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Last Class:  Ch 2 Supervised Learning (Sec 2.1-2.4)
Learning  Multiple Classes
 Regression
Model Selection and Generalization

     Dimensions of a Supervised Learning 

This class:
● Bayes theorem
● Losses and risks
● Discriminant functions
● Association Rules
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CHAPTER 3:

Bayesian Decision 
Theory



Making Decision Under 
Uncertainty

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

● Probability theory is the framework for making 
decisions under uncertainty.

● Use Bayes rule to calculate the probability of 
the classes

● Make rational decision among multiple actions 
to minimize expected risk

● Learning association rules from data



Unobservable variables

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

● Tossing a coin is completely random process, 
can’t predict the outcome

● Only can talk about the probabilities that the 
outcome of the next toss will be head or tails

● If we have access to extra knowledge (exact 
composition of the coin, initial position, force 
etc.) the exact outcome of the toss can be 
predicted



Unobservable Variable

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

●  Unobservable variable  is the extra 
knowledge that we don’t have access to

● Coin toss: the only observable variables is the 
outcome of the toss

● x=f(z), z is unobservables , x is observables

● f is deterministic function 



Bernoulli Random Variable

● Result of tossing a coin is ∈ {Heads,Tails}

● Define a random variable X ∈{1,0}
● po the probability of heads
● P(X = 1) = po and P(X = 0) = 1 − P(X = 1) = 1 − 

po

● Assume asked to predict the next toss
● If know po we would predict heads if po >1/2
● Choose more probable case to minimize 

probability of the error 1- po



Estimation 

● What if we don’t know P(X)
● Want to estimate from given data (sample) 
● Realm of statistics
● Sample     generated from probability 

distribution of the observables xt

● Want to build an approximator p(x) using 
sample 

● In coin toss example: sample is outcomes of 
past N tosses and in distribution is 
characterized by single parameter po



Parameter Estimation

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

9



Classification
● Credit scoring: two classes – high risk and low risk
● Decide on observable information: (income and 

saving)
● Have reasons to believe that these 2 variable gives 

us idea about the credibility of a customer
● Represent by two random variable X1 and X2

● Can’t observe customer intentions and moral 
codes

● Can observe credibility of a past customer 
● Bernoulli random variable C conditioned on X=[X1 , 

X2]T

● Assume we know P(C| X1 , X2)



Classification
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● Assume know P(C| X1 , X2)
● New applications X1=x1, X2 =x2



Classification

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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●  Similar to coin toss but C is conditioned on 
two other observable variables x=[x1 ,x2]T

● The problem : Calculate P(C|x)

● Use Bayes rule



Conditional Probability

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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● Probability of A 
(point will be inside 
A) if we know that B 
happens (point is 
inside B)

● P(A|B)=P(A∩B)/P(B
) 



Bayes Rule

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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● P(A|B)=P(A∩B)/P(B)

● P(B|A)= P(A∩B)/P(A)=>P(A∩B)=P(B|A)*P(A)

– P(A|B)=P(B|A)*P(A)/P(B)



Bayes Rule

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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● Prior: probability of a customer is high risk 
regardless of x.

● Knowledge we have as to the value of C 
before looking at observables x 
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Bayes Rule
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● Likelihood: probability that event in C will 
have observable X

● P(x1,x2|C=1) is the probability that a high-risk 
customer has his X1=x1 ,X2=x2
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Bayes Rule
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● Evidence: P(x) probability that observation x 
is seen regardless if positive or negative 

( ) ( ) ( )
( )x
x

x
p
pP

P
CC

C
| 

| =

posterior

likelihoodprior

evidence



Bayes’ Rule
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Bayes Rule for classification

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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● Assume know : prior, evidence and likelihood
● Will learn how to estimate them from the data 

later
● Plug them in into Bayes formula to obtain 

P(C|x)
● Choose C=1 if P(C=1|x)>P(c=0|x)



Bayes Rule for classification

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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Bayes’ Rule: K>2 Classes
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Bayes’ Rule
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● Deciding on specific input x 
● P(x) is the same for all classes
● Don’t need it to compare posterior
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Losses and Risks

● Decisions/Errors are not equally good or costly
● e.g  an accepted low-risk applicant in increases 

profit, while a rejected high-risk decreases loss.
● However, the loss for a high-risk  applicant accepted 

can be different from loss from incorrectly rejecting 
low-risk apllicant

● What about other domains like medical diagnosis or 
earthquake prediction?

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 23



Losses and Risks

● Actions: αi is assignment to class i 
● Loss of αi when the state is Ck : λik 
● Expected risk (Duda and Hart, 1973)

R (αi∣x)=∑
k=1

K

λ ik P (Ck∣x )

choose α i  if  R (α i∣x )=mink R (α k∣x )
Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 24



Losses and Risks: 0/1 Loss
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For minimum risk, choose the most probable class



Losses and Risks: Reject

● In some applications, wrong decisions 
(misclassification have high cost)

● Manual decision is made if the system has 
low uncertainty

● An additional action reject or doubt is 
added.

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 26



Losses and Risks: Reject

λ ik={
0     if i=k

λ     if i=K+1
1     otherwise

,    0< λ<1

R (αK +1∣x )=∑
k=1

K

λP (Ck∣x )=λ

R (αi∣x)=∑
k≠i

P (Ck∣x )=1−P (C i∣x )

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)27



Losses and Risks: Reject

( ) ( ) ( )choose    if | |    and | 1
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Discriminant Functions

choose C i  if gi ( x )=max k gk ( x )
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● Define a function gi(x) for each class 
( “goodness” of selecting class Ci given 
observables x)  

● Maximum discriminant corresponds to 
minimum conditional risk



Decision Regions

( ) K,,i,gi 1 =x

( ) ( ){ }xxx kkii gg max| ==R
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K=2 Classes

● g(x) = g1(x) – g2(x)

● Log odds: 
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Association Rules

● Association rule: X → Y

X is called the antecedent

Y is called the consequent
● People who buy X typically also buy Y
● If there is a customer who buy X and does 

not buy Y, he is a potential Y customer

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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Association Rules

● Association rule: X → Y

● Support (X → Y): 

● Confidence (X → Y):
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Association Rules

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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Calculate support for {soy milk,diapers}
Calculate confidence for {diapers->wine}
Find all the set of items with support greater 
than 0.5 How to do that?



An example

● Transaction data
● Assume:

minsup = 0.3 
minconf = 0.8%

● An example frequent itemset:    
   {Chicken, Clothes, Milk}    [sup = 3/7]

● Association rules from the itemset:
 Clothes → Milk, Chicken [sup = 3/7, conf = 3/3]

 … …

 Clothes, Chicken → Milk, [sup = 3/7, conf = 3/3]

t1: Beef, Chicken, Milk

t2: Beef, Cheese

t3: Cheese, Boots

t4: Beef, Chicken, Cheese

t5: Beef, Chicken, Clothes, Cheese, Milk

t6: Chicken, Clothes, Milk

t7: Chicken, Milk, Clothes

Taken from: Bing Liu UIC 



Association Rule

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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● Only one customer bought chips
● Same customer bought beer
● P(C|B)=1
● But support is tiny 
● Support shows statistical significance



Finding Association Rules

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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● Step 1: Finding frequent item sets, those 
which have enough support

● Step 2: Converting them to rules with enough 
confidence 

●



Step 1: A priori principle
38

● Suppose that we have 4 products {0,1,2,3}, 
● How to calculate the support for a given set.

– Go to every transaction, check if {0,3} is 
present then divide by the number of 
transactions

● What are the possible combinations of items?
●

Taken from the book Machine Learning in Action



A priori principle
39

● Suppose that we have 4 products {0,1,2,3}, 
● How to calculate the support for a given set.

– Go to every transaction, check if {0,3} is 
present then divide by the number of 
transactions

● what are the possible combinations of items?

Only 100 items will generate                 
possibilities. 

Taken from the book Machine Learning in Action



Step 1: A priori principle
40

If an item set is frequent, all its subsets are 
frequent

Taken from the book Machine Learning in Action



A priori principle

Taken from the book Machine Learning in Action
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If a subset is infrequent, the set is infrequent



Step 1: Finding frequent itemsets

Dataset T TID Items

T100 1, 3, 4

T200 2, 3, 5

T300 1, 2, 3, 5

T400 2, 5
   itemset:count

1. scan T  C1: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3

    F1:    {1}:2, {2}:3, {3}:3,             {5}:3

     C2:        {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

2. scan T  C2: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2

          F2:                    {1,3}:2,               {2,3}:2, {2,5}:3, {3,5}:2

    C3:           {2, 3,5}

3. scan T  C3: {2, 3, 5}:2  F3: {2, 3, 5}

minsup=0.5

Example taken from: http://www2.cs.uic.edu/~liub



Step 2: Generating rules from 
frequent itemsets

● Frequent itemsets ≠ association rules
● One more step is needed to generate 

association rules
● For each frequent itemset X, 

For each proper nonempty subset A of X, 
 Let B = X - A
 A → B is an association rule if

 Confidence(A → B) ≥ minconf,

confidence(A → B) = support(A,B) / support(A)
Example taken from: http://www2.cs.uic.edu/~liub



Generating rules: an example
● Suppose {2,3,4} is frequent, with sup=50%

 Proper nonempty subsets: {2,3}, {2,4}, {3,4}, {2}, {3}, {4}, with 
sup=50%, 50%, 75%, 75%, 75%, 75% respectively

 These generate these association rules:

 2,3 → 4, confidence=100%

 2,4 → 3, confidence=100%

 3,4 → 2, confidence=67%

 2 → 3,4, confidence=67%

 3 → 2,4, confidence=67%

 4 → 2,3, confidence=67%
 All rules have support = 50%

Example taken from: http://www2.cs.uic.edu/~liub



Generating rules: summary

● To recap, in order to obtain A → B, we 
need to have support(A,B) and support(A)

● All the required information for confidence 
computation has already been recorded in 
itemset generation. No need to see the 
data T any more. 

● This step is not as time-consuming as 
frequent itemsets generation.

Taken from: http://www2.cs.uic.edu/~liub
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