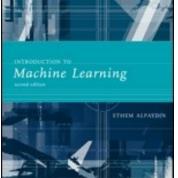
Lecture Slides for

Machine Learning 2nd Edition



ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/MachineLearning/ © The MIT Press, 2010

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2m

Outline

This class: Ch 5: Multivariate Methods

- Multivariate Data
- Parameter Estimation
- Estimation of Missing Values
- Multivariate Classification

CHAPTER 5: Multivariate Methods

Multivariate Distribution

- Assume all members of class came from join distribution
- Can learn distributions from data P(x|C)
- Assign new instance for most probable class P(C|x) using Bayes rule
- An instance described by a vector of correlated parameters
- Realm of multivariate distributions
- Multivariate normal

Multivariate Data

- Multiple measurements (sensors)
- *d* inputs/features/attributes: *d*-variate
- *N* instances/observations/examples

$$\mathbf{X} = \begin{bmatrix} X_1^1 & X_2^1 & \cdots & X_d^1 \\ X_1^2 & X_2^2 & \cdots & X_d^2 \\ \vdots & & & \\ X_1^N & X_2^N & \cdots & X_d^N \end{bmatrix}$$

Multivariate Parameters

Mean: $E[x] = \mu = [\mu_1, ..., \mu_d]^T$ Covariance: $\sigma_{ii} \equiv Cov(X_i, X_i)$ Correlation : Corr $(X_i, X_j) \equiv \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_i}$ $\Sigma \equiv \operatorname{Cov}(\boldsymbol{X}) = \boldsymbol{E}[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^{T}] = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2d} \\ \vdots & & & & \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_{d}^{2} \end{bmatrix}$

Parameter Estimation

Samplemean **m** :
$$m_i = \frac{\sum_{t=1}^{N} x_i^t}{N}$$
, $i = 1, ..., d$
Covariancematrix **S** : $s_{ij} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N}$
Correlation matrix **R** : $r_{ij} = \frac{s_{ij}}{s_i s_j}$

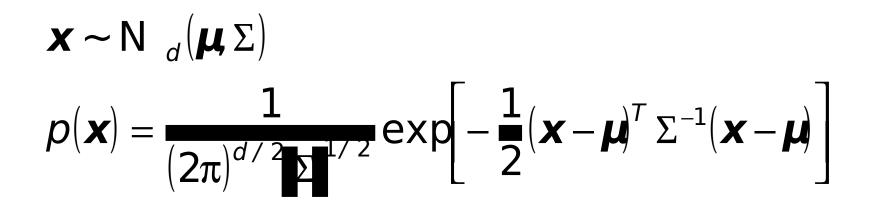
Estimation of Missing Values

- What to do if certain instances have missing attributes?
- Ignore those instances: not a good idea if the sample is small
- Use 'missing' as an attribute: may give information
- Imputation: Fill in the missing value
 - Mean imputation: Use the most likely value (e.g., mean)
 - Imputation by regression: Predict based on other attributes Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Multivariate Normal

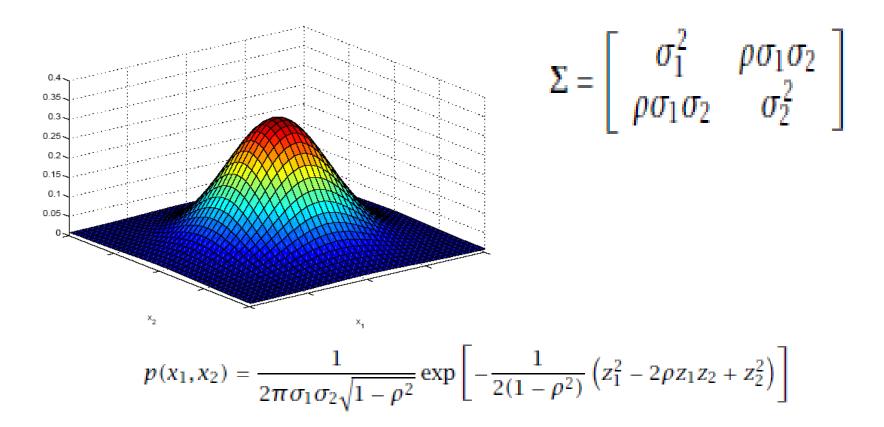
- Have d-attributes
- Often can assume each one distributed normally
- Attributes might be dependant/correlated
- Joint distribution of correlated several variables
 - $P(X_1=x_1, X_2=x_2, \dots, X_d=x_d)=?$
 - X_1 is normally distributed with mean μ_i and variance σ_i

Multivariate Normal



- Mahalanobis distance: $(\mathbf{x} \boldsymbol{\mu})^{T} \sum_{i=1}^{-1} (\mathbf{x} \boldsymbol{\mu})$
- 2 variables are correlated
- Divided by inverse of covariance (large)
- Contribute less to Mahalanobis distance
- Contribute more to the probability

Bivariate Normal



Multivariate Normal Distribution

• Mahalanobis distance: $(x - \mu)^{T} \sum_{i=1}^{\infty} (x - \mu)^{T}$

measures the distance from x to μ in terms of \sum (normalizes for difference in variances and correlations) Γ_{-2}

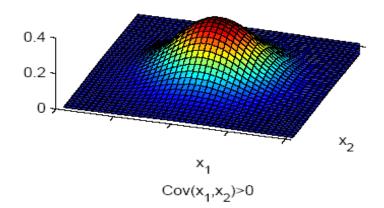
• Bivariate:
$$d = 2$$
 $\Sigma = \begin{bmatrix} \sigma_1^- & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$
 $p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp \left[-\frac{1}{2(1-\rho^2)} (z_1^2 - 2\rho z_1 z_2 + z_2^2) \right]$
 $z_i = (x_i - \mu_i) / \sigma_i$

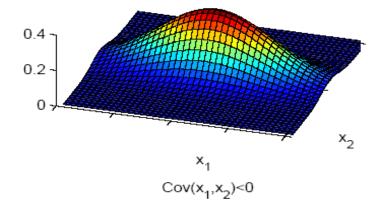
Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

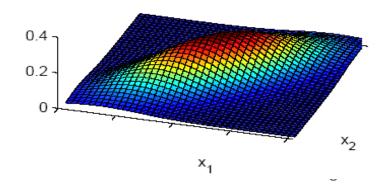
Bivariate Normal

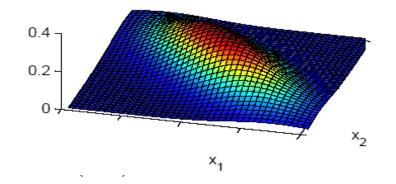
 $Cov(x_1,x_2)=0, \forall ar(x_1)=\forall ar(x_2)$

 $Cov(x_1, x_2)=0, Var(x_1)>Var(x_2)$



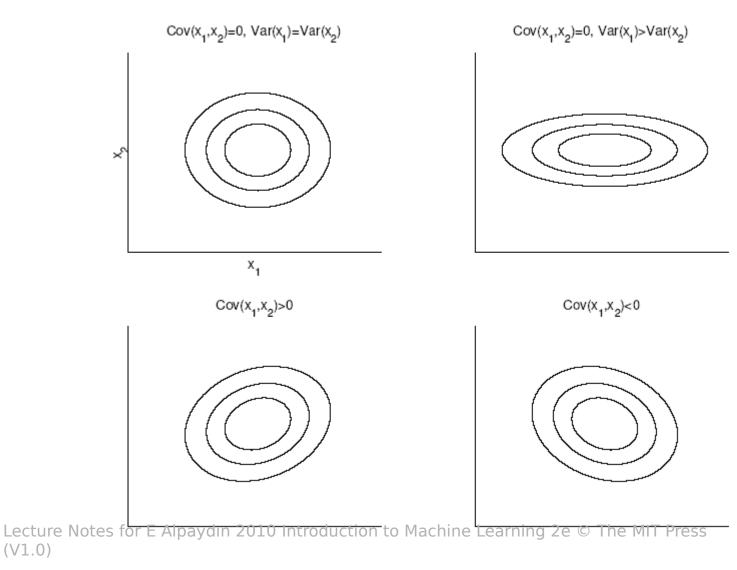






Bivariate Normal

(V1.0)



Independent Inputs: Naive Bayes

If x_i are independent, offdiagonals of ∑ are 0, Mahalanobis distance reduces to weighted (by 1/σ_i) Euclidean distance:

$$p(x) = \prod_{i=1}^{d} p_i(x_i) = \frac{1}{(2\pi)^{d/2}} \prod_{i=1}^{d} \sigma_i \exp\left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right]$$

• If variances are also equal, reduces to Euclidean distance

Based on Introduction to Machine Learning © The MIT Press (V1.1)

Projection Distribution

- Example: vector of 3 features
- Multivariate normal distribution
- Projection to 2 dimensional space (e.g. XY plane) Vectors of 2 features
- Projection are also multivariate normal distribution
- Projection of d-dimensional normal to k-dimensional space is k-dimensional normal

 $\mathbf{W}^T \boldsymbol{x} \sim \mathcal{N}_k(\mathbf{W}^T \boldsymbol{\mu}, \mathbf{W}^T \boldsymbol{\Sigma} \mathbf{W})$

W is a $d \times k$ matrix

Based on E Alpaydın 2004 Introduction to Machine Learning $\ensuremath{\mathbb{C}}$ The MIT Press (V1.1)

1D projection

 $\mathbf{w}^T \mathbf{x} = w_1 x_1 + w_2 x_2 + \cdots + w_d x_d \sim \mathcal{N}(\mathbf{w}^T \boldsymbol{\mu}, \mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w})$

$$E[\mathbf{w}^{T}\mathbf{x}] = \mathbf{w}^{T}E[\mathbf{x}] = \mathbf{w}^{T}\boldsymbol{\mu}$$

$$Var(\mathbf{w}^{T}\mathbf{x}) = E[(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})^{2}] = E[(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})]$$

$$= E[\mathbf{w}^{T}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}\mathbf{w}] = \mathbf{w}^{T}E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}]\mathbf{w}$$

$$= \mathbf{w}^{T}\Sigma\mathbf{w}$$

Multivariate Classification

- Assume members of class from a single multivariate distribution
- Multivariate normal is a good choice
 - Easy to analyze
 - Model many natural phenomena
 - Model a class as having single prototype source (mean) slightly randomly changed

Example

- Matching cars to customers
- Each cat defines a class of matching customers
- Customers described by (age, income)
- There is a correlation between age and income
- Assume each class is multivariate normal
- Need to learn P(x|C) from data
- Use Bayes to compute P(C|x)

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Parametric Classification

• If $p(\mathbf{x} | C_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

$$p(\mathbf{x} | C_i) = \frac{1}{(2\pi)^{d/2} \Sigma_i} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

• Discriminant functions are

 $g_i(\mathbf{x}) = \log P(C_i | \mathbf{x}) = \log \frac{P(\mathbf{x}|C_i) P(C_i)}{P(\mathbf{x})} = \log p(\mathbf{x}|C_i) + \log P(C_i) - \log P(\mathbf{x})$

$$= -\frac{d}{2}\log 2\pi - \frac{1}{2}\log \left[-\frac{1}{2} (\mathbf{x} - \mu_{i})^{T} \Sigma_{i}^{-1} (\mathbf{x} - \mu_{i}) + \log P(C_{i}) - Log R(\mathbf{x}) \right]$$

- Need to know Covariance Matrix and mean to compute discriminant functions.
- Can ignore P(x) as the same for all classes Based on E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Estimation of Parameters

$$\hat{P}(C_i) = \frac{\sum_{t} r_i^t}{N}$$

$$\boldsymbol{m}_i = \frac{\sum_{t} r_i^t \boldsymbol{x}^t}{\sum_{t} r_i^t}$$

$$\boldsymbol{S}_i = \frac{\sum_{t} r_i^t (\boldsymbol{x}^t - \boldsymbol{m}_i) (\boldsymbol{x}^t - \boldsymbol{m}_i)^T}{\sum_{t} r_i^t}$$

$$g_i(\boldsymbol{x}) = -\frac{1}{2} \log \|\boldsymbol{S}_i\| - \frac{1}{2} (\boldsymbol{x} - \boldsymbol{m}_i)^T \, \boldsymbol{S}_i^{-1} (\boldsymbol{x} - \boldsymbol{m}_i) + \log \hat{P}(C_i)$$

Covariance Matrix per Class

• Quadratic discriminant

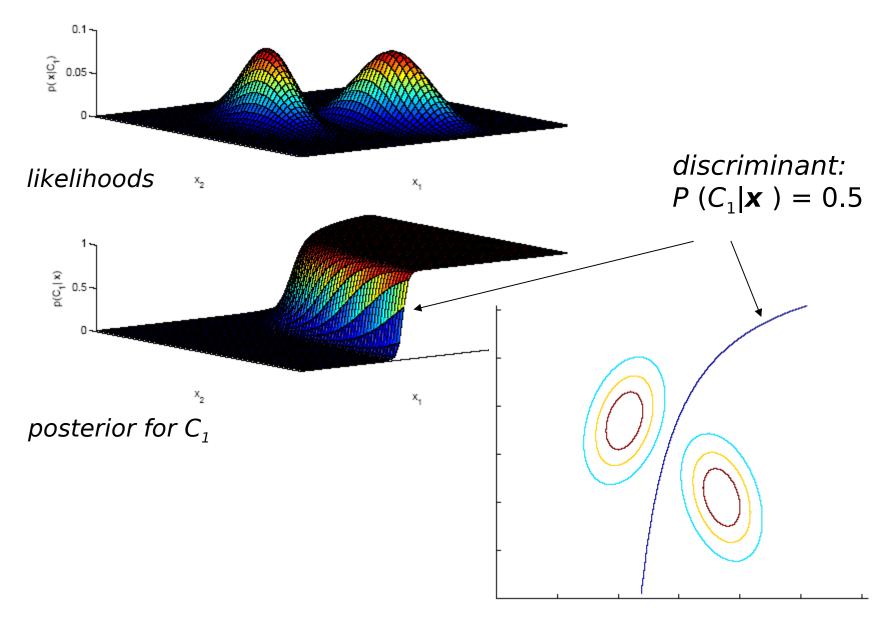
$$g_{i}(\mathbf{x}) = -\frac{1}{2}\log[\mathbf{S}_{i}] - \frac{1}{2}(\mathbf{x}^{T} \mathbf{S}_{i}^{-1} \mathbf{x} - 2\mathbf{x}^{T} \mathbf{S}_{i}^{-1} \mathbf{m}_{i} + \mathbf{m}_{i}^{T} \mathbf{S}_{i}^{-1} \mathbf{m}_{i}) + \log \hat{P}(C_{i})$$

$$= \mathbf{x}^{T} \mathbf{W}_{i} \mathbf{x} + \mathbf{w}_{i}^{T} \mathbf{x} + w_{i0}$$
where
$$\mathbf{W}_{i} = -\frac{1}{2}\mathbf{S}_{i}^{-1}$$

$$\mathbf{w}_{i} = \mathbf{S}_{i}^{-1} \mathbf{m}_{i}$$

$$w_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T} \mathbf{S}_{i}^{-1} \mathbf{m}_{i} - \frac{1}{2}\log[\mathbf{S}_{i}] + \log \hat{P}(C_{i})$$

• Requires estimation of K*d*(d+1)/2 parameters for covariance matrixBased on E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)



Common Covariance Matrix **S**

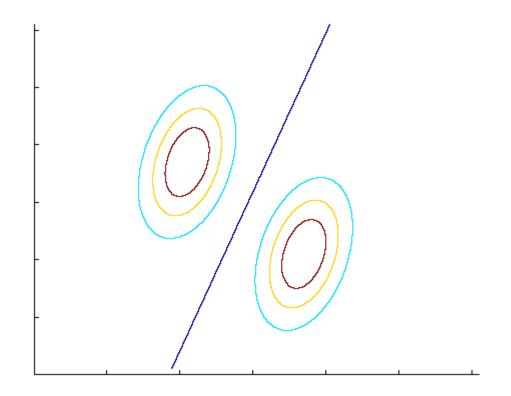
• If not enough data can assume all classes have same common sample covariance matrix $\mathbf{S} = \sum \hat{P}(C_i)\mathbf{S}_i$ Discriminant reduces to a linear discriminant (xTS-1x is common to all discriminant and can be removed)

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}^{-1} (\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

where $\mathbf{w}_i = \mathbf{S}^{-1}\mathbf{m}_i$ $w_{i0} = -\frac{1}{2}\mathbf{m}_i^T \mathbf{S}^{-1}\mathbf{m}_i + \log \hat{P}(C_i)$ Based on E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Common Covariance Matrix S



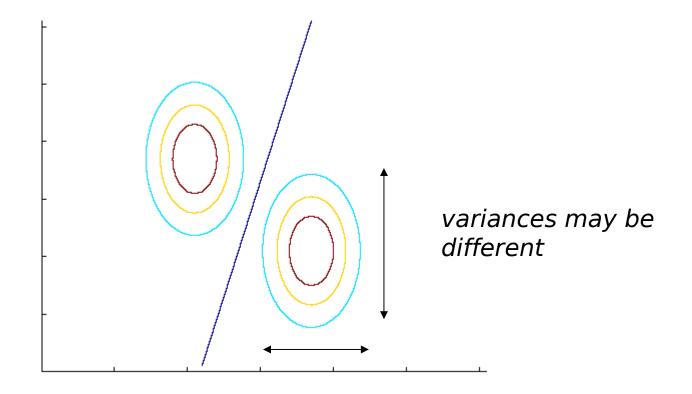
Diagonal **S**

- When x_j j = 1,..d, are independent, ∑ is diagonal
 - $p(\mathbf{x}|C_i) = \prod_j p(x_j|C_i)$ (Naive Bayes' assumption)

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^d \left(\frac{x_j^t - m_{jj}}{s_j} \right)^2 + \log \hat{P}(C_i)$$

Classify based on weighted Euclidean distance (in s_j units) to the nearest mean Based on E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Diagonal **S**



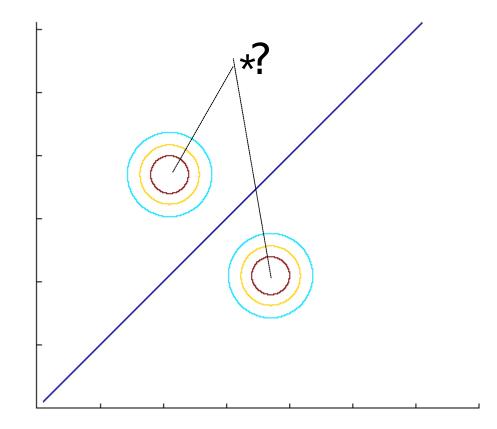
Diagonal S, equal variances

• Nearest mean classifier: Classify based on Euclidean distance to the nearest mean

$$g_{i}(x) = -\frac{\|x - m_{i}\|^{2}}{2s^{2}} + \log \hat{P}(C_{i})$$
$$\dot{c} = -\frac{1}{2s^{2}} \sum_{i=1}^{d} (x_{j}^{t} - m_{ij})^{2} + \log \hat{P}(C_{i})$$

 Each mean can be considered a prototype or template and this is template matching

Diagonal S, equal variances



Model Selection

Assumption	Covariance matrix	No of parameters
Shared, Hyperspheric	S <i>i</i> = S = <i>s</i> ^2 I	1
Shared, Axis-aligned	$S_i = S$, with $S_{ij} = 0$	d
Shared, Hyperellipsoidal	Si=S	d(d+1)/2
Different, Hyperellipsoidal	Si	K d(d+1)/2

- As we increase complexity (less restricted S), bias decreases and variance increases
- Assume simple models (allow some bias) to control variance (regularization)

Model Selection

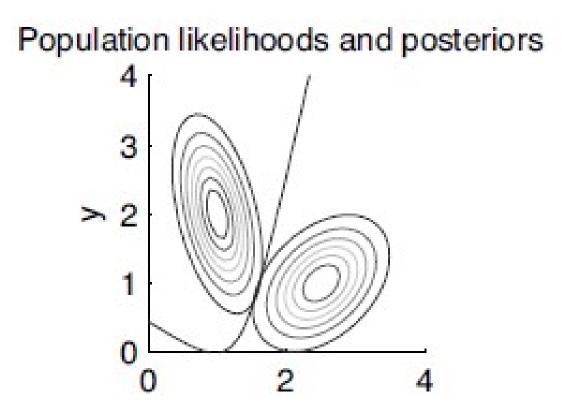
- Different covariance matrix for each class
- Have to estimate many parameters
- Small bias , large variance
- Common covariance matrices, diagonal covariance etc. reduce number of parameters
- Increase bias but control variance
- In-between states?

Regularized Discriminant Analysis(RDA)

 $\mathbf{S}'_i = \alpha \sigma^2 \mathbf{I} + \beta \mathbf{S} + (1 - \alpha - \beta) \mathbf{S}_i$

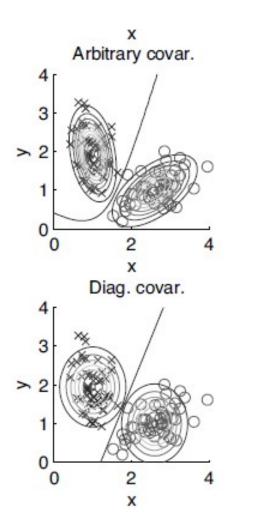
- a=b=0: Quadratic classifier
- a=0, b=1:Shared Covariance, linear classifier
- a=1,b=0: Diagonal Covariance
- Choose best a,b by cross validation

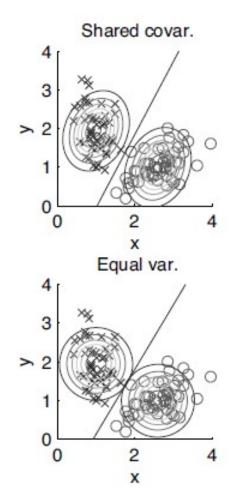
Model Selection: Example



Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Model Selection





Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Discrete Features • Binary features: $p_{ij} \equiv p(x_j=1|C_i)$

if x_j are independent (Naive Bayes')

$$p(\mathbf{x} | \mathbf{C}_i) = \prod_{j=1}^{d} p_{ij}^{\mathbf{x}_j} (1 - p_{ij})^{(1 - \mathbf{x}_j)}$$

the discriminant is linear $g_{i}(\mathbf{x}) = \log p(\mathbf{x} | C_{i}) + \log P(C_{i})$ $= \sum_{j} [x_{j} \log p_{ij} + (1 - x_{j}) \log(1 - p_{ij})] + \log P(C_{i})$ Estimated parameters $\hat{p}_{ij} = \frac{\sum_{t} x_{j}^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e $\ensuremath{\mathbb{C}}$ The MIT Press (V1.0)

Multivariate Regression

$$r^{t} = g(x^{t} | w_{0}, w_{1}, ..., w_{d}) + \varepsilon$$

Multivariate linear model

•
$$W_0 + W_1 X_1^t + W_2 X_2^t + \dots + W_d X_d^t$$

• $E(W_0, W_1, \dots, W_d \mid X) = \frac{1}{2} \sum_t [r^t - W_0 - W_1 X_1^t - \dots - W_d X_d^t]^2$

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e $\ensuremath{\mathbb{C}}$ The MIT Press (V1.0)

Multivariate Regression

$$w_0 + w_1 x_1^t + w_2 x_2^t + \dots + w_d x_d^t$$

 $I E(w_0, w_1, \dots, w_d \mid X) = \frac{1}{2} \sum_t [r^t - w_0 - w_1 x_1^t - \dots - w_d x_d^t]^2$

 $\sum_{t} r^{t} = Nw_{0} + w_{1} \sum_{t} x_{1}^{t} + w_{2} \sum_{t} x_{2}^{t} + \dots + w_{d} \sum_{t} x_{d}^{t}$ $\sum_{t} x_{1}^{t} r^{t} = w_{0} \sum_{t} x_{1}^{t} + w_{1} \sum_{t} (x_{1}^{t})^{2} + w_{2} \sum_{t} x_{1}^{t} x_{2}^{t} + \dots + w_{d} \sum_{t} x_{1}^{t} x_{d}^{t}$ $\sum_{t} x_{2}^{t} r^{t} = w_{0} \sum_{t} x_{2}^{t} + w_{1} \sum_{t} x_{1}^{t} x_{2}^{t} + w_{2} \sum_{t} (x_{2}^{t})^{2} + \dots + w_{d} \sum_{t} x_{2}^{t} x_{d}^{t}$ \vdots $\sum_{t} x_{d}^{t} r^{t} = w_{0} \sum_{t} x_{d}^{t} + w_{1} \sum_{t} x_{d}^{t} x_{1}^{t} + w_{2} \sum_{t} x_{d}^{t} x_{2}^{t} + \dots + w_{d} \sum_{t} (x_{d}^{t})^{2}$

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e $\ensuremath{\mathbb{C}}$ The MIT Press (V1.0)

CHAPTER 6: Dimensionality Reduction

Dimensionality of input

- Number of Observables (e.g. age and income)
- If number of observables is increased
 - More time to compute
 - More memory to store inputs and intermediate results
 - More complicated explanations (knowledge from learning)
 - Regression from 100 vs. 2 parameters
 - No simple visualization
 - 2D vs. 10D graph
 - Need much more data (curse of dimensionality)
 - Band of Badain patsais not equal to in the input of dimension (1941)

Dimensionality reduction

- Some features (dimensions) bear little or nor useful information (e.g. color of hair for a car selection)
 - Can drop some features
 - Have to estimate which features can be dropped from data
- Several features can be combined together without loss or even with gain of information (e.g. income of all family members for loan application)

- Some features can be combined together Based on FAlaydu 2004 Introduction to Machine features to Combine from

Feature Selection vs Extraction

- Feature selection: Choosing k<d important features, ignoring the remaining d k
 - Subset selection algorithms
- Feature extraction: Project the original x_i, i
 =1,...,d dimensions to new k<d dimensions, z_j
 , j =1,...,k
 - Principal Components Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - Factor Analysis (FA)

Usage

- Have data of dimension d
- Reduce dimensionality to k<d
 - Discard unimportant features
 - Combine several features in one
- Use resulting k-dimensional data set for
 - Learning for classification problem (e.g. parameters of probabilities P(x|C)
 - Learning for regression problem (e.g. parameters for model y=g(x|Thetha)

Subset selection

- Have initial set of features of size d
- There are 2^d possible subsets
- Need a criteria to decide which subset is the best
- A way to search over the possible subsets
- Can't go over all 2^d possibilities
- Need some heuristics

"Goodness" of feature set

- Supervised
 - Train using selected subset
 - Estimate error on validation data set
- Unsupervised
 - Look at input only(e.g. age, income and savings)
 - Select subset of 2 that bear most of the information about the person

Mutual Information

- Have a 3 random variables(features) X,Y,Z and have to select 2 which gives most information
- If X and Y are "correlated" then much of the information about of Y is already in X
- Make sense to select features which are "uncorrelated"
- Mutual Information (Kullback–Leibler Divergence) is more general measure of "mutual information"
- Can be extended to n variables (information variables $x_1, \dots x_n$ have about variable x_{n+1})

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Subset-selection

- Forward search
 - Start from empty set of features
 - Try each of remaining features
 - Estimate classification/regression error for adding specific feature
 - Select feature that gives maximum improvement in validation error
 - Stop when no significant improvement
- Backward search
 - Start with original set of size d
 - Drop features with smallest impact on error

Subset Selection

- There are 2^d subsets of d features
- Forward search: Add the best feature at each step
 - Set of features F initially Ø.
 - At each iteration, find the best new feature
 - $j = \operatorname{argmin} i E (F \cup xi)$

- Add x_j to F if $E(F \cup x_j) < E(F)$

- Hill-climbing $O(d^2)$ algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- Floating search (Add k, remove l)

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e $\ensuremath{\mathbb{C}}$ The MIT Press (V1.0)

Floating Search

- Forward and backward search are "greedy" algorithms
 - Select best options at single step
 - Do not always achieve optimum value
- Floating search
 - Two types of steps: Add *k*, remove *l*
 - More computations

Feature Extraction

- Face recognition problem
 - Training data input: pairs of Image + Label(name)
 - Classifier input: Image
 - Classifier output: Label(Name)
- Image: Matrix of 256X256=65536 values in range 0..256
- Each pixels bear little information so can't select 100 best ones
- Average of pixels around specific positions may give an indication about an eye color. Based on E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Projection

• Find a projection matrix w from d-dimensional to k-dimensional vectors that keeps error low

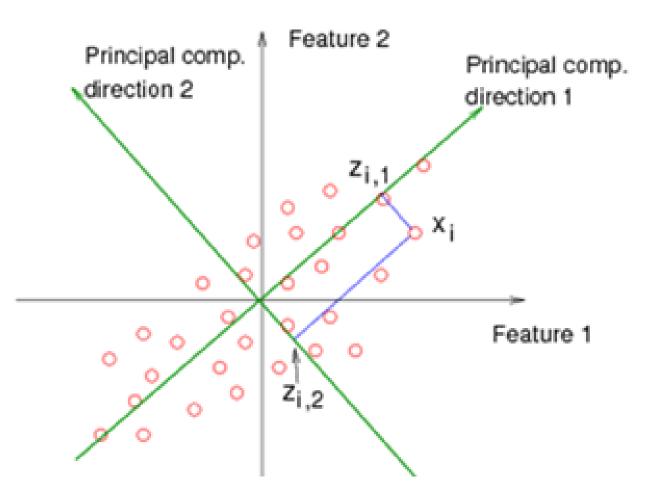
$$z = w^T x$$

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

PCA: Motivation

- Assume that d observables are linear combination of k<d vectors
- $Z_i = W_{i1}X_{i1} + ... + W_{ik}X_{id}$
- We would like to work with basis as it has lesser dimension and have all(almost) required information
- What we expect from such basis
 - Uncorrelated or otherwise can be reduced further
 - Have large variance (e.g. w_{i1} have large
 Based on E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
 variation) or otherwise bear no information

PCA: Motivation



Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

PCA: Motivation

- Choose directions such that a total variance of data will be maximum
 - Maximize Total Variance
- Choose directions that are orthogonal
 - Minimize correlation
- Choose k<d orthogonal directions which maximize total variance

Based on E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

PCA

- Choosing only directions: $\|\boldsymbol{w}_1\| = 1$
- $z_1 = \boldsymbol{w}_1^T \boldsymbol{x}$ Cov $(\boldsymbol{x}) = \boldsymbol{\Sigma}$, Var $(z_1) = \boldsymbol{w}_1^T \boldsymbol{\Sigma} \boldsymbol{w}_1$
- Maximize variance subject to a constrain using Lagrange Multipliers

$$\max_{\boldsymbol{w}_1} \boldsymbol{w}_1^T \boldsymbol{\Sigma} \boldsymbol{w}_1 - \boldsymbol{\alpha} (\boldsymbol{w}_1^T \boldsymbol{w}_1 - 1)$$

• Taking Derivatives

 $2\Sigma w_1 - 2\alpha w_1 = 0 \qquad \Sigma w_1 = \alpha w_1$

• Eigenvector. Since want to maximize $w_1^T \Sigma w_1 = \alpha w_1^T w_1 = \alpha$ we should choose an eigenvector with largest eigenvalue

Based on E Alpaydın 2004 Introduction to Machine Learning $\ensuremath{\mathbb{C}}$ The MIT Press (V1.1)

PCA

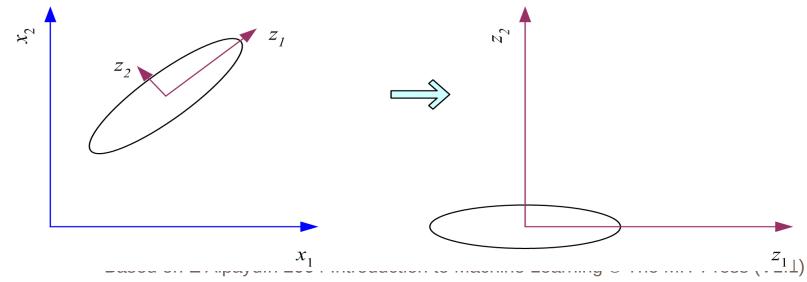
- d-dimensional feature space
- d by d symmetric covariance matrix estimated from samples $Cov(x) = \Sigma$,
- Select k largest eigenvalue of the covariance matrix and associated k eigenvectors
- The first eigenvector will be a direction with largest variance

What PCA does

 $z = W^{T}(x - m)$

where the columns of **W** are the eigenvectors of Σ , and *m* is sample mean

Centers the data at the origin and rotates the axes



How to choose k?

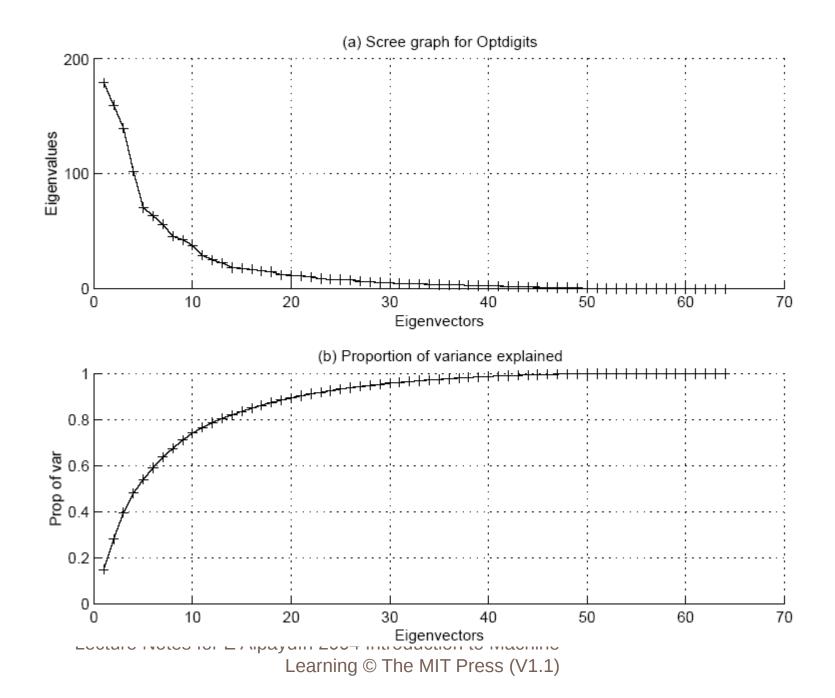
• Proportion of Variance (PoV) explained

$$\lambda_1 + \lambda_2 + \dots + \lambda_k$$
$$\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d$$

when λ_i are sorted in descending order

- Typically, stop at PoV>0.9
- Scree graph plots of PoV vs k, stop at "elbow"

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)



PCA

- PCA is unsupervised (does not take into account class information)
- Can take into account classes : Karhuned-Loeve Expansion
 - Estimate Covariance Per Class
 - Take average weighted by prior
- Common Principle Components
 - Assume all classes have same eigenvectors (directions) but different variances

PCA

- Does not try to explain noise
 - Large noise can become new dimension/largest
 PC
- Interested in resulting uncorrelated variables which explain large portion of **total** sample variance
- Sometimes interested in explained shared variance (common factors) that affect data Based on E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)