nodes. Cluster heads communicate with the BS directly 
whereas cluster members communicate to the BS through cluster heads. Load-balancing is achieved by allowing different 
nodes to become cluster heads at different times. Related to LEACH is PEGASIS [11], in which cluster heads communicate 
with the BS using multi-hop transmission to save energy. 
The LEACH framework does not suit the scenario under consideration. There is no single Base Station with which the sensor 
nodes want to communicate and the actor nodes are assumed to be constantly on the move. Second, in LEACH, cluster 
membership of nodes can change in every operational frame. While this ensures lowest transmission power between cluster 
members and cluster head, it requires global reclustering at each iteration resulting in high overheads. Change in clustering 
requires constant updates of routes as well. Third, LEACH puts a limit on the number of cluster heads, and it is assumed that 
all other nodes are within transmission range of at least one of these nodes. This assumption may not be true given the spread 
of deployment. As such, LEACH either requires nodes to have global knowledge of system parameter or requires the base 
station to interact with every cluster head. 
Liu and Lin [12] present a clustering algorithm. They also stress on rotation of cluster-heads for even load-balancing in a 
homogeneous sensor network. However, the authors assume a model is where each node can vary its transmission range to 
communicate directly with any other node in the network. This is only feasible for very small network sizes. 
Bandyopadhyay and Coyle [13] discuss an algorithm for clustering in sensor networks. Nodes become cluster heads with 
certain probability and advertise themselves. This advertisement is forwarded to all nodes that are k hops away from this 
cluster head. Nodes that do not hear an advertisement for some time period t (enough for the advertisement to travel k hops) 
become forced cluster heads. Like many other methods, this method focuses on producing clusters with bounded logical size 
or maximum number of hops for intra-cluster communication. 
HEED is proposed by Ossama Y and Sonia F [6]. The authors emphasize on terminating the clustering process within 
constant number of iterations and minimizing the control overhead. Additionally, they focus on producing well-distributed 
cluster heads and prolonging network lifetime by selecting cluster heads based on residual energy levels. A node calculates 
the probability of itself becoming the cluster head subject to certain minimum value; the probability is based on node’s 
residual energy and number of nodes that can simultaneously be allowed to initiate clustering. Each node doubles its 
probability of becoming the cluster head after every iteration; once this probability becomes 1 it declares itself as a cluster 
head. HEED also repeats the entire clustering process periodically. 
Like HEED, we propose using lower energy levels for intra-cluster communication and higher levels for inter-cluster 
communication. Like HEED, we insist on load balancing. However, unlike HEED, we execute reclustering only to cater to 
node failures and node joins, and reclustering is completely localized. During periodic rotation of cluster heads, new cluster 
head is chosen from among the existing cluster members; cluster membership is not disturbed. Also, unlike HEED, our 
method focuses on geographical spread of the clusters as well as more uniform cluster distribution. 
Cerpa A and Estrin D present ASCENT [14]. Initially few nodes are in the active state and the others in passive state. Active 
nodes start transmitting. Another active node that hears the transmission but also senses some packet loss issues a ‘help’ 
message. A passive node that hears help message may decide to become active based on certain probability and acts as a 
router. The process ends once the network is stabilized. Given a dense network, ASCENT extends its lifetime by letting few 
nodes die before the passive nodes become active. 
An access-based clustering protocol is presented by Hou and Tsai [15]. The protocol dedicates one channel for out-of-band 
signaling, which in most cases requires a separate radio, increasing the cost and complexity of the nodes. 
While the abovementioned pieces of work deal with homogeneous set of nodes, in some other cases authors have assumed 
presence of two types of nodes: pure sensor nodes and nodes with additional features and/ or capabilities. These ‘special’ 
nodes have been referred to in the literature as ‘initiators’, ‘big nodes’, etc. We now discuss some of these. 
Subramaniam and Katz [16] emphasize on building clusters with some desired number of nodes in each. The nodes first 
perform neighbor discovery where an ‘initiator’ node sends a solicitation message within radius ‘r’ and the nodes that hear 
the message respond to it. The initiator counts the number of replies and if it is less than the desired number, it broadcasts the 
message over radius ‘kr’ for k>1. Once neighbor discovery is done, the algorithm tries to build groups of 8 members each. A 
node must belong to exactly one group and maintains the next-hop destination for every other member in the group. This is 
followed by building a hierarchy of groups. The nodes effectively form a tree structure which is also used for broadcast in the 
network and for building and maintaining routing tables. 
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This method gives way to an important concept. However, the message complexity of this method is very high. There is an 
inherent assumption that routes and broadcast trees once built are not subject to significant changes, which makes this 
method unsuitable for the scenario under consideration. 
Another work closely related to [16] is Expanding Ring Algorithm by Ramamoorthy, Bhide and Srivastava [3]. The initiators 
in this method increment hop count at each iteration and send to their immediate neighbors. The neighbors check the hop 
count and pass on the message to their neighbors if required. The process is repeated until the desired number of nodes is 
available in the cluster. Additional nodes obtained in the last layer are dropped and this information is conveyed to them 
through intermediate nodes. As discussed by Krishnan and Starobinski [2], this process is also highly expensive in terms of 
number of messages exchanged. 
Krishnan and Starobinski [2] present improvement over the Expanding Ring algorithm. The organization process is initiated 
by ‘initiator’ nodes. The algorithms try to build clusters of given size by allocating a ‘growth budget’ to the neighbors. Of 
this budget, the neighbor accounts for itself and passes on the rest to its neighbors. A ‘subtree’ is thus built at each node and 
once the budget is exhausted or no further growth is possible, the subtree is sent to the parent. In the ‘Persistent’ algorithm, 
the initiator tries to reallocate the remaining budget, if any, to the neighbors who still seem to have scope for growth. 
Rapid and Persistent achieve significant reduction in terms of number of messages exchanged compared to Expanding Ring. 
As we show later, ‘Ripples’ uses significantly less number of messages compared to ‘Rapid’ while giving the average cluster 
size same as ‘Persistent’ does. 
Another energy-efficient Self-Organization approach has been proposed by Chakrabarti and Iyengar [17]. The algorithm, 
SCARE, presented by the authors focuses on preserving sensing coverage along with energy-efficiency. Preservation of 
sensing coverage is a very important aspect of sensor networks and our method also addresses this issue. 
SCARE considers a Sensing Range (s) and a Transmission Range (r) for the sensor nodes; r > s. It lets some nodes become 
‘Coordinator’ based on certain probability. The coordinator node issues a HELLO message. A non-coordinator node that 
receives this message and is within range ‘s’ joins the coordinator; a non-coordinator that receives the message but is outside 
the sensing range is eligible to become a coordinator. Random wait is given in order to prevent many nodes becoming 
coordinators at once. In order to prevent network partitioning, nodes also have a timeout mechanism after which they elect 
themselves as coordinators. 
Some more work related to preserving of sensing coverage has been proposed in the literature [18-19]; however, we select 
SCARE for comparison because the message-complexity of SCARE is the same as that of ‘Ripples’ whereas other methods 
are more complex. 
Up to here we discussed the ‘bottom-up’ approaches. A common problem with these approaches is that the clusters are not 
well-distributed, the number of neighboring clusters in each case is not deterministic, and there could be large overlap 
between clusters. In almost all of the approaches presented except HEED and SCARE, intra-cluster communication is multi-
hop. This requires the non-cluster head nodes also to participate in routing and therefore makes the design of MAC and 
Network layer protocols interdependent. In addition, in all of the methods proposed above, the post-deployment phase either 
requires global reclustering or involves different algorithms, increasing cost and complexity. 
‘GS3’, presented by Zhang and Arora [4], applies top-down approach to clustering. ‘GS3’ is a self-configuring, self-healing, 
scalable, geography-aware clustering mechanism that divides the given network into non-overlapping hexagonal ‘cells’ of 
roughly equal size. One or more ‘big’ nodes act as initiators and are rooted at the cluster-heads hierarchy. The center of each 
cluster is the ideal location for its cluster head, and the node closest to this location is elected as the head. 
Melodia T, Pompili D, Gungor CV and Akyildiz IF discuss a Distributed Coordination Framework for WSAN [20]. The 
authors discuss an event-driven clustering scenario and propose sensor-actor as well as actor-actor coordination mechanism. 
Upon occurrence of an event, the sensor nodes send exploratory messages to the actor nodes. A packet is considered expired 
if it is received after a delay and tolerance period. Actor computes the ratio of expired packets to the reliable packets and 
periodically broadcasts its value. If this value is less than some threshold there is a need to reduce the number of hops 
(perhaps by increasing the Tx range and sending to a far off node), if it is above an upper threshold the reliability can be 
traded off for energy saving, the node then sends data to a node close by. The path thus established is a tradeoff between 
energy and latency. Our work differs from this work in many ways. One, the authors consider the classes of applications 
where actor nodes are not mobile. In our scenario actors will almost always be mobile. Second, nodes that belong to a cluster 
in this work are those who need to send data to one actor in order to meet the real-time requirement of the application 
whereas ‘Ripples’ forms clusters so that redundant nodes in an area can be put off to sleep. Since actor nodes in our scenario 
are most likely mobile, they send periodic control messages (periodicity can be a function of rate of mobility) that helps set 
up the path for routing without the sensors sending any exploratory data. If the rate of event occurrences varies, the rate of 
cluster maintenance can be reduced without involving any additional overheads thus saving energy. However, the authors 
present an actor-actor coordination mechanism that can be used in conjunction with ‘Ripples’ for actors to take effective 
action. 
More related work is discussed in [17] and [21]. 
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3.1 The Missing Link 

While most of the existing methods discussed in the previous section highlight important aspects of the self-organization 
problem in sensor networks, none addresses the unique requirements of WSAN especially in the scenario described earlier, as 
we shall see below. As such, the clustering methods have not been designed to enable the design of efficient networking 
protocols. 
‘GS3’ addresses some of the issues but assumes the Sink or the big node to be part of the network; movement of the big node 
requires changes to existing clustering, involving additional overheads. The application demands that the ‘Sensor Webs’ (see 
fig 1) be in close touch with the actor nodes yet be independent of them. Changes in actor nodes’ topology should not require 
sensor nodes to recluster. 
‘Ripples’ resembles ‘GS3’; however, are significant differences. While ‘Ripples’ is motivated by hexagonal cell structure, it 
does not attempt to build rigid hexagons. This provides increased flexibility and message efficiency. Also, the information 
‘sinks’ i.e. actor nodes are not part of the sensor network. Actors never act as cluster heads, separating their movement from 
cluster maintenance process. 
‘GS3’ assumes availability of directional antenna at each node, which is not feasible for most applications in the near future 
given the size, power and cost constraints. Also, in GS3, cluster heads once elected do not change until they fail or move; 
energy balance is achieved by letting these nodes die before some other nodes take on as cluster heads. When all the nodes 
close to the ideal center of the cell exhaust their energy, entire cell structure is shifted. This requires global reclustering and 
also may affect the sensing coverage. Cluster head rotation does not consume substantial amount of additional energy since 
in any case the periodic cluster maintenance needs to be to cater to perturbations in the network. 
The authors have not discussed the message efficiency of ‘GS3’. We present a theoretical analysis of the message efficiency 
of ‘Ripples’ and ‘GS3’ to show that ‘Ripples’ performs better. 
The clustering should make full use of redundant deployment yet preserve the desired sensing coverage. No method Other 
than ‘SCARE’ [Ref] emphasizes on preserving sensing coverage. 
‘Ripples’ preserves the desired sensing coverage. Additionally, it produces clusters that can form the basis for the design of 
efficient networking protocols. 

4 ‘Ripples’ and ‘Bind’ 

We now describe and analyze the ‘Ripples’ algorithm. First we define the key terms used in the descriptions. Next, we 
present a functional overview of the system. We then describe the ‘Ripples’ algorithms in detail and discuss its complexity. 
Finally we present ‘Bind’ and discuss its correctness. 

4.1 Definitions 

We define the following terms that are used subsequently in this paper. 
Node Density: Density of the sensor nodes in the network (λ), in number of nodes per meter2. 
Cluster Layer: ‘Ripples’ starts from the actor node and we call the innermost cluster as layer 0. It then grows outwards in 
circular ‘ripples’ and each ripple is called a ‘Cluster Layer’.  
Cluster Diameter: Clusters are approximated as circles and cluster diameter (DC) refers to the diameter of that circle. 
Typically the distance that can be reached by sensor nodes using minimum power level. 
Cluster Hops: Number of intermediate clusters on the path to a given destination. ‘Cluster hops’ (HC) is the number of 
clusters (cluster heads, essentially) that participate in forwarding the message, and determines the time taken to reach the 
destination. 

4.1.1 Timer Values 

‘Ripples’ uses the following timer values. 

1. Network Operation Cycle (TNO): One frame duration or duration between two successive beacons. 

2. Reclustering Frequency (FR): Measured in terms of number of TNO, it is the frequency at which cluster heads 
announce themselves. No global reclustering is performed; cluster members use this parameter to decide if the cluster 
head is operational; a newly joined node uses this to join a cluster. 



 

3. Cluster Head Timer (TCH): Measured in terms of number of TNO, it 
determines how long the cluster members should wait to hear from the cluster head 
before concluding that the cluster head has died and electing another cluster head. 
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4. Cluster Head Rotation Frequency (FCHR): Measured in terms of number of 
TNO, it is the frequency at which a new cluster head with maximum residual energy 
is elected. 

5. Actor Association Frequency (FAA): Measured in terms of number of TNO, it 
is the frequency at which actor nodes announce themselves. The announcement is 
used by the clusters to update the association information. 

6. Actor Association Timer (TAA): Measured in terms of number of TNO, it 
determines how long a cluster head should wait before concluding that the actor node 
is no longer available. 

D_Rad

D_Rad: Desired Cluster Radius

FAA is chosen to be greater than FR for reasons that are discussed later. 
These frequencies and timer values will depend on the real-time nature, dynamism and 
criticality level of the application. For example, if the actor nodes move fast and events 
also take place more frequently, actors should announce themselves more often so that sensing information could be 
forwarded to the desired destination in least possible time. If nodes are expected to fail more often or new nodes join more 
often, clustering should be more frequent. 

Fig 3: Typical clusters produced by 

‘Ripples’ 

These values can be different at different times for the same application. For example, during intense battle, actors may move 
fast, sensors may fail more often and events could be more frequent. Once the battle is paused, all of these could be less 
frequent. The abovementioned parameters can be preprogrammed into the sensor nodes. Subsequently, their values can be 
altered by the actor nodes. 
The cluster head and actor announcements are essentially very short broadcast packets. There is no periodic global 
reclustering. This makes the algorithm extremely lightweight with absolute minimum overheads. 

4.2 Functional Overview of ‘Ripples’ 

We provide a functional overview of ‘Ripples’ through a state-transition diagram (Figure-2). A node can be in one of the 
following states: Initial Unaware (IU), Initial Aware (IA), Waiting To Cluster (WC), Cluster Head (CH), Cluster Member 
(CM). Each node maintains certain application specific timers. These timers are activated upon sensing some events and their 
activation as well as expiry changes a node’s state. 

4.3 ‘Ripples’ Operation 

Metaphorically speaking, the actor node throws a ‘pebble in the 
lake’ and clusters get formed in concentric circles growing 
outwards. The actor sends out an ‘Actor Association 
Announcement’. Sensor nodes that hear this announcement and are 
within the desired range form cluster and elect a leader. This leader 
advances the announcement to the next bigger circle. Sensor nodes 
in this layer form suitable clusters based on their locations and then 
advance the announcement. The process continues until there are 
no more clusters formed. If there are multiple actor nodes, they all 
throw their own pebbles. The individual ripples proceed until they 
meet each other. 
Salhieh A, Weinmann J, Kochhal M and Schwiebert L discuss 
Power-efficient topologies for WSN [22]. They make two 
important observations. One, an increase in the number of 
neighbors increases the total power consumption, because it means 
increase in number of receivers. This means there is a fundamental 
tradeoff between reducing number of transmissions and increasing number of receptions. Second, increasing number of 
nodes increases the degree of routing freedom. 

IA

CH

IU

WC 

CM 

AA

AA WO 

t > TCH

AAA: Actor Association Announcement 
CA_OK: Cluster Join Announcement from Desired
Cluster Center 
WO: Wait Over, CH_CMD: Cluster Head Command, 
t: Time Elapsed 

CH CMD

t > FCHR

CA OK 

CA OK 

Fig 2: State Transition Diagram for Ripples

This coupled with the known advantages of a cellular communication infrastructure inspires ‘Ripples’ to have six neighbors 
for each cluster. While we do not attempt to make tight hexagons, the structure is derived from the hexagonal structure. Fig 3 
shows layout of typical clusters produced by ‘Ripples. 



 

A typical sensor node can select the transmit power level from one of the available six or eight discrete power levels. We 
group these power levels into three; we call these power levels as Pt1, Pt2 and Pt3 with associated transmission radii as R1, R2 
and R3 respectively. We assume that R2 ≥ 2* R1 and R3 ≥ 2* R2. 
Actor Node makes an ‘Actor Association Announcement’ (AAA). This is a short broadcast packet that contains: Actor_ID 
(actor node ID), Center (center location of the cluster, in this case location of the actor node), D_Rad (desired cluster radius6) 
and Depth (distance from actor node in terms of number of intermediate clusters, in this case 0)7. This announcement is made 
with power level set to Pt1. 
When AAA is received from the actor node (Depth=0), every node in IU state that listens to it (i.e. is within radius R1

8), 
computes its distance δ from ‘Center’, in this case the location of the actor node. If δ <= ‘D_Rad’, the node enters IA state; 
upon hearing the second AAA9, node in the IA state switches to WC state and waits for a time period α*δ, where α is an 
application-dependent constant decided by the node density. It also sets its associated actor ID as the one received through 
the AAA and Depth as 1. 
The node closest to ‘Center’ completes its wait first, enters CH state (ties broken by node ID) and issues a ‘Cluster Join 
Announcement’ (CJA) with power level set to Pt2

10. The nodes in WC state join this cluster, enter CM state and send 
acknowledgement to the cluster head. For announcements originating from sensor nodes (Depth > 0), the algorithm works as 
follows. The newly elected cluster head makes an AAA with power level set to Pt311. The announcement is the same short 
broadcast packet that includes ‘Center’ (center location of the cluster), ‘Actor_ID’ (actor node ID) and ‘Depth’. 
Sensor nodes within radius R3 hear this announcement; of these, nodes that are at most 3*D_Rad distance away from the 
center of the originating cluster and are in IU state enter IA state; upon hearing the second announcement the nodes in IA 
state enter WC state. They set their Actor ID as the one received in the announcement and Depth to one greater than that 
received in the announcement. N1.x = C.x + 2*D_Rad*COS 30, N1.y = C.y 

N2.x = C.x + D_Rad*COS 30 

N2.y = C.y + D_Rad + D_Rad*SIN 30 

N3.x = C.x - D_Rad*COS 30, N3.y = N2.y 

N4.x = C.x - 2*D_Rad*COS 30, N1.y = C.y 

N5.x = N3.x 

N5.y = C.y – D_Rad - D_Rad*SIN 30 

N6.x = N2.x, N6.y = N5.y 

Each of these waiting nodes computes the center 
locations of the six possible neighbors of the 
originating cluster (Fig 4) and computes its distance 
from all of these locations. Of these, the node 
selects the shortest distance δ (ties broken by 
random choice); the corresponding center location 
is the desired cluster center. The node waits for a 
time period α*δ. The node closest to the center 
completes its wait first and takes over as the cluster 
head and announces itself. Nodes that were in the 
WC state and had the same ‘Center’ as the 
announcing head join this cluster. 

N

N N

N

N N

C 

D Ra

Note that only the neighbors that were not 
previously clustered will respond back. The new 

Fig 4: Desired Center Locations of Neighboring Clusters
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6 D_Rad could be so chosen that the worst-case distance between two neighboring cluster heads is equal to sensing range. This ensures 

desired sensing coverage. Choosing this radius to be less than sensing range provides sensing redundancy. 

7 It sends another parameter called ‘On Move’, which is discussed in the next subsection on ‘Bind’. 

8 It is possible to select this distance to be less than the sensor nodes communication range. 

9 Ignoring first announcement caters to post-deployment phase without any changes in the algorithm,. 

10 Cluster head may be away from the actor; if it transmits with the same power level, nodes within D_Rad from actor may not be covered. 

More importantly, typical sensing range of sensor nodes is half of their communication range. By selecting cluster radius as half of the 

communication range ensures proper sensing coverage even when only the cluster heads are awake. 

11 Given R3 ≥ 2*R2, this ensures the desired set of sensors is covered even if the selected cluster head is away from center of the cluster. 
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cluster heads then extend the ripple12. 
The pseudo code of the algorithm is presented in Appendix-A. 

4.4 ‘Ripples’ Analysis 

We now analyze the key features of ‘Ripples’. We also discuss the algorithm against some of the requirements discussed in 
section 2.3 n this and the next subsections. Some other requirements dealing with network dynamism and actor association 
are discussed in later sections. 

4.4.1 Clusters Produced 

Lemma 1: 

The number of clusters produced is at most (1+3*L*(L+1)) where L = (Network Diameter13/ Desired Cluster Diameter) 
Proof: Except the innermost layer where number of clusters is 1, each ith layer consists of at most (6*i) clusters. Each cluster 
has a diameter of 2*D_Rad or the Desired Cluster Diameter. The number of cluster layers is L = (Network Diameter/ Desired 
Cluster Diameter). Therefore, the total number of clusters is bounded by 
             L 
C = 1 + Σ (6*i) = 1 + 6*L*(L+1)/2 = 1 + 3*L*(L+1) 
            i=1 
Observation 1: 

Clustering by ‘Ripples’ allows simple protocols to be employed for MAC and routing (Req 9). 
The cluster size corresponds roughly with the direct communication range of the nodes. This allows simple protocols to be 
used for routing, medium access and broadcasting within a cluster. The clusters have fixed geographical size and regular 
layout. This facilitates the same time- or frequency- division multiplexing to be reused [23]. Since every cluster has a fixed 
number and layout of neighbors, this also simplifies routing. ‘Ripples’, coupled with ‘Bind’ (discussed later) effectively sets 
up gradients for use by the routing protocol. 
Observation 2: 

Clustering by ‘Ripples’ extends the overall network lifetime. 
In the scenario under consideration in this paper, if the number of clusters is independent of the node density, the cluster 
radius can be chosen such that the cluster head graph provides the desired sensing coverage. Such a system would maximally 
utilize redundant deployment. Excess number of nodes can be deployed; however, only a constant number of nodes will be 
fully operational at any point in time, prolonging the overall network life time. 
Observation 3: 

The number of messages exchanged in ‘Ripples’ is independent of the network topology. 
The number of clusters, C, produced depends only on the area of deployment and desired cluster radius. Given the total 
number of nodes N in the network, a ‘Clique’ representing a sparse network and a ‘Ring’ representing dense topology both 
require C broadcast messages from cluster heads for CJA, N-C messages from cluster members to their cluster head and C 
broadcast messages for AAA. The total number of messages exchanged therefore does not depend on the network topology. 
Observation 4: 

‘Ripples’ is sensing coverage aware (Req 8). 

 

12 To avoid collision, Ripple is extended in alternate cycles–1, 3, 5 announce in one cycle and 2, 4, 6 in the next one. Comparison with 

neighboring locations on inner layer can be avoided; however, this could lead a chain of unclustered nodes when a ‘Cluster Gap’ exists. 

13 We refer to the network diameter as the largest Euclidean distance between any two nodes. 
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Limiting the worst-case distance between two cluster head nodes to the sensing range of the nodes and keeping cluster heads 
awake ensures the desired sensing coverage at all times. By reducing this distance, desired sensing redundancy can be 
provided. 

4.4.2 Correctness 

Lemma 2: 

At the time (4*α*D_Rad*Depth*TNO), each sensor node ‘Depth' hop count away from the initiator actor node is either a 
cluster head or a cluster member that belongs to one and only one cluster (Req 1). 
Proof: We prove this also by induction. When Depth=0, the only node ‘Depth’ hop count away from the actor node is the 
actor node itself, no sensor node is in this category. The lemma holds good in this case. 
At depth ‘i', the node that listened to the AAA 
a) could already have been clustered. The lemma holds good in this case. 
b) was not yet clustered. It waits for time α*δ (max of α*D_Rad). After α*D_Rad cycles, each node would have stopped 

waiting; the node first to complete its wait becomes cluster head. Other waiting nodes join this cluster. Therefore, each 
node at this depth would either have become a cluster head or have joined a cluster. 
Odd and even numbered cluster heads in this layer further the announcement in two separate cycles. Also, the nodes 
ignore the first AAA. Therefore, at the end of 4*α*D_Rad*Depth*TNO, every node at ‘Depth’ hop count from the 
initiating actor node would either have become a cluster head or joined a cluster. 

Corollary: 
 
The time for the entire network to get clustered is θ(Max_Separation) where Max_Separation is the maximum distance 
between a sensor node and an actor node. 
Lemma 3: 
 
The cluster heads form a connected network (Req 2). 
Proof: We assumed that R3 ≥ 2*R2 and R2 ≥ 2*R1. We also assumed that R1 ≥ D_Rad, the desired cluster radius. From these 
equations we get R3 ≥ 4*D_Rad. The maximum separation between two cluster head nodes is 4*D_Rad. This ensures that 
even in the worst case two neighboring cluster heads can reach each other using the power level Pt3. 
Lemma 4: 
A node can directly communicate with its cluster head (single hop) (Req 3). 
Proof: We assumed that R2 ≥ 2*R1 and R1 ≥ D_Rad. The maximum separation between two members in the same cluster is 
2*D_Rad, which can be reached using the power level Pt2. 
Lemma 5: 
The algorithm terminates in finite number of steps (no cyclic execution). 
Proof: The algorithm terminates when there are no further AAA made. This happens when no more cluster heads are 
selected. Nodes that are in CH or CM state do not attempt clustering again, only the nodes in IU or IA states do. This ensures 
that the ripples only grow outwards. Once all the nodes are in CH or CM states (at the time (4*α*R1*Depth*TNO) as per 
Lemma1, the algorithm terminates. 

4.4.3 Message Efficiency of ‘Ripples’ 

We now analyze the message efficiency of ‘Ripples’ (Req 6). The number of messages is inclusive of the acknowledgements 
sent by the cluster members to the cluster heads. 
Lemma 6: 

The message complexity of ‘Ripples’ for clustering the entire network is O(N); the total number of messages transmitted in 
‘Ripples’ is bounded by (N + 3*(1+3*L*(L+1))) where L = (Network Diameter14/ Desired Cluster Diameter) and N is the 
total number of nodes in the network. 

 

14 Network diameter is the largest distance between any two nodes. 



 

Proof: In each cluster, one member (cluster head) sends an announcement for forming cluster. Only the nodes that have 
chosen the same cluster center respond. This ensures that each non-cluster-head node sends acknowledgement to one and 
only one cluster head. 
The cluster formation process therefore involves transmission of N messages where N is the number of sensor nodes in the 
network. 
Each cluster head sends out one broadcast message as AAA; total message transmissions in this case is (1 + 3*L*(L+1)) (see 
Lemma 1). 
Each cluster head except the centermost performs a handshake with its predecessor and receives command to further the 
AAA. These messages tally to (2*(1+3*L*(L+1))). 
Therefore, the total number of messages exchanged are (N + 3*(1+3*L*(L+1))). 
Assuming N >> L, message complexity of ‘Ripples’ to cluster the entire network is O(N). 

4.4.4 Comparing ‘Ripples’ with ‘Rapid’ and ‘Persistent’ 

In this section we compare the message efficiency of ‘Ripples’ with that of ‘Rapid’ and average cluster size with ‘Persistent’. 
Simulations were carried out using NS-2.27 [24]. CMU’s ‘setdest’ utility (part of NS-2.27 package) was used for generating 
the random topologies. In the first set, we assume that two nodes have a link if and only if they are within distance dr units 
with each other (distance that can be reached with minimum power level); dr is chosen to be 1. This also fixes the cluster 
diameter for ‘Ripples’ as 1. Edge probability is approximated to be π dr

2/l2. In order to obtain a justifiable comparison, we 
first run ‘Ripples’ (with single initiator in the center, although this symmetry is not required) on the topology to generate 
clusters. We then choose the cluster heads selected by ‘Ripples’ to be the ‘Initiators’ for ‘Rapid’ and ‘Persistent’, keeping 
‘Budget’ as the average cluster size produced by ‘Ripples’. With this, the number of clusters produced by these three 
algorithms remains the same with cluster heads at the same locations. For ‘Rapid’ and ‘Persistent’, only one initiator is made 
active at a time, after forming the cluster it is made to hand over to the next initiator. We compare the number of messages 
exchanged only with ‘Rapid’, since ‘Persistent’ is known to use more messages. The average cluster size formed is compared 
both with ‘Rapid’ and ‘Persistent’. 
In the second case, we selected areas of 50mx50m, 50mx100m and 100mx100m and varied the node density from 0.01 to 0.1 
per meter2 in each case. Cluster radius for ‘Ripples’ is chosen to be 12m; the neighbor reachability for ‘Rapid’ and 
‘Persistent’ is calculated accordingly. Simulations were run in a manner similar to the one described above.  
In each of the two cases, 50 random topologies were generated for each scenario and simulation runs carried out on each. 
Results were averaged for comparison. Neighbor lists were generated from the scenario file prior to running simulations. 

4.4.4.1 Messages Exchanged  

The graphs in Fig 5A and 6A depict the number of messages exchanged in case of the two scenarios described above. 
‘Ripples’ uses as less as 50% of the messages used by ‘Rapid’. Note that ‘Ripples’ does not require additional messages for 
the post-deployment phase. 

4.4.4.2 Cluster Size 

 

 1/7/06 Page 13 of 27 

The graph in Fig 5B shows a comparison between number of clusters produced by ‘Ripples’ as against those in ‘Rapid’ and 
‘Persistent’ for increasing edge probability with same number of nodes. The graphs in Fig 6B show a comparison between 



 

the average cluster size produced in terms of number of nodes in the cases of ‘Rapid’, ‘Persistent’ and ‘Ripples’ for the 
second scenario discussed above. We provide this comparison assuming that the selection of initiators and bound on cluster 
size in ‘Rapid’ and ‘Persistent’ and ‘Desired Cluster Radius’ for given density and spread of nodes in ‘Ripples’ can be 
matched to produce clusters of equivalent sizes. The comparison effectively shows the number of nodes covered as against 
the desired ones. 
As the graphs show, ‘Ripples’ produces the clusters with required number of nodes, equal to or better that ‘Persistent’ and 
better than ‘Rapid’. Since the communication cost of ‘Ripples’ is much less than that of ‘Rapid’, this shows that ‘Ripples’ 
produces clusters of required sizes with much less overhead, apart from providing the added advantage of preserving sensing 
coverage. 
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4.4.5 Comparing ‘Ripples’ with ‘GS3’ 

In this section we discuss the main differences between ‘Ripples’ and ‘GS3’. To the best of our knowledge 
this is the only clustering algorithm proposed with top-down approach. ‘Ripples’ and GS3 are similar in their approaches 
(both start from a head node or an Actor and grow outwards); however, both the approach to clustering and the assumptions 
made are different in these two cases. 
- In the case of GS3, the ‘Big Node’ acts as a cluster head. When it moves, another node replaces this head and if this node 

reaches an Ideal Location for another cluster head, it replaces the cluster head there. In ‘Ripples’, actor nodes are never 
part of the sensor network. All the cluster heads are ordinary sensor nodes. Movement of actor nodes does not alter the 
cluster head graph, and is completely separated from the clustering and reclustering process. 

- Unlike GS3, a cluster head in ‘Ripples’ only advances the clustering process further; it does not select the neighboring 
cluster heads. Cluster formation is completely independent. This results in significant saving in the number of messages 
exchanges while achieving the same goal. 

- GS3 assumes that the sensor nodes possess sophisticated, directional antenna system. Given the size, power and cost 
constraints this is not feasible in the near future. The sensor nodes in our model possess much simpler antenna systems. 

- GS3 focuses on retaining the cellular structure throughout the network lifetime with cluster heads very close to the ideal 
center of the cells. Since energy in cluster heads gets depleted faster compared to other nodes, this eventually results in 
no nodes being present close to the ideal location. In this case, a ‘Cell Shift’ is performed, which involves considerable 
overheads. Additionally, since nodes in the given areas are all dead, this leads to non-uniform sensing coverage over the 
network. 

‘Ripples’ does preserve the desired cell center location as well as the coverage area of individual clusters, but cluster 
members take turn to become cluster heads to ensures uniform energy depletion in the network. Any new node within R1 
radius from the cluster center becomes members of that cluster. 
We now present a comparison between the message efficiency of ‘Ripples’ and GS3. We consider two scenarios. First, when 
the sensor nodes do not possess directional antennae so GS3 needs to determine whether a node is within the search region 
only after it knows its location. This effectively means the search region for each head is (0°, 360°). We call this case GS3-O. 
In the second case, we take the model proposed in GS3 i.e. each node having a directional antenna. We call this case GS3-D. 
As we show, even with this complex model, message complexity of GS3 is higher than that of ‘Ripples’. 

4.4.5.1 Case 1 – GS3-O 

Since nodes do not possess directional antenna, each head needs to get location information of all the nodes within radius √3 
R + 2 Rt. R here is equivalent to R1 in our case. Number of nodes within the circular area, given node density λ, is 
λ * π (√3 R + 2 Rt)2 ≈ λ * π * 3 R1

2.  (Assuming Rt << R1) 
We assume that the command to seek the location information was broadcast and, therefore, the only transmissions counted 
are replies from the nodes. 
Each head will be selected by exactly one ‘Parent Head’. Also, each node will send acknowledgement to at least one cluster 
head to join the cluster. Assuming cluster radius of R1, the number of nodes sending acknowledgement per cluster will be 
λ * π * R1

2. 
Therefore, total messages transmitted by a cluster head and the cluster members are, ignoring small numbers, 
λ * π * R1

2 + λ * π * 3 R1
2 = λ * π * 4 R1

2. 
In the case of ‘Ripples’, this number is λ*π* R1

2. Therefore, in the simplest case15, number of messages transmitted in the 
case of GS3-O is four times that of ‘Ripples’. 

4.4.5.2 Case 2 – GS3-D 

In this case we assume that the sensor nodes in GS3 possess directional antenna, while those in ‘Ripples’ have simple omni-
directional antennae. 

 

15 In GS3, a new node may turn out to be a better head in which case this node will be nominated as the head. This will involve additional 

message exchanges. We also ignore here the acknowledgement sent by existing cluster heads. 



 

In GS3, each cluster head except the Big Node receives location information of all the nodes within radius √3 R + 2 Rt but 
only in the direction (-60°-α, +60°+α). This is (1/3)rd of the full circle. Number of nodes in this area are 
(λ * π * 3 R1

2)/3 = λ * π * R1
2. 

In case 1, each head will be selected by exactly one ‘Parent Head’. Also, each node will send acknowledgement to at least 
one cluster head to join the cluster. Assuming cluster radius of R1, the number of nodes sending acknowledgement per cluster 
will be 
λ * π * R1

2. 
Therefore, total messages transmitted by a cluster head and the cluster members are, ignoring small numbers, λ * π * R1

2 + λ 
* π * R1

2 = λ * π * R1
2. 

In the case of ‘Ripples’, this number is λ*π*R1
2. Therefore, in the simplest case, number of messages transmitted in GS3-D is 

twice that of ‘Ripples’, when the nodes in ‘Ripples’ are much simpler. 
Given large number of nodes, this is significant saving in terms of messages exchanged. 

4.5 Sensing Coverage 

In this section, we compare the sensing coverage of ‘Ripples’ with that of ‘SCARE’. ‘SCARE’ achieves sensing coverage 
close to 100% when node density is reasonable, with very less control overhead and very less fraction of nodes selected to be 
‘Coordinators’. ‘Ripples’ performs comparably in terms of sensing coverage as well as the number of nodes selected as 
cluster heads. Number of control messages in both ‘SCARE’ and ‘Ripples’ is little over N where N is the total number of 
nodes in the network. However, ‘Ripples’ additionally enables the design of efficient networking protocols. 
Figures 7(a) and 7(b) show the obtained sensing coverage and fraction of nodes selected as cluster heads respectively for 
‘Ripples’ and ‘SCARE’. ‘Ripples’ was run with cluster radius of 12, 14 and 16 meters, shown in figures as Ripples-12, 
Ripples-14 and Ripples-16. Sensing radius in all the cases is 12.5m. 
It is evident from the figures that ‘Ripples’ achieves the same (or more) sensing coverage as SCARE for much less number of 
nodes selected as coordinators. The number of coordinators can be reduced further by compromising on the sensing coverage 

and increasing the cluster radius. This can alternatively be achieved by keeping the cluster radius small and letting cluster 
heads sleep periodically. 
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4.5.1 Summary of Comparison 

The table given below summarizes the comparison between ‘Ripples’ (our method), ‘Rapid’, ‘Persistent’ and ‘GS3’. 

 Rapid Persistent GS3 Ripples (our  
method) 

SCARE 

Achieves 
Desired 
Cluster Size 
in terms of 
Number of 
Nodes 

Not always Mostly Mostly if 
geographical 
size is chosen 
appropriately 

Mostly if 
geographical 
size is chosen 
appropriately 

Possible 

Achieves 
Desired 
Geographical 
Cluster Size 

No No Yes Yes No 

Antenna 
Model 

Omni Omni Directional Omni Omni 

Routing Non cluster 
head nodes 
need to 
participate in 
routing 

Non cluster 
head nodes 
need to 
participate in 
routing 

Multi-hop 
routing possible 
through cluster 
head overlay 

Multi-hop 
routing possible 
through cluster 
head overlay 

Multi-hop 
routing 
possible 
through cluster 
head overlay 

Handling 
Perturbations 

Post-
deployment 
mechanism 
different from 
initial clustering 

Post-
deployment 
mechanism 
different from 
initial 
clustering 

May call for 
global re-
clustering after 
certain time 
period 

No separate 
overheads for 
post-
deployment 
phase 

Post-
deployment 
phase different 
from initial 
configuration 

Preserves 
Sensing-
coverage 

Not likely if 
only cluster 
heads are awake 

Not likely if 
only cluster 
heads are 
awake 

Yes if cluster 
size is chosen 
appropriately 

Yes if cluster 
size is chosen 
appropriately 

Yes 

Movement of 
Actor Nodes/ 
Sink 

NA NA Calls for 
reclustering/ 
setting up 
proxies etc 

Actor node 
movement 
completely 
separated from 
clustering 
process 

NA 

4.6 ‘Bind’ Operation 

‘Bind’ is a submodule of ‘Ripples’ that associates clusters to their closest actor node(s). 
We assume that the actor nodes have a way of communicating among themselves and therefore it is sufficient to send the 
required data to the closest actor of a certain type. For example, armored vehicles may be interested in a particular type of 
event that may be of no use to foot soldiers. This information can therefore be sent to the closest available armored vehicle. 
However, multiple entries for the same type of actors can be maintained for the purpose of redundancy. 
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Every cluster head maintains association with one or more actor node types, as required by the application. It also maintains 
for each actor, the number of hops to the actor, the attribute of interest to the actor, the duration of interest and the rate of 
interest. 
Each actor node announces itself with the frequency FAA. On receiving this announcement: 
- If it is a new actor of its type, add the entry to the table. 
- If the actor is not of new type and its ID does not match the one in the association list but is closer than the stored one 

and its timestamp is newer, replace the entry by the new entry. 
- If the actor ID matches one of the IDs stored in the list but the timestamp is newer, update the entry. 

4.7  ‘Bind’ Analysis 

In this section we discuss the properties of ‘Bind’ (Req 7). 

Lemma 5: 

The sensor nodes are always associated with the nearest actor node of a certain type found thus far. 

Proof: We assume, for simplicity, that sensor nodes store association only with one actor node of one type. Case of 
association with multiple actors is similar. 
We prove the lemma by induction. When Depth=0, the only node ‘Depth’ hop count away from the actor node is the actor 
node itself, no sensor node is in this category. The lemma holds good in this case. 
At depth ‘i', the sensor node that listened to AAA 
a) could already have been associated with another actor of similar type. If the new actor is closer than the previous one, the 

sensor node updates its actor association, else leaves it unchanged. Therefore the sensor node is associated with the 
closest actor of this type found so far. 

b) was not yet associated. It updates its actor association to be that of the only actor of this type found so far. 
Observation 5: 

‘Bind’ assists in obtaining real-time response. 
Each cluster associates itself to the closest actor node of a given type. This results in the minimum possible latency in sending 
data to actors, assisting in getting real-time response. Also, since each cluster has a fixed number of neighbors, an upper 
bound on the number of hops to destination can be guaranteed. The FAA can be altered based on the real-time response 
requirements of the application and mobility of the actors. 
Observation 6: 

‘Bind’ helps reduce routing complexity. 
The association through ‘Bind’ effectively forms gradients for information flow. Since majority of the traffic flow in WSAN 
is from the sensor to the actor nodes, the routing protocol can make use of these gradients to greatly reduce the routing 
complexity. 

5 The Post-Deployment Phase 

The primary requirements handled in this phase are network dynamism and load balancing. The distinction between the 
infrastructure establishment and maintenance is only conceptual. The nodes never need to know the network phase; they only 
need to know the state they themselves are in. We demonstrate how the node join and death are easily accommodated in 
‘Ripples’ without the need for additional overheads. Like LEACH and HEED, ‘Ripples’ works in the ‘Setup Phase’ every 
few network cycles, and leaves the ‘Steady State Phase’ for other network operations. However, unlike these two, no global 
reclustering is performed. 

5.1 Load Balancing 

Load balancing (Req 5) is achieved through periodic rotation of cluster heads. Handshake messages are exchanged as 
follows. 
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i) Cluster head selects the member with maximum residual energy and issues a ‘Cluster head takeover request’ (CH_CMD) 
to it. 

ii) The member acknowledges the request with ‘Cluster head accept acknowledge’ (CH_ACK) message; updates own state 
to CH. If the designated cluster member fails to respond, the next best candidate is chosen. 

iii) Old cluster head updates its state to CM. 
iv) New cluster head issues a broadcast CJA. Cluster members update the Cluster_Head_ID. 

5.2 Handling Dynamism 

In this section we show how ‘Ripples’ caters to network dynamism i.e. failure and join of sensor nodes (Req 4) as well as 
failure, join and movement of actor nodes. 

5.2.1 Sensor Node Failure 

If a cluster head fails, the TCH timer of the cluster members will eventually expire; the nodes will enter WC state with the wait 
period proportional to their distance from the center of the cluster, a cluster head will be chosen and cluster will be formed as 
in the IA state. 
The worst-case time taken for the cluster to reform in this case is therefore TCH + α * R1 or O(1). 
If a cluster member fails, cluster head will not take any action until the failed node’s turn arrives to become cluster head. The 
original cluster head will hand over charge to the next best candidate. There is no change in the network state in this case. 
The failure of a sensor node therefore affects only the nodes in the cluster and, if the failed node is a cluster head, the 
immediate neighbors (the cluster head may be en route to an actor node). Since the cluster gets reformed in a finite amount of 
time, the effects are local in time as well. 

5.2.2 Sensor Node Join 

The new node will be in IU state. If it hears AAA first, it computes its desired cluster radius and enters the IA state. Since FR 
< FAA, it will receive a CJA before receiving the next AAA. When the node hears a CJA from the desired cluster, it joins the 
cluster. If the node hears AAA again before any CJA (there is no cluster in the desired area), it enters the WC state and 
eventually forms the cluster. 
The worst-case time taken by the sensor node to join the right cluster is therefore 2*FAA or O(1). 

5.2.3 Actor Node Failure 

If an actor node fails, the sensors associated with it will timeout after time TAA. If other actor nodes exist, these sensors will 
listen to the periodic announcements from them via intermediate nodes and ‘Bind’ will ensure they get associated with the 
closest of them. 
The worst-case time for a node to get reassociated with an actor node is TAA+FAA*Depth or O(Depth) where Depth if the 
distance in terms of number of clusters/ hops of the node from the new actor node. 

5.2.4 Actor Node Join 

The new actor node will announce itself with frequency FAA. Nodes that are closer to this actor will change their association; 
others will retain their original association. 
The worst-case time for a node to get associated with the new actor node is FAA*Depth or O(Depth) where Depth is the 
distance of the node in terms of number of clusters/ hops from the new actor node. 

5.2.5 Actor Node Movement 

‘Bind’ checks the timestamp of AAA and updates the entry for the actor node as described earlier. The worst-case time in this 
case is the same as that in the case of Actor Node Failure or Actor Node Join. 
Observation 7: 

‘Ripples’ is scalable to large network sizes.  
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The sensor nodes only need to know their own location. Cluster heads need to know IDs of the cluster members, a maximum 
of six neighbors and one (or more for the purpose of redundancy) predecessor cluster head for selected number of actor IDs. 
All the operations dealing with perturbation are local in space as well as in time. The algorithm does not need global 
knowledge of the network. These characteristics make the algorithm scalable. 

5.2.6 Demonstration of Actor Association and Infrastructure Maintenance Phase 

In order to demonstrate the features part of the Infrastructure Maintenance phase as well as actor association, simulations 
were carried out using NS-2.27. NAM snapshots giving pictorial representation of these are shown in Appendix-B. 

6 Variations to ‘Ripples’ 

‘Ripples’ can be applied to a pure WSN scenario. The ‘Actor’ Node that initiates clustering could be the ‘Base Station’ or the 
‘Sink’ node. Alternatively, some of the sensor nodes themselves can act as ‘Initiator’ nodes. Many methods have been 
proposed in the literature to select few of the nodes as initiators. A timer design method has been proposed in [2]. Our 
method can be used in conjunction with this work to let some sensor nodes initiate the clustering process. 
If the application desires that the cluster heads remain close to the desired center of the cluster, our approach for clustering 
can be applied along with the ‘Cell Shift’ concept proposed in GS3 – the nodes close to the center of the cell will be cluster 
heads; as these nodes die and the center becomes void, the cell structure can shift as a whole. 
The cluster head rotation procedure can be synchronized such that the distance between two neighboring cluster heads 
remains nearly the same always, unless there is no node close to the desired position. This has the advantage of preserving 
sensing coverage with larger cluster radius. 

7 Conclusions 

In this paper, we presented ‘Ripples’, a message-efficient and sensing coverage-aware clustering algorithm with self-healing 
capability for wireless sensor and actor networks. The algorithm draws its strength from its deterministic behavior, ease of 
implementation and from considerably less control message overhead compared to most clustering algorithms proposed. We 
have presented detailed analysis of the algorithm’s features. We also compared the message efficiency of ‘Ripples’ with that 
of ‘Rapid’ and ‘Persistent’, two of the efficient algorithms in the category of bottom-up approaches as well as with ‘GS3’, an 
algorithm with top-down approach. Simulation results demonstrate the algorithm’s message efficiency and self-healing 
capability. 
We focus on retaining uniform sensing coverage for the entire lifetime of the network. Coupled with its energy-saving 
operation of rotating cluster heads based on maximum energy left, the significantly less control message overhead can 
enhance the lifetime of the network substantially. 
We have also outlined ‘Bind’ that works along with ‘Ripples’ and associates the sensor nodes with the actor node closest to 
them. 
Since the number of neighbors as well as cluster size is fixed, relative direction of neighbors from self is known, and also the 
location of actor gets stored as the announcement comes, this can be exploited for routing of data with known delay. 
Frequency can be effectively reused across clusters. The medium access protocol can exploit the structure for allocating slots 
for synchronization between neighbors. 
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Appendix-A 

Algorithm: ‘Ripples’ 
Given: Network GA = (VA, EA) of actor nodes and GS = (VS, ES) of sensor nodes 
Purpose: Form clusters of sensor network with the following properties: a) A cluster diameter is equal to the sensing range 
of the nodes. b) There is minimal overlap between clusters. c) The number of neighbors for each clusters is upper bounded by 
6. 
Algorithm: 
I. Actor Nodes: 
Procedure Actor_App 
For vA є VA at LocA = (xA, yA) and DepthA = 0 
begin 

for Every FAA Cycle do 
Broadcast Actor Association Announcement(vA, DepthA, LocA) 

endfor 
end 
 
II. Sensor Nodes: 
Procedure Sensor_App 
For vS є VS at LocS = (xS, yS) 
begin 

State = INITIAL_UNAWARE 
for every TNO Cycle do 

if (RECEIVED packet) then 
case (packet_type)  of 

Actor_Association_Announcement: 
if (State = INITIAL_UNAWARE) then /* First announcement */ 

Center = Compute_Ideal_Cluster_Center(Packet->Depth, Packet->Loc) 
Distance = Euclidean distance of node from Center 
if (Distance is not more than Desired_Cluster_Radius) then 
/* This is to prevent nodes beyond desired boundary listening to this announcement from 
joining an unsuitable cluster */ 

State = INITIAL_AWARE 
endif 

else if (State = INITIAL_AWARE) then  /* Second announcement */ 
State = WAITING_TO_CLUSTER 
wait_period = Distance * Resolution /* Resolution = α described in text */ 

else if (State = CLUSTER_HEAD) then 
Depth = Packet->Depth + 1 
Actor_ID = Packet->Actor_ID 
Broadcast Actor Association Announcement(Actor_ID, Depth, LocS) 

endif 
Cluster_Announcement: 

if ((State = INITIAL_AWARE) or (State = WAITING_TO_CLUSTER)) then 
if (Center = Packet->Cluster_Center) then 

State = CLUSTER_MEMBER 
Join the Cluster from where announcement was made 
Send Ack to the Cluster Head 

endif 
endif 

Cluster_Ack: 
Register the node as a member 

endcase 
endif 
if (State = WAITING_TO_CLUSTER) then 
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Decremement Wait_Period 
if (Wait_Period = 0) then  /* Become Cluster Head */ 

Broadcast Cluster_Announcement(vS, Center) /* With self ID and Ideal Center Loc */ 
Broadcast Actor_Announcement(Actor_ID, Depth, Center) 
/* Further the Actor Announcement */ 

endif 
endif 

endfor 
end 
Procedure Compute_Ideal_Cluster_Center(Originating_Depth, Originating_Loc) 
begin 

if (Originating_Depth = 0) then /* Special case */ 
Center = Originating_Loc 

else 
loc1.x = Originating_Loc.x + 2 * Desired_Cluster_Radius * sin(60) 
loc1.y = Originating_Loc.y 
dist1 = Euclidean distance between self and loc1 
 
loc2.x = Originating_Loc.x + Desired_Cluster_Radius * sin(60) 
loc2.y = Originating_Loc.y + Desired_Cluster_Radius  + Desired_Cluster_Radius * cos(60) 
dist2 = Euclidean distance between self and loc2 
 
loc3.x = Originating_Loc.x - Desired_Cluster_Radius * sin(60) 
loc3.y = loc2.y 
dist3 = Euclidean distance between self and loc3 
 
loc4.x = Originating_Loc.x – 2 * Desired_Cluster_Radius * sin(60) 
loc4.y = Originating_Loc.y 
dist4 = Euclidean distance between self and loc4 
 
loc5.x = loc3.x 
loc5.y = Originating_Loc.y - Desired_Cluster_Radius  - Desired_Cluster_Radius * cos(60) 
dist5 = Euclidean distance between self and loc5 
 
loc6.x = loc2.x 
loc6.y = loc5.y 
dist6 = Euclidean distance between self and loc6 
Center is the loc corresponding to min of dist 1 to 6. 

endif 
end 



 

Appendix-B 

We now demonstrate individual features of ‘Ripples’ and ‘Bind’ through NAM snapshots. 
a) Clustering through ‘Ripples’ 
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50mx50m. Circles have been superimposed for illustration.  

oduced through ‘Ripples’ 

b) Association of Sensor Nodes with Actors 

NAM snapshot shown in Fig B-2 has 100 sensor nodes and 2 actor nodes. The sensors attached to an actor are shown marked 

In Fig B-3, 5 sensors including a cluster head were failed. The snapshots show the scenario before and after the failure. The 

 figure B-4, 5 sensors were initially inactive. The snapshots show the scenario before and after the nodes were made active. 

nario Fig B-5, shows the association before and after failure of the actor node at top right. Sensor nodes attached to 

 figure B-6 Actor 1 was originally inactive; left snapshot shows the scenario while clustering is still going on. The picture 

Fig B-1 shows clusters formed through the ‘Ripples’ algorithm. 100 sensors are distributed randomly over and area of 

Figure B-1: Clusters pr

with same shape- circle/ square. If two actors are at the same distance, the one heard from first is selected for association. The 
association is made cluster-wise- the entire cluster is associated with an actor. Clustering is not shown separately here. 
c) Sensor Node Failure 

members where head failed have elected a new head and got reclustered. 
d) Sensor Node Join 
 
In
The newly joined nodes have joined the appropriate clusters. 
e) Actor Node Failure 
 
 In the sce
the failed actor are now attached to the actor available. 
f) Actor Node Join 
 
In
on the right shows snapshot taken after Actor 1 was made active. Sensors nodes have changed their association appropriately. 
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) Actor Node Movement 

 Fig B-7, both actors were moved to new positions during simulation. The left and right snapshots show the scenario before 

 
g
 
In
and after the movement respectively. 

Actor 2 

Actor 1

Fig B-2: Association with closest actor

Cl Head 
Nodes Failed

Fig B-3: Sensor Node
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Fig B-4: Sensor Node Join
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Fig B-5: Actor Node Failure
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Fig B-6: Actor Node Join
 

 

 

  
 

 

 

Fig B-7: Actor Node Movement
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