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This class: Ch 5: Multivariate Methods
● Multivariate Data
● Parameter Estimation
● Estimation of Missing Values
● Multivariate Classification
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CHAPTER 5: 

Multivariate 
Methods



Multivariate Distribution

● Assume all members of class came from join 
distribution

● Can learn distributions from data P(x|C) 
● Assign new instance for most probable class 

P(C|x) using Bayes rule  
● An instance described by a vector of 

correlated parameters  
● Realm of multivariate distributions
● Multivariate normal 
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Multivariate Data
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● Multiple measurements (sensors)
● d inputs/features/attributes: d-variate 
● N instances/observations/examples



Multivariate Parameters
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Parameter Estimation

( )( )

ji

ij
ij

j
t
j

N

t i
t
i

ij

N

t

t
i

i

ss

s
r:

N

mxmx
s:

d,...,i,
N

x
m:

=

−−
=

==

∑

∑

=

=

R

S

m

matrix  nCorrelatio

matrix  Covariance

1 mean Sample

1

1

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)7



Estimation of Missing Values
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● What to do if certain instances have missing 
attributes?

● Ignore those instances: not a good idea if the 
sample is small

● Use ‘missing’ as an attribute: may give 
information

● Imputation: Fill in the missing value
– Mean imputation: Use the most likely value (e.g., 

mean)
– Imputation by regression: Predict based on other 

attributes



Multivariate Normal
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●  Have d-attributes
●  Often can assume each one distributed 

normally
●  Attributes might be dependant/correlated
●  Joint distribution of correlated several 

variables 
– P(X1=x1, X2=x2, … Xd=xd)=?
– X1 is normally distributed  with mean µi and 

variance �i



Multivariate Normal
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● Mahalanobis distance: (x – μ)T ∑–1 (x – μ) 
● 2 variables are correlated
● Divided by inverse of covariance (large)
● Contribute less to Mahalanobis distance
● Contribute more to the probability  
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Bivariate Normal
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Multivariate Normal 
Distribution
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● Mahalanobis distance: (x – μ)T ∑–1 (x – 
μ) 

measures the distance from x to μ in terms of ∑ 
(normalizes for difference in variances and 
correlations)

● Bivariate: d = 2 
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Bivariate Normal



Bivariate Normal
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Independent Inputs: Naive 
Bayes
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p ( x )=∏
i=1

d

p i (x i )=
1

(2π )d /2∏
i=1

d

σ i

exp [−1
2
∑
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d

(
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● If xi are independent, offdiagonals of ∑ are 
0, Mahalanobis distance reduces to 
weighted (by 1/σi) Euclidean distance:

● If variances are also equal, reduces to 
Euclidean distance



Projection Distribution

● Example: vector of 3 features
● Multivariate normal distribution
● Projection to 2 dimensional space (e.g. XY 

plane) Vectors of 2 features
● Projection are also multivariate normal 

distribution
● Projection of d-dimensional normal to 

k-dimensional space is k-dimensional normal
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1D projection
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Multivariate Classification

●  Assume members of class from a single 
multivariate distribution

●  Multivariate normal is a good choice
– Easy to analyze
– Model many natural phenomena
– Model a class as having single prototype source 

(mean) slightly randomly changed 
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Example

● Matching cars to customers
● Each cat defines a class of matching 

customers
● Customers described by (age, income)
● There is a correlation between age and 

income 
● Assume each class is multivariate normal
● Need to learn P(x|C) from data
● Use Bayes to compute P(C|x) 
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Parametric Classification

● If p (x | Ci ) ~ N ( μi , ∑i )

● Discriminant functions are

● Need to know Covariance Matrix and  mean to compute 
discriminant functions. 

● Can ignore P(x) as the same for all classes
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Estimation of Parameters
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Covariance Matrix per Class

● Quadratic discriminant

● Requires estimation of K*d*(d+1)/2 parameters for  covariance 
matrix
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likelihoods

posterior for C1

discriminant: 
P (C1|x ) = 0.5



Common Covariance Matrix S
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● If not enough data can assume all classes 
have same common sample covariance 
matrix S

Discriminant reduces to a linear 
discriminant (xTS-1x is common to all 
discriminant and can be removed)
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Common Covariance Matrix S
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Diagonal S  
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● When xj j = 1,..d, are independent, ∑ is 
diagonal

p (x|Ci) = ∏j p (xj |Ci) (Naive Bayes’ 
assumption)

Classify based on weighted Euclidean 
distance (in sj units) to the nearest mean



Diagonal S
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variances may be
different



Diagonal S, equal variances
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● Nearest mean classifier: Classify based on 
Euclidean distance to the nearest mean

● Each mean can be considered a prototype or 
template and this is template matching



Diagonal S, equal variances
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Model Selection
Assumption Covariance matrix No of parameters

Shared, Hyperspheric Si=S=s^2I 1

Shared, Axis-aligned Si=S, with sij=0 d

Shared, Hyperellipsoidal Si=S d(d+1)/2

Different, 
Hyperellipsoidal

Si K d(d+1)/2

30

As we increase complexity (less restricted S), 
bias decreases and variance increases

Assume simple models (allow some bias) to 
control variance (regularization)
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Model Selection

●  Different covariance matrix for each class
●  Have to estimate many parameters
●  Small bias , large variance
●  Common covariance matrices, diagonal 

covariance etc. reduce number of parameters
●  Increase bias but control variance
●  In-between states?  

Lecture Notes for E Alpaydın 2004 Introduction to Machine 
Learning © The MIT Press (V1.1)
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Regularized Discriminant 
Analysis(RDA)

● a=b=0: Quadratic classifier
● a=0, b=1:Shared Covariance, linear classifier
● a=1,b=0: Diagonal Covariance
● Choose best a,b by cross validation 

Lecture Notes for E Alpaydın 2004 Introduction to Machine 
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Model Selection: Example
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Model Selection
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Discrete Features
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Binary features:
if xj are independent (Naive Bayes’)

the discriminant is linear
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Multivariate Regression
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Multivariate Regression
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CHAPTER 6:

Dimensionality 
Reduction



Dimensionality of input
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● Number of Observables (e.g. age and income) 
● If number of observables is increased

– More time to compute 
– More  memory to store inputs and intermediate 

results
– More complicated explanations (knowledge from 

learning) 
● Regression from 100 vs. 2 parameters

–  No simple visualization
● 2D vs. 10D graph

–  Need much more data (curse of dimensionality)
● 1M of 1-d inputs is not equal to 1 input of dimension 1M 



Dimensionality reduction
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● Some features (dimensions) bear little or nor 
useful information (e.g. color of hair for a car 
selection)
– Can drop some features
– Have to estimate which features can be dropped 

from data

● Several features can be combined together 
without loss or even with gain of information (e.g. 
income of all family members for loan application)
– Some features can be combined together
– Have to estimate which features to combine from 

data



Feature Selection vs Extraction
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● Feature selection: Choosing k<d important 
features, ignoring the remaining d – k
– Subset selection algorithms

● Feature extraction: Project the  original xi , i 
=1,...,d dimensions to  new k<d dimensions, zj 
, j =1,...,k
– Principal Components Analysis (PCA)
– Linear Discriminant Analysis (LDA)
– Factor Analysis (FA)



Usage
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● Have data of dimension d
● Reduce dimensionality to k<d

– Discard unimportant features
– Combine several features in one

● Use resulting k-dimensional data set for
– Learning for classification problem (e.g. 

parameters of probabilities P(x|C)
– Learning for regression problem (e.g. 

parameters for model y=g(x|Thetha)



Subset selection
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● Have initial set of features of size d
● There are 2^d  possible subsets
● Need a criteria to decide which subset is the 

best
● A way to search over the possible subsets
● Can’t go over all 2^d possibilities 
● Need some heuristics



“Goodness” of feature set
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●  Supervised
– Train using selected subset
– Estimate error on validation data set

● Unsupervised
– Look at input only(e.g. age, income and 

savings) 
– Select subset of 2 that bear most of the 

information about the person 



Mutual Information
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● Have a 3 random variables(features) X,Y,Z and have to 
select 2 which gives most information

● If X and Y are “correlated” then much of the information 
about of Y is already in X

● Make sense to select features which are “uncorrelated”

● Mutual Information (Kullback–Leibler Divergence ) is more 
general measure of “mutual information” 

● Can be extended to n variables (information variables x1,.. xn 
have about variable xn+1)



Subset-selection
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● Forward search
– Start from empty set of features
– Try each of remaining features
– Estimate classification/regression error for adding 

specific feature
– Select feature that gives maximum improvement in 

validation error
– Stop when no significant improvement

● Backward search
– Start with original set of size d
– Drop features with smallest impact on error



Subset Selection
There are 2^d subsets of d features
Forward search: Add the best feature at each step

– Set of features F initially Ø.
– At each iteration, find the best new feature

j = argmini E ( F ∪ xi ) 
– Add xj to F  if E ( F ∪ xj ) < E ( F ) 

Hill-climbing O(d^2) algorithm
Backward search: Start with all features and 

remove one at a time, if possible.
Floating search (Add k, remove l)

47
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Floating Search

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

48

● Forward and backward search are “greedy” 
algorithms
– Select best options at single step
– Do not always achieve optimum value

● Floating search
– Two types of steps: Add k, remove l
– More computations



Feature Extraction
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● Face recognition problem
– Training data input: pairs of Image + 

Label(name) 
– Classifier input: Image
– Classifier output: Label(Name)

● Image: Matrix of 256X256=65536 values in 
range 0..256

● Each pixels bear little information so can’t 
select  100 best ones

● Average of pixels around specific positions 
may give an indication about an eye color. 



Projection
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●  Find a projection matrix w from d-dimensional 
to k-dimensional vectors that keeps error low



PCA: Motivation
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●  Assume that  d observables are linear 
combination of k<d vectors

●  zi=wi1xi1+…+wikxid

●  We would like to work with basis as it has 
lesser dimension and have all(almost) 
required information

● What we expect from such basis
– Uncorrelated or otherwise can be reduced 

further
– Have large variance (e.g. wi1 have large 

variation) or otherwise bear no information



PCA: Motivation
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PCA: Motivation
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●  Choose directions such that a total variance 
of data will be maximum
– Maximize Total Variance

● Choose directions that are orthogonal 
– Minimize correlation

● Choose k<d orthogonal directions which 
maximize total variance



PCA
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● Choosing only directions:
●  
●  Maximize variance subject to a constrain using 

Lagrange Multipliers

● Taking Derivatives

 
● Eigenvector. Since want to maximize                           

  we should choose an eigenvector with largest 
eigenvalue



PCA
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● d-dimensional feature space
● d by d symmetric covariance matrix estimated 

from samples 
●  Select k largest eigenvalue of  the covariance 

matrix and associated k eigenvectors
● The first eigenvector will be a direction with 

largest variance



What PCA does
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z = WT(x – m)

where the columns of W are the eigenvectors 
of ∑, and m is sample mean

Centers the data at the origin and rotates the 
axes



How to choose k ?
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21

● Proportion of Variance (PoV) explained

when λi are sorted in descending order 
● Typically, stop at PoV>0.9
● Scree graph plots of PoV vs k, stop at 

“elbow”
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PCA
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● PCA is unsupervised (does not take into account 
class information)

● Can take into account classes : Karhuned-Loeve 
Expansion
– Estimate Covariance Per Class
– Take average weighted by prior

● Common Principle Components
– Assume all classes have same eigenvectors 

(directions) but different variances



PCA

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

60

● Does not try to explain noise
– Large noise can become new dimension/largest 

PC

● Interested in resulting uncorrelated variables 
which explain large portion of total sample 
variance

● Sometimes interested in explained shared 
variance (common factors) that affect data
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