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CHAPTER 2: 
Supervised 

Learning



Outline
 Previously:

 Intro to Machine Learning
 Applications
 Logistics of the class


 This class: Supervised Learning (Sec 2.1-2.6)
  Classification Learning a single class

●                  Learning multiple classes
       Theoretical aspects

●        Regression
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Learning a Class from 
Examples

 Class C of a “family car”
● Prediction: Is car x a family car?
● Knowledge extraction: What do people expect 

from a family car?
 Output: 

Positive (+) and negative (–) examples
 Input representation: 

x1: price, x2 : engine power
Expert suggestions
Ignore other attributes
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Training set X
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Class C
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Class C
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parameters?

Assume class 
model (rectangle)



Hypothesis class H
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Error of h on H

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT 
Press (V1.0)

Error of h on H

( )( )∑
=

≠=
N

t

tt rhhE
1

1 x)|( X

Error of h on H





=
negative is  says  if 

positive is  says  if 
)(

x

x
x

h

h
h

0

1



Generalization
● Problem of generalization: how well our 

hypothesis will correctly classify future examples

In our example: hypothesis is characterized by 4 
numbers (p1,p2,e1,e2)

Choose the best one
Include all positive and none negative
Infinitely many hypothesis for real-valued 
parameters
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S, G, and the Version 
Space
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most specific hypothesis, S

most general hypothesis, G
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most specific hypothesis, S

most general hypothesis, G

h ∈ H, between S and G is
consistent 
and make up the 
version space
(Mitchell, 1997)



Doubt
In some applications, a wrong decision is 
very costly

May reject  an instance if fall between S (most 
specific) and G (most general)
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Margin
 Choose h with largest margin
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Vapnik-Chervonenkis 
(VC) Dimension
 Assumed that H (hypothesis space) 
includes true class C
 H should be flexible enough or have enough 
capacity to include C
 Need some measure of hypothesis space 
“flexibility” complexity
 Can try to increase complexity of hypothesis 
space
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VC Dimension
N points can be labeled in 2N ways as +/–
H shatters N if there 

exists h ∈ H consistent 
for any of these: 
VC(H ) = N

An axis-aligned rectangle shatters 4 points 
only !
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An axis-aligned rectangle shatters 4 points only !
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Probably Approximately 
Correct (PAC) Learning
 Fix a probability of target classification 
error (planned future)

Actual error depends on training sample(past)

Want the actual probability error(actual future) be 
less than a target with high probability
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Probably Approximately 
Correct (PAC) Learning

 How many training examples N should we have, such that 
with probability at least 1 ‒ δ, h has error at most ε ?

(Blumer et al., 1989)

Let’s calculate how many samples wee need for S
Each strip is at most ε/4
Pr that we miss a strip 1‒ ε/4
Pr that N instances miss a strip (1 ‒ ε/4)N

Pr that N instances miss 4 strips 4(1 ‒ ε/4)N

1-4(1 ‒ ε/4)N >1- δ and (1 ‒ x)≤exp( ‒ x)
4exp(‒ εN/4) ≤ δ  and N ≥ (4/ε)log(4/δ))
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Probably Approximately 
Correct (PAC) Learning
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Noise
 Imprecision in recording the input 
attributes
Error in labeling data points (teacher noise)
Additional attributes not taken into account 
(hidden or latent)
Same price/engine with different label due to a color
Effect of this attributes modeled as a noise
Class boundary might be not simple
Need more complicated hypothesis space/model
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Noise and Model 
Complexity
Use the simpler one because
 Simpler to use 

(lower computational 
complexity)

 Easier to train (lower 
space complexity)

 Easier to explain 
(more interpretable)

 Generalizes better (lower 
variance - Occam’s razor)
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Occam's razor
 If actual class is simple and there is 
mislabeling or noise, the simpler model will 
generalized better 

Simpler model result in more errors on training 
set

Will generalized better , won’t try to explain noise 
in training sample

Simple explanations are more plausiblel 20
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Multiple Classes
 General case K classes
Family, Sport , Luxury cars

Classes can overlap 

Can use different/same hypothesis class

Fall into two classes? Sometimes worth to reject

21
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT 
Press (V1.0)



Multiple Classes, Ci 
i=1,...,K
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Train hypotheses 
hi(x), i =1,...,K:
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Train hypotheses 
hi(x), i =1,...,K:
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