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CHAPTER 2: 
Supervised 

Learning



Outline

Last Class:  Ch 2 Supervised Learning (Sec 2.1-2.4)
● Learning a class from Examples
● VC Dimension
● PAC learning
● Noise

This class:
● Learning  Multiple Classes
●  Regression
● Model Selection and Generalization
● Dimensions of a Supervised Learning 

Algorithm
3
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Multiple Classes
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●  General case K classes
– Family, Sport , Luxury cars

● Classes can overlap 

● Can use different/same hypothesis class

● Fall into two classes? Sometimes worth to 
reject



Multiple Classes, Ci 
i=1,...,K

5

Train hypotheses 
hi(x), i =1,...,K:
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Train hypotheses 
hi(x), i =1,...,K:



Regression
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●  Output is not Boolean (yes/no) or label but 
numeric value

● Training Set of examples 
● Interpolation: fit function (polynomial)
● Extrapolation:  predict output for any x
● Regression : added noise 
● Assumption: hidden variables  
● Approximate output by model:  g(x)



Examples

7

Train hypotheses 
hi(x), i =1,...,K:
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Interpolation Extrapolation

From: http://en.wikipedia.org



Regression
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●  Empirical error on training set

● Hypothesis space is linear functions

● Calculate best parameters to minimize error 
by taking partial derivatives 



Example
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●  



Example
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●  

A more complex model



 Higher-order polynomials
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Model Selection & 
Generalization

●

●

● Consider learning boolean functions
● If d inputs,      examples at most 

Each example can be labeled 0 or 1
● Therefore         possible functions of d 

variables 



Model Selection & 
Generalization

●

●

● Each training example removes half the 
hypothesis

● Learning as a way to remove hypothesis 
inconsistent with data

● But we need to see          examples to 
learn 



Model Selection & 
Generalization
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● Learning is an ill-posed problem; data is not 
sufficient to find a unique solution
– Each sample remove irrelevant hypothesis

● The need for inductive bias, assumptions 
about H
– E.g. rectangles in our example

● But each hypothesis can only learn some 
functions



Model Selection & 
Generalization
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● Learning needs an inductive bias
● Model selection: How to choose the right 

bias?
– Each sample remove irrelevant hypothesis

● Want the model to be able to generalize
– Predict new data even more than fitting the 

training dataset
● Generalization: How well a model performs 

on new data



Model Selection & 
Generalization

● Best generalization requires mathing the 
complexity of the hypothesis with the 
complexity of the function underlying the data

● Overfitting: H more complex than C or f
– e.g Fitting two rectangles to data sampled 

from one rectangle 

– e.g Fitting a sixth-order polynomal to noisy 
data from a third-order polynomial

● Underfitting: H less complex than C or f
– e.g Fit a line to data sample from a 

third-order polynomial



Triple Trade-Off

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

 There is a trade-off between three factors 
(Dietterich, 2003):

1. Complexity of H, c (H),

2. Training set size, N, 

3. Generalization error, E, on new data

 As N↑, E↓
 As c (H)↑, first E↓ and then E↑ why?

   



Cross-Validation
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● To estimate generalization error, we need 
data unseen during training. We split the data 
as
– Training set (50%)

● To train a model

– Validation set (25%)
● To select a model (e.g. degree of polynomials)

– Test (publication) set (25%)
● Estimate the error, evaluate performance

● Resampling when there is few data



Dimensions of a Supervised 
Learner

● Let us now recapitulate and generalize. We 
have a sample

●

● The sample is independent and identically 
distributed (i.i.d) from the same joint 
distribution 
–         İs 0/1 for classification 

– K binary vector for multiclass classification
– real value in regression

Goal: Build a good and useful approximation 
to        using the model    

–



Dimensions of a Supervised 
Learner

We must make three decisions:

1. Model:  

1.   model       input      parameters

    Defines the hypothesis class H 
and       defines   h ∈ H        

-E.g. In classification ?

2.  In regression ,
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Dimensions of a Supervised 
Learner

We must make three decisions:

1. Model:  

1.   model       input      parameters

    Defines the hypothesis class H 
and       defines   h ∈ H        

-E.g. In classification rectangle is the model and 
the paramentes are the four coordinates

2.  In regression , model is a linear function of the 
input, slope and intersect are the parameters 

	 	 	



Dimensions of a Supervised 
Learner

2. Loss function: L() 
Difference between desire outpot 

and approximation  given the 
parameters

Class: learning 0/1

Regression: numerical value
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( ) ( )( )∑ θ=θ
t

tt g,rLE || xX



Dimensions of a Supervised 
Learner

3. Optimization procedure: Find  

 the value of the parameters that 
minimize the total error.

Can be found analytically as in 
regression or through more complex 
optimization methods for more 
complicated models
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( )X|min arg θ=θ
θ

E*



Dimensions of a Supervised 
Learner
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3. Optimization procedure: Find  

 the value of the parameters that 
minimize the total error.

Can be found analytically as in 
regression or through more complex 
optimization methods for more 
complicated models

 



Dimensions of a Supervised 
Learner
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The following conditions should be 
satisfied: 

 1) Hypothesis class g() must be big 
enough

 2) Enough training data to find the best 
hypothesis  

 3) Good optimization procedure

Different machine learning differ either 
in model, loss function or optimization 
procedure


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