Lecture Slides for

Machine Learning 2nd Edition

ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/MachineLearning/ © The MIT Press, 2010

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2m

Outline

Previous class Ch 6: Dimensionality reduction

This class: Ch 6: Dimensionality reduction Ch 7: Clustering

Outline

Previous class Ch 6: Dimensionality reduction Ch 7: Clustering This class: Ch 6: Dimensionality reduction

CHAPTER 6: Dimensionality Reduction

Projection

• Find a projection matrix w from d-dimensional to k-dimensional vectors that keeps error low

$$z = w^T x$$

PCA: Motivation

- Assume that d observables are linear combination of k<d vectors
- We would like to work with basis as it has lesser dimension and have all(almost) required information
- What we expect from such basis
 - Uncorrelated or otherwise can be reduced further
 - Have large variance or otherwise bear no information

PCA: Motivation

PCA: Motivation

- Choose directions such that a total variance of data will be maximum
 - Maximize Total Variance
- Choose directions that are orthogonal
 - Minimize correlation
- Choose k<d orthogonal directions which maximize total variance

PCA

- Choosing only directions: $\|\boldsymbol{w}_1\| = 1$
- $z_1 = \boldsymbol{w}_1^T \boldsymbol{x}$ Cov $(\boldsymbol{x}) = \boldsymbol{\Sigma}$, Var $(z_1) = \boldsymbol{w}_1^T \boldsymbol{\Sigma} \boldsymbol{w}_1$
- Maximize variance subject to a constrain using Lagrange Multipliers

$$\max_{\boldsymbol{w}_1} \boldsymbol{w}_1^T \boldsymbol{\Sigma} \boldsymbol{w}_1 - \boldsymbol{\alpha} (\boldsymbol{w}_1^T \boldsymbol{w}_1 - 1)$$

• Taking Derivatives

 $2\Sigma w_1 - 2\alpha w_1 = 0 \qquad \Sigma w_1 = \alpha w_1$

• Eigenvector. Since want to maximize $w_1^T \Sigma w_1 = \alpha w_1^T w_1 = \alpha$ we should choose an eigenvector with largest eigenvalue

Based on E Alpaydın 2004 Introduction to Machine Learning $\ensuremath{\mathbb{C}}$ The MIT Press (V1.1)

PCA

- d-dimensional feature space
- d by d symmetric covariance matrix estimated from samples $C_{OV}(x) = \Sigma$,
- Select k largest eigenvalue of the covariance matrix and associated k eigenvectors
- The first eigenvector will be a direction with largest variance

What PCA does

$$\boldsymbol{z} = \mathbf{W}^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{m})$$

where the columns of **W** are the eigenvectors of \sum , and *m* is sample mean (show code) Centers the data at the origin and rotates the axes

How to choose k?

• Proportion of Variance (PoV) explained

$$\lambda_1 + \lambda_2 + \dots + \lambda_k$$
$$\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d$$

when λ_i are sorted in descending order

- Typically, stop at PoV>0.9
- Scree graph plots of PoV vs k, stop at "elbow"

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

PCA

ullet

- Can take into account classes : Karhuned-Loeve Expansion
 - Estimate Covariance Per Class
 - Take average weighted by prior
- Common Principle Components
 - Assume all classes have same eigenvectors (directions) but different variances

PCA

- PCA is unsupervised (does not take into account class information)
- Does not try to explain noise
 - Large noise can become new dimension/largest
 PC
- Interested in resulting uncorrelated variables which explain large portion of **total** sample variance

Sometimes interested in explained shared variance (common factors) that affect data

Factor Analysis

- Assume set of unobservable ("latent") variables
- Goal: Characterize dependency among observables using latent variables
- Suppose group of variables having large correlation among themselves and small correlation with other variables
- Single factor?

Factor Analysis

- Assume k input factors (latent unobservable) variables generating d observables
- Assume all variations in observable variables are due to latent or noise (with unknown variance)
- Find transformation from unobservable to observables which explain the data

Factor Analysis

• Find a small number of factors *z*, which when combined generate *x* :

 $X_i - \mu_i = V_{i1}Z_1 + V_{i2}Z_2 + \dots + V_{ik}Z_k + \varepsilon_i$

where z_j , j = 1, ..., k are the latent factors with $E[z_i]=0$, $Var(z_i)=1$, $Cov(z_i, z_i)=0$, $i \neq j$,

 ε_i are the noise sources E[ε_i]= ψ_i , Cov(ε_i , ε_j) =0, $i \neq j$, Cov(ε_i , z_j) =0

,

and v_{ij} are the factor loadings $x - \mu = Vz + \epsilon$

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Factor Analysis

 In FA, factors z_j are stretched, rotated and translated to generate x

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

FA Usage

- Speech is a function of position of small number of articulators (lungs, lips, tongue)
- Factor analysis: go from signal space (4000 points for 500ms) to articulation space (20 points)
- Classify speech (assign text label) by 20 points
- Speech Compression: send 20 values

Linear Discriminant Analysis

 Find a low-dimensional space such that when x is projected, classes are well-separated

Means and Scatter after projection

$$m_1 = \frac{\sum_t w^T x^t r^t}{\sum_t r^t} = w^T m_1$$

$$m_2 = \frac{\sum_t w^T x^t (1 - r^t)}{\sum_t (1 - r^t)} = w^T m_2$$

$$s_1^2 = \sum_t (w^T x^t - m_1)^2 r^t$$

$$s_2^2 = \sum_t (w^T x^t - m_2)^2 (1 - r^t)$$

Good Projection

- Means are far away as possible
- Scatter is small as possible
- Fisher Linear Discriminant

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

Summary

- Feature selection
 - Supervised: drop features which don't introduce large errors (validation set)
 - Unsupervised: keep only uncorrelated features (drop features that don't add much information)
- Feature extraction
 - Linearly combine feature into smaller set of features
 - Unsupervised
 - PCA: explain most of the total variability
 - FA: explain most of the common variability
 - Supervised
 - LDA: best separate class instances

CHAPTER 7: Clustering

Motivation

- Classification problem:
 - Need P(C|X)
 - Bayes: can be computed from P(x|C)
 - Need to estimation P(x|C) from data
 - Assume a model (e.g. normal distribution) up to parameters
 - Compute estimators(ML, MAP) for parameters from data
- Regression
 - Need to estimate joint P(x,r)
 - Bayes: can be computed from P(r|x)
 - Assume model up to parameters (e.g. linear)
 - Compute parameters from data (e.g. least squares)

Motivation

- Not always can assume that data came from single distribution/model
- Nonparametric method: don't assume any model, compute probability of new data directly from old data
- Semi-parametric/mixture models: assume data came from a unknown mixture of known models Based on E ALPAYDIN 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Motivation

- Optical Character Recognition
 - Two ways to write 7 (w/o horizontal bar)
 - Can't assume single distribution
 - Mixture of unknown number of templates
- Compared to classification
 - Number of classes is known
 - Each training sample has a label of a class
 - Supervised Learning

Mixture Densities

$$\boldsymbol{p}(\boldsymbol{x}) = \sum_{i=1}^{k} \boldsymbol{p}(\boldsymbol{x} \mid \mathbf{G}_i) \boldsymbol{P}(\mathbf{G}_i)$$

- where G_i the components/groups/clusters,
 P (G_i) mixture proportions (priors),
 p (X | G_i) component densities
- Gaussian mixture where $p(\mathbf{x}|\mathbf{G}_i) \sim \mathbf{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ parameters $\Phi = \{P(\mathbf{G}_i), \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}^{k_{i=1}}$ unlabeled sample $\mathbf{X} = \{\mathbf{x}^t\}_t$ (unsupervised learning) n E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Example

Example : Color quantization

- Image: each pixels represented by 24 bit color
- Colors come from different distribution (e.g. sky, grass)
- Don't have labeling for each pixels if it's sky or grass
- Want to use only 256 colors in palette to represent image as close as possible to original
- Quantize uniformly: assign single color to each 2²4/256 interval
- Waste values for rarely occurring intervals

Quantization

- Sample (pixels): $X = \{x^t\}_{t=1}^N$
- k reference vectors (palette): $m_j, j = 1, ..., k$.
- Select reference vector for each pixel: $\mathbf{x}^{t} - \mathbf{m}_{j} = \min_{j} \mathbf{x}^{t} - \mathbf{m}_{j}$
- Reference vectors: codebook vectors or code words
- Compress image $E\left[\{\boldsymbol{m}_i\}_{i=1}^k X\right] = \sum_t \sum_i b_i^t \mathbf{x}^t \boldsymbol{m}_i$
- Reconstruction error $b_i^t = \begin{cases} 1 & \text{if } \mathbf{r}^t \mathbf{m}_i = \min_j \mathbf{r}^t \mathbf{m}_j \\ 0 & \text{otherwise} \end{cases}$

Encoding/Decoding

K-means clustering

• Minimize reconstruction error

$$E\left(\left\{\mathbf{m}_{i}\right\}_{i=1}^{k}\mathbf{X}\right) = \sum_{t}\sum_{i}b_{i}^{t}\mathbf{x}^{t} - \mathbf{m}_{i}$$

• Take derivatives and set to zero

$$\boldsymbol{m}_i = \frac{\sum_t b_i^t \boldsymbol{x}^t}{\sum_t b_i^t}$$

• Reference vectors is the mean of all instances it represents

K-Means clustering

- Iterative procedure for finding reference vectors
- Start with random reference vectors
- Estimate labels b
- Re-compute reference vectors as means
- Continue till converge

k-means Clustering

Initialize $\boldsymbol{m}_i, i = 1, ..., k$, for example, to k random \boldsymbol{x}^t Repeat For all $\boldsymbol{x}^t \in \mathcal{X}$ $b_i^t \leftarrow \begin{cases} 1 & \text{if } \|\boldsymbol{x}^t - \boldsymbol{m}_i\| = \min_j \|\boldsymbol{x}^t - \boldsymbol{m}_j\| \\ 0 & \text{otherwise} \end{cases}$ For all $\boldsymbol{m}_i, i = 1, ..., k$ $\boldsymbol{m}_i \leftarrow \sum_t b_i^t \boldsymbol{x}^t / \sum_t b_i^t$ Until \boldsymbol{m}_i converge

Figure 7.2 Evolution of *k*-means. Crosses indicate center positions. Data points are marked depending on the closest center.