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This class: Ch 5: Multivariate Methods
● Multivariate Data
● Parameter Estimation
● Estimation of Missing Values
● Multivariate Classification
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CHAPTER 4: 
Parametric 

Methods



Regression

●  x is independent variable, r is dependant 
variable

● Unknown f, want to approximate to predict 
future values

● Parametric approach: assume model with 
small number of parameters 

● Find best parameters from data
● Also have to make assumption on noise
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Regressions

● Have a training data (x,r)
● Find parameters to maximize likelihood
● In other words, what parameters makes data 

most probable
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Regressions



Regressions

●  Ignore the last term,(does not depend on 
parameters
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Regression

●  Minimize last term
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Least Square Estimate

● Minimize this
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Linear Regression
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● Assume linear 
model

● Need to minimize
● Set derivatives to 

zero
● 2 linear equations 

in 2 unknowns
● Can solve easily

  



Linear Regression
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Polynomial Regression
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Polynomial Regression

( ) ( ) ( ) 01

2

2012| wxwxwxww,w,w,,wxg ttkt
kk

t ++++= 

( ) rw TT DDD
1−

=

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © 
The MIT Press (V1.1)

13



Polynomial Regression
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Tuning Model Complexity: Bias 
and Variance

●  Given single sample (x,r), what is the 
expected error

● Variations are due to noise and training 
sample

● First term is due to noise
– Does not depend on the estimate
– Can’t be removed
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Variance

● Second term
– Deviation of estimator from regression function
– Depends on estimator and training set
– Average over all possible training samples
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Bias and Variance
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Bias/Variance Dilemma
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● Example: gi(x)=2 has no variance and high 
bias

gi(x)= ∑t rti/N has lower bias with variance

● As we increase complexity, 

bias decreases (a better fit to data) and 

variance increases (fit varies more with 
data)

● Bias/Variance dilemma: (Geman et al., 1992)



Example: polynomial 
regression

●  As we increase degree of the polynomial
–  Bias decreases as allow better fit to points
– Variance increases as small deviation in training 

sample might result in large deviation in model 
parameters

● Bias/variance dilemma true for any machine 
learning systems

● Need a way to find optimal model complexity 
to balance between bias and variance
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Bias/Variance Dilemma



Polynomial Regression

Lecture Notes for E Alpaydın 2004 Introduction to Machine 
Learning © The MIT Press (V1.1)

21

Best fit “min error”



Model Selection

● How to select right model complexity?
● Different from estimating model parameters
● There are several procedures
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Cross-Validation

● Can’t calculate bias and variance as don’t 
know true model

● But can estimate  total generalization error
● Set aside portion of data (validation set)
● Increase model complexity, find parameters
● Calculate error on validation set
● Stop when error cease to decrease or even 

start increasing
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Best fit, “elbow”

Cross-Validation



Regularization

●  Introduce penalty for model complexity into 
an error function

●  
●  Find optimal model complexity (e.g. degree 

of polynomial) and optimal parameters 
(coefficients) which minimize this function

● Lambda is penalty for model complexity
● If lambda is too large only very simple models 

will be admitted
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CHAPTER 5: 

Multivariate 
Methods
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Motivating Example

● Loan Application
● Observation Vector: Information About 

Customer
– Age
– Marital Status
– Yearly Income
– Savings

● Inputs/Attribute/Features associated with a 
customer

● The variables are correlated (savings vs. age) 
 



Correlation
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● Suppose we have two random variables X and 
Y.

● We want to estimate the degree of 
“correlation” among them
– Positive Correlation: If one happens to be large 

so the probability that another one will be large 
is significant

– Negative Correlation: If one happens to be large 
so the probability that another one will be small 
is significant

– Zero correlation: Value of one tells nothing about 
the value of other



Correlation
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●  Some reasonable assumptions
– The “correlation” between X and Y is the same 

as between X+a and X+b where a,b constant
– The “correlation” between X and Y is the same 

as between aX and bY
– a,b are constant

● Example
– If there is a connection between temperature 

inside the building and outside the building , it’s 
does not mater what scale is used



Correlation
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●  Let’s do a “normalization”

● Both these variables have zero mean and unit 
variance

● Filtered out the individual differences
● Let’s check mean (expected) square 

differences between them

1 1,
X Y

X EX Y EY
X Y

σ σ
− −= =

2
1 1( )E X Y−



Correlation
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● The result should be
– Small when  positively “correlated”
– Large when negatively correlated
– Medium when “uncorrelated”

2
1 1( )E X Y−



Correlation
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● Larger covariance means larger correlation 
coefficient  means smaller average square 
differences
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Correlation vs. Dependance
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● Not the same thing
● Independent=>Have zero correlation
● Have zero correlation=> May not be 

independent
● We look at square differences between two 

variables

● Two variables might have “unpredictable” 
square differences but still be dependant

2
1 1( )E X Y−



Correlation vs. Independence
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● Random variable X from {-1,0,1} with p=1/3
● Random variable Y=X^2
● Clearly dependant but
● COV(X,Y)=E((X-0)

(Y-EY))=EXY-EY*EX=EXY=EX^3=0
● Correlation only measures “linear” 

independence

  



Multivariate Distribution

● Assume all members of class came from join 
distribution

● Can learn distributions from data P(x|C) 
● Assign new instance for most probable class 

P(C|x) using Bayes rule  
● An instance described by a vector of 

correlated parameters  
● Realm of multivariate distributions
● Multivariate normal 
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Multivariate Data
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● Multiple measurements (sensors)
● d inputs/features/attributes: d-variate 
● N instances/observations/examples



Multivariate Parameters
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Parameter Estimation
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Estimation of Missing Values
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● What to do if certain instances have missing 
attributes?

● Ignore those instances: not a good idea if the 
sample is small

● Use ‘missing’ as an attribute: may give 
information

● Imputation: Fill in the missing value
– Mean imputation: Use the most likely value (e.g., 

mean)
– Imputation by regression: Predict based on other 

attributes



Multivariate Normal
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●  Have d-attributes
●  Often can assume each one distributed 

normally
●  Attributes might be dependant/correlated
●  Joint distribution of correlated several 

variables 
– P(X1=x1, X2=x2, … Xd=xd)=?
– X1 is normally distributed  with mean µi and 

variance �i



Multivariate Normal
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● Mahalanobis distance: (x – μ)T ∑–1 (x – μ) 
● 2 variables are correlated
● Divided by inverse of covariance (large)
● Contribute less to Mahalanobis distance
● Contribute more to the probability  
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Bivariate Normal
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Multivariate Normal 
Distribution
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● Mahalanobis distance: (x – μ)T ∑–1 (x – 
μ) 

measures the distance from x to μ in terms of ∑ 
(normalizes for difference in variances and 
correlations)

● Bivariate: d = 2 
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Bivariate Normal



Bivariate Normal
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Independent Inputs: Naive 
Bayes

Based on Introduction to Machine Learning © The MIT Press (V1.1)

46

p ( x )=∏
i=1

d

p i (x i )=
1

(2π )d /2∏
i=1

d

σ i

exp [−1
2
∑
i=1

d

(
x i−μi

σ i
)
2

]

● If xi are independent, offdiagonals of ∑ are 
0, Mahalanobis distance reduces to 
weighted (by 1/σi) Euclidean distance:

● If variances are also equal, reduces to 
Euclidean distance



Projection Distribution

● Example: vector of 3 features
● Multivariate normal distribution
● Projection to 2 dimensional space (e.g. XY 

plane) Vectors of 2 features
● Projection are also multivariate normal 

distribution
● Projection of d-dimensional normal to 

k-dimensional space is k-dimensional normal
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1D projection
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Multivariate Classification

●  Assume members of class from a single 
multivariate distribution

●  Multivariate normal is a good choice
– Easy to analyze
– Model many natural phenomena
– Model a class as having single prototype source 

(mean) slightly randomly changed 
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Example

● Matching cars to customers
● Each cat defines a class of matching 

customers
● Customers described by (age, income)
● There is a correlation between age and 

income 
● Assume each class is multivariate normal
● Need to learn P(x|C) from data
● Use Bayes to compute P(C|x) 

Lecture Notes for E Alpaydın 2004 Introduction to Machine 
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50



Parametric Classification

● If p (x | Ci ) ~ N ( μi , ∑i )

● Discriminant functions are

● Need to know Covariance Matrix and  mean to compute 
discriminant functions. 

● Can ignore P(x) as the same for all classes
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Estimation of Parameters
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Covariance Matrix per Class

● Quadratic discriminant

● Requires estimation of K*d*(d+1)/2 parameters for  covariance 
matrix
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likelihoods

posterior for C1

discriminant: 
P (C1|x ) = 0.5



Common Covariance Matrix S
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● If not enough data can assume all classes 
have same common sample covariance 
matrix S

Discriminant reduces to a linear 
discriminant (xTS-1x is common to all 
discriminant and can be removed)
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Common Covariance Matrix S
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Diagonal S  
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● When xj j = 1,..d, are independent, ∑ is 
diagonal

p (x|Ci) = ∏j p (xj |Ci) (Naive Bayes’ 
assumption)

Classify based on weighted Euclidean 
distance (in sj units) to the nearest mean



Diagonal S
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variances may be
different



Diagonal S, equal variances
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● Nearest mean classifier: Classify based on 
Euclidean distance to the nearest mean

● Each mean can be considered a prototype or 
template and this is template matching



Diagonal S, equal variances
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Model Selection

●  Different covariance matrix for each class
●  Have to estimate many parameters
●  Small bias , large variance
●  Common covariance matrices, diagonal 

covariance etc. reduce number of parameters
●  Increase bias but control variance
●  In-between states?  

Lecture Notes for E Alpaydın 2004 Introduction to Machine 
Learning © The MIT Press (V1.1)
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Regularized Discriminant 
Analysis(RDA)

● a=b=0: Quadratic classifier
● a=0, b=1:Shared Covariance, linear classifier
● a=1,b=0: Diagonal Covariance
● Choose best a,b by cross validation 
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Model Selection: Example
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Model Selection
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