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CHAPTER 6:

Dimensionality 
Reduction



Projection
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●  Find a projection matrix w from d-dimensional 
to k-dimensional vectors that keeps error low



PCA: Motivation
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●  Assume that  d observables are linear 
combination of k<d vectors

● We would like to work with basis as it has 
lesser dimension and have all(almost) 
required information

● What we expect from such basis
– Uncorrelated or otherwise can be reduced 

further
– Have large variance or otherwise bear no 

information
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PCA: Motivation
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●  Choose directions such that a total variance 
of data will be maximum
– Maximize Total Variance

● Choose directions that are orthogonal 
– Minimize correlation

● Choose k<d orthogonal directions which 
maximize total variance



PCA
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● Choosing only directions:
●  
●  Maximize variance subject to a constrain using 

Lagrange Multipliers

● Taking Derivatives

 
● Eigenvector. Since want to maximize                           

  we should choose an eigenvector with largest 
eigenvalue



PCA
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● d-dimensional feature space
● d by d symmetric covariance matrix estimated 

from samples 
●  Select k largest eigenvalue of  the covariance 

matrix and associated k eigenvectors
● The first eigenvector will be a direction with 

largest variance



What PCA does
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z = WT(x – m)

where the columns of W are the eigenvectors 
of ∑, and m is sample mean (show code)

Centers the data at the origin and rotates the 
axes



How to choose k ?
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● Proportion of Variance (PoV) explained

when λi are sorted in descending order 
● Typically, stop at PoV>0.9
● Scree graph plots of PoV vs k, stop at 

“elbow”
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PCA
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●

● Can take into account classes : Karhuned-Loeve 
Expansion
– Estimate Covariance Per Class
– Take average weighted by prior

● Common Principle Components
– Assume all classes have same eigenvectors 

(directions) but different variances



PCA
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● PCA is unsupervised (does not take into account 
class information)

● Does not try to explain noise
– Large noise can become new dimension/largest 

PC

● Interested in resulting uncorrelated variables 
which explain large portion of total sample 
variance

Sometimes interested in explained shared 
variance (common factors) that affect data



Factor Analysis
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● Assume set of unobservable (“latent”) 
variables

● Goal: Characterize dependency among 
observables using latent variables

● Suppose group of variables  having large 
correlation among themselves and small 
correlation with other variables

● Single factor?



Factor Analysis

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

18

●  Assume k input factors (latent unobservable) 
variables generating d observables

● Assume all variations in observable variables 
are due to latent or noise (with unknown 
variance)

● Find transformation from unobservable to 
observables which explain the data



Factor 
Analysis
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● Find a small number of factors z, which when 
combined generate x :

xi – µi = vi1z1 + vi2z2 + ... + vikzk + εi 
where zj, j =1,...,k are the latent factors with 

E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j , 
εi are the noise sources 

E[ εi ]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 
,
and vij are the factor loadings



PCA vs FA
PCA From x to z    z = WT(x –µ )
FA From z to x x – µ = Vz + ε 
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x z

z x
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Factor Analysis
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● In FA, factors zj are stretched, rotated and 
translated to generate x



FA Usage
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● Speech  is a function of position of small 
number of articulators (lungs, lips, tongue)

● Factor analysis: go from signal space (4000 
points for 500ms ) to articulation space (20 
points)

● Classify speech (assign text label) by 20 
points

● Speech Compression: send 20 values 



Linear  Discriminant Analysis
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●  Find a low-dimensional space such that 
when x is projected, classes are 
well-separated



Means and Scatter after projection
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Good Projection
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● Means are far away as possible
● Scatter is small as possible
● Fisher Linear Discriminant
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Summary
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●  Feature selection
– Supervised: drop features which don’t introduce 

large errors (validation set)
– Unsupervised: keep only uncorrelated features (drop 

features that don’t add much information)
● Feature extraction

– Linearly combine feature into smaller set of features
– Unsupervised

● PCA: explain most of the total variability
● FA: explain most of the common variability

– Supervised
● LDA: best separate class instances



CHAPTER 7:

Clustering



Motivation
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●  Classification problem:
– Need P(C|X)
– Bayes: can be computed from P(x|C)  
– Need to estimation P(x|C) from data
– Assume a model (e.g. normal distribution) up to 

parameters
– Compute estimators(ML, MAP) for parameters from data

● Regression
– Need to estimate joint P(x,r)
– Bayes: can be computed from P(r|x)
– Assume model up to parameters (e.g. linear)
– Compute parameters from data (e.g. least squares)



Motivation 
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● Not always can assume that data came from 
single distribution/model

● Nonparametric method: don’t assume any 
model, compute probability of new data 
directly from old data

● Semi-parametric/mixture models: assume 
data came from a unknown mixture of known 
models 



Motivation
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●  Optical Character Recognition
– Two ways to write 7 (w/o horizontal bar)
– Can’t assume single distribution
– Mixture of unknown number of templates

● Compared to classification
– Number of classes is known
– Each training sample has a label of a class
– Supervised Learning



Mixture Densities
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● where Gi the components/groups/clusters, 
P ( Gi ) mixture proportions (priors),
p ( x | Gi) component densities

● Gaussian mixture where p(x|Gi) ~ N ( μi , 
∑i ) parameters Φ = {P ( Gi ), μi , ∑i }ki=1 

unlabeled sample X={xt}t (unsupervised 
learning)



Example
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●  Check book



Example : Color quantization
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● Image: each pixels represented by 24 bit color
● Colors come from different distribution (e.g. sky, 

grass)
● Don’t have labeling for each pixels if it’s sky or 

grass
● Want to use only 256 colors in palette to 

represent image as close as possible to original 
● Quantize uniformly: assign single color to each  

2^24/256 interval
● Waste values for rarely occurring intervals



Quantization
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● Sample (pixels): 
● k reference vectors (palette):
● Select reference vector for each pixel:

● Reference vectors: codebook vectors or code 
words

● Compress image
● Reconstruction error  
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Encoding/Decoding
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K-means clustering
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●  Minimize reconstruction error

● Take derivatives and set to zero

● Reference vectors is the mean of all 
instances it represents

{ }( )1

k t t
i i ii t i

E b
=

= −∑ ∑m x mX



K-Means clustering
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● Iterative procedure for finding reference 
vectors

● Start with random reference vectors
● Estimate labels b
● Re-compute reference vectors as means 
● Continue till converge



k-means Clustering
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