
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2017 1

Space-efficient filters for mobile robot localization
from discrete limit cycles
Tauhidul Alam1, Leonardo Bobadilla1, Dylan A. Shell2

Abstract—Robot localization is the problem of determining a
robot’s pose in an environment, typically within a given map or
a similar representation. Different methods have been proposed
to address this localization problem for robots with limited
sensing. In this paper, we present a localization method for a
robot equipped with only a contact sensor and a clock. We
make the limits of localization accuracy precise by establishing
the fundamental limits imposed by symmetry as revealed by
the robot’s sensors. Our method is based on finding periodic
cycles and transient trajectories of the robot path as it bounces
within an environment filled with obstacles. Based on the cycles
and transient trajectories, space-efficient and automata-based
combinatorial filters are synthesized to solve localization prob-
lems modulo symmetries. Experimental results from multiple
simulations and from real robot demonstrations attest to the
feasibility and practicability of our method.

Index Terms—Localization, mobile robots, cell-to-cell mapping,
automata, sensor-based systems.

I. INTRODUCTION

MOBILE robot localization is the problem of determining
a robot’s configuration (position and orientation) in

its environment [1]. Localization is a fundamental problem
in mobile robotics, and is typically a prerequisite to solving
tasks such as navigation, coverage, mapping, searching, and
patrolling for applications in agriculture, security, surveillance,
and home robotics among many others. This work addresses
the problem of global robot localization [2], [3], where a robot
has to find its configuration in the entire environment without
having any information about its initial configuration. Most
localization approaches rely on recursive Bayesian filters such
as particle [2], [4] or Kalman filters [5], [6], which, compared
with the focus of our study, are far more expensive in terms
of computation time and memory, and require sophisticated
sensors and motion modeling. The originality of our work
is that we synthesize a finite automata-based combinatorial
filter for solving the problem of localizing a robot in a
particular environment that is suitable for a device of meager
computational ability, potentially even being realized directly
in a field programmable gate-array. This work fits within a
broader research program of hardware synthesis for robots.

Manuscript received: February 15, 2017; Revised: May 21, 2017; Accepted:
July 6, 2017.

This paper was recommended for publication by Editor Kevin Lynch upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported in part by ARO grant 67736CSII as well as in part by NSF awards
IIS-1302393, IIS-1527436, and IIS-1453652.

1Tauhidul Alam and Leonardo Bobadilla are with the School of Computing
and Information Sciences, Florida International University, Miami, FL, USA.
{talam005, bobadilla}@cs.fiu.edu

2Dylan A. Shell is with the Department of Computer Science and
Engineering at Texas A&M University, College Station, TX, USA.
dshell@cse.tamu.edu

Digital Object Identifier (DOI): see top of this page.

With few or very limited sensors, the localization prob-
lem is challenging to solve and has consequently attracted
considerable theoretical attention [7], [8], [9], [10]. The mo-
tivation of our work is to use a robot with limited linear
and angular sensing as a basis for investigating the intrinsic
limits of the localization problem. In particular, we wish to
understand the strongest possible version of a localization task
that such a robot can solve, recognizing that the robot may
be too deficient, ultimately, to resolve its position down to
a unique pose with certainty. What is possible depends on
the environment and parameters of the robot controller, so
we explore automated processes to uncover answers to these
questions that are given in a particular setting as input.

Continuing the growing vein of work exploring the prop-
erties of sensing-constrained systems, we examine a robot
equipped with a bump (or contact) sensor and a clock. The
robot inhabits a planar polygonal environment with holes and
has behavior parameterized by a single parameter, which, for
reasons that will be obvious, we call the bouncing angle. The
robot moves on straight lines, and when it encounters a wall
it rotates through the bouncing angle (measured with respect
to the direction of its pre-collision motion). While exhibiting
the bouncing behavior, the robot’s sensors provide a sequence
of observations that will be specified in detail below.

Though the robot is too deficient to localize in the traditional
metric sense, we show that there is a relaxed instance of the
localization problem that it is capable of solving. The setting
we study enables the construction of an estimator that still
suffices to localize with an accuracy that is compromised only
by the symmetries involved. This work is also motivated by
the concepts of limit cycles and basins of attraction which
we define here as periodic groups and transient trajectories
respectively and are often used in control theory [11].

The main contributions of our work are as follows:

• We present an algorithm that is based on the simple cell-
to-cell mapping [12] to find the periodic groups and their
transient trajectories from the environment.

• We construct information state (I-state) graphs [1] from
the computed periodic groups and transient trajectories.

• We introduce combinatorial filters that are generated from
I-state graphs and enable the robot to localize itself up to
some intrinsic uncertainty.

The remaining work is laid out as follows. Section II
reviews the literature of robot localization and combinatorial
filters. Section III defines the robot model, explains cell-to-cell
mapping, and formulates problems we solve. In Section IV, we
describe the method of our work in detail. Section V illustrates
our simulation results and physical implementations of our
work. Finally, we conclude with the discussion and outline
the future work in Section VI.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2017

II. RELATED WORK

This section discusses related literature first on localization
of mobile robots and secondly on combinatorial filters.

A. Robot Localization
There are several antecedent works which have examined

bouncing robots in related contexts. In [13], [14], [8], the
authors consider a robot whose bouncing angle varies as a
function of the number of prior bounces. In [7], the bouncing
angle of the robot is a constant angle relative to the normal of
the impacted edge of the environment irrespective of its angle
of incidence. These contrast from the type of bounce we study.
The bounce we investigate ensures that the robot will end up
in a small bounded set of possible locations.

In [9], [10], the authors study a robot equipped with a
contact sensor and compass or a robot equipped with linear and
angular odometers, providing theoretical results on localization
for environments without holes using geometric reasoning.
The robot they study is more powerful than what we explore
herein. Further, holes within the environment pose no special
challenge for the techniques we describe below. We note that
in [8], the authors considered a simple environment with holes
for localization with a robot having only a clock and a contact
sensor. They presented a probabilistic technique for finding a
probability distribution over regions on the boundary of the
environment. However, they assume that the robot knows its
initial orientation whereas in our work, no such assumption is
needed.

B. Combinatorial Filters
Nearly sensorless robots called “weasel balls” that bump

and bounce around the environment were studied in [15].
Their bounce is not associated with a fixed angle and thus
require complete state estimation for solving different tasks.
Since doing so is difficult, an information space view was
introduced in [16] to avoid this onerous state estimation.
The information space consists of all histories of actions
and sensing observations of a mobile robot for problems
involving uncertainty. A related perspective is adopted in the
information state (I-state) formalism, which led to the use of
combinatorial filters to process information from sensors for
solving tasks such as manipulation [17], navigation [18], and
target tracking [19]. In [20], the problem of filter reduction
is introduced, which involves finding the filter that uses the
fewest information states for a given filtering task. That
paper showed that minimization of filters is an NP-complete
problem; further, more recent work in [21], shows that several
specially structured filters still retain this hardness property.
And, though we do not claim that the filter which arises in
our work is minimal in precisely the same sense as those
authors, we note that the process we detail for constructing
our localization filter only requires polynomial time and space.
To the best of our knowledge, the present paper is the first to
automate the process of compiling a geometric description of
the environment into an I-state graph, which we then explicitly
turn into a filter to solve the localization task.

III. PRELIMINARIES

This section gives a description of the robot model we study.
We also briefly explain the cell-to-cell mapping and formally
define the localization problems of interest.

A. Robot Model
We start with a differential drive mobile robot equipped

with only a contact sensor and a clock. The robot moves in
a planar and bounded polygonal two-dimensional workspace
W ⊂ R2. There is a set of polygonal obstacles represented
as O ⊂ W . Let E = W \ O be free-space in which the
robot can move freely and let ∂E represent the boundary
of the free space. We assume that the robot has a map of
the environment E and knows its bouncing angle φ but does
not know its initial configuration. We also consider a noise-
free model of the robot in terms of the translation and the
rotation. Certainly, generating perfect motions for any angle
poses a problem, especially for a low-cost differential drive
robot. However, in practice, we found that for some given φ,
we are able to produce repeatable and reliable rotations (see
Section V, where we describe our physical robot experiments).

The robot moves straight until touching the boundary of
the environment ∂E which is detected by the contact sensor.
The robot measures the number of steps in its straight-line
motion by using its clock. Once it bounces at ∂E, the robot
rotates with the angle φ counterclockwise from its current
orientation by commanding a constant angular velocity and
using a clock to rotate for some fixed period of time. It then
moves straight until contacting ∂E and repeats the behavior.
This simple behavior is illustrated in Fig. 1.

Fig. 1: An example of a simple bouncing robot.

B. Cell-to-Cell Mapping
Including the robot’s orientation, the physical state space of

the robot is X = E × S1 where S1 = [0, 2π). Let x ∈ X
denote the state of the robot where x = (xt, yt, θ), (xt, yt) is
its position, and θ is its orientation. Let R(x) ⊂ R2 represent
the robot. The obstacle region Xobs in the state space is defined
as Xobs = {x ∈ X|R(x) ∩ O 6= ∅} (1)
and Xfree = X \Xobs.

The subset of the state space where the robot is allowed to
move is denoted by Xfree. To apply the cell-to-cell mapping
method [12], [22], we divide Xfree into equally sized 3-
dimensional box cells since the robot’s configuration has three
degrees of freedom. Let N be the total number of cells. We
define N as N = NE × NS , where NE is the discretization
resolution of the 2-D free space E and NS is the discretization
resolution of S1. This discretized state space is called cell state
space. Each cell represents an indivisible state entity. The state
of the system is described by a cell index z ∈ {1, . . . , N}. Let
Z = {1, . . . , N} denote the collection of cells.

The evolution of a system can be explained as a sequence
of cells by investigating its state at discrete times. Let e(i)
denote the cell containing the state of the system at t = i∆t,
i = 0, 1, . . . with ∆t being the time between two state
examinations, and being large enough to support crossing a
cell. The system evolution is then governed by

e(i+ 1) = C(e(i)) (2)

ALAM et al.: SPACE-EFFICIENT FILTERS FOR MOBILE ROBOT LOCALIZATION FROM DISCRETE LIMIT CYCLES 3

where the mapping C : N → N is called a simple cell-to-cell
mapping (SCM). In this model, Eq.(2) implies that the next
state of the system is determined entirely by its current state
and is explicitly independent of the mapping step i.

For the sake of completeness, we summarize some im-
portant definitions of the cell-to-cell mapping method. An
extended treatment can be found in [11].

Definition 1: (Periodic Cell) A cell z satisfying
z = Cm(z), for some m ∈ N is called a periodic cell with
a period of m.

Definition 2: (Transient Cell) A cell that is not periodic
is called a transient cell and it maps into a periodic cell in a
finite number of steps.

Definition 3: (Periodic Group) A sequence of K distinct
cells e(m), where m = 1, 2, . . . ,K − 1, that satisfies

e(m+ 1) = Cm(e(1)),m = 1, 2, . . . ,K − 1

e(1) = CK(e(1)),
(3)

is called as a periodic group with a period K and each of the
cells e(·) is said to be a periodic cell with the period K. This
periodic group is also called an attractor or a limit cycle.

Definition 4: (Transient Trajectory) A transient trajectory
is the set of initial cells that are finally leading to a particular
periodic group (attractor). The collection of transient trajecto-
ries is called a basin of attraction.

C. Problem Formulation
As the robot moves in the environment E, it receives a se-

quence of observations from an observation space Y = {0, 1}.
Given some agreed upon resolution, the robot can measure the
distance by the number of steps between bounces up to some
quantization error. For example, the observation string that
represents the stream of observations that the robot in Fig. 1
is processing might be {0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0},
where the ones represent a bump event, and the zeros oth-
erwise. Depending on scale, resolution, or both, there could
be more than or less than three 0s between bumps. It is
also possible to observe multiple 1s in a row (for example,
it can happen when the robot bounces in a corner). This
abstract symbolic representation can be realized with various
implementations:
• The robot measures the number of steps for linear dis-

tance traversed since the last bump by a number of 0s.
This measurement is quantized at some resolution.

• The robot moves forward at a constant speed and keeps
observing a sequence of zeros. A bump event results in
observing a 1 and resets the clock for the next linear
distance measurement. These observations are encoded
as a string of 0s, interspersed with 1s.

For a fixed bouncing angle φ, the cell-to-cell mapping
method allows one to track the motion of the robot from any
initial location in E and to find periodic groups, of which
we assume there are r in total. Sometimes the robot’s motion
begins in a transient trajectory and sometimes it is already in
a periodic group. It will eventually converge to one of the r
periodic groups.

We are interested in the following problems:
Problem 1: Closed-world localization Given an environ-
ment E, a bouncing angle φ, the fact that robot can only be
within E, find the state of robot x as precisely as possible.

Problem 2: Open-world localization Given an environ-
ment E and a bouncing angle φ, find the state of robot x,
determining whether the robot is within E and if so ascertain
the state of the robot as precisely as possible; otherwise
indicate that the robot is not in E.

IV. METHOD

This section describes the sequence of steps that produce
discrete filters for localization. It consists of the following
steps: 1) find the periodic groups and transient trajectories
and construct I-state graphs based on them; 2) create a
nondeterministic automaton combining I-state graphs and 3)
convert the nondeterministic automaton into a deterministic
automaton to design filters that solve Closed- and Open-world
localization problems.

A. Finding Periodic Groups & Transient Trajectories and
Constructing Periodic Group I-State Graphs

In our method, we modify the simple cell-to-cell mapping
to find all periodic groups (attractors) and associated transient
trajectories (basins of attraction) [23] from a cell state space
Xfree. We also borrow the definition of an I-state graph
from [20], though do away with the starting vertex.

Definition 5: (I-State Graph) An I-state graph G =
(V,E, ` : E → Y) is an edge-labeled directed graph where:

1) V is the finite set of vertices consisting of I-states.
2) E is the set of edges that represent transitions between

vertices.
3) ` is the function that represents edges labeled by an

observation in Y .
This I-state graph encodes the information state introduced

by LaValle [1], integrating the history of observations made by
a system during its execution. As the number of cells is finite,
we can construct an I-state graph for each periodic group along
with its transient trajectories, which we term a periodic group
I-state graph.

In this step, Algorithm 1 receives as input the geometric
description of the environment E and a bouncing angle φ,
finds all r periodic groups P , consisting of periodic cells and
transient trajectories T , consisting of transient cells, for these
r periodic groups, and constructs a set of r periodic group
I-state graphs denoted by G(V,E) as output.

In Algorithm 1, cells are assigned a group number and a step
number. For each cell z ∈ Z, the group number gz denotes
the periodic group to which z belongs, the step number sz
denotes the number of mappings necessary for z to end up
in a periodic group, and the next mapped cell is denoted by
cz . Initially, all cells are identified as virgin cells by assigning
their group number zero. Each virgin cell z ∈ Z determines
the location (centroid) and orientation of a cell (line 6). In lines
7–12, a cell sequence z, C(z), C2(z) . . . Ck(z) where k ∈ N
and k ≤ N , is generated for each virgin cell z ∈ Z and cells
in the sequence are identified as cells under processing by
temporarily assigning to them their group number −1. The
next mapped cell z′ represents the subsequent cell after z.
Thus, z′ (line 9) is computed as:

x′ = x+ cos θ,

y′ = y + sin θ,

θ′ =

{
θ, if (x′, y′) ∈ E,
(θ + φ) mod 2π, otherwise.

(4)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2017

where φ is the bouncing angle of the robot. The cell number
of z′ is calculated from the center location and orientation,
(x′, y′, θ′), of z′ (line 10). Then, z′ is stored in cz and z is
updated with z′ (line 11). The generation of cell sequences is
continued as long as z is a virgin cell, which also means it
does not have the next mapped cell. This sequence generation
is terminated in one of the following two cases:

1) If z has appeared again in the same sequence, thus
forming a cycle. This case can be further subdivided
into two scenarios, as illustrated in Fig. 2. In the first
scenario of Fig. 2(left), when the initial and ending cells
are the same, then all cells in the sequence are classified
as periodic cells. In the second scenario of Fig. 2(right),
when the initial and ending cells are different, then the
cells prior to the cell that forms the cycle are classified
as transient cells and the rest of cells, which form the
entire cycle, are classified as periodic cells.

2) If z appeared in one of the previous sequences then all
the cells in the sequence are classified as transient cells.

Fig. 2: Two cycle forming scenarios in the cell sequence: (left) Same
initial and ending cells; (right) Different initial and ending cells.

Algorithm 1: MODIFIEDSIMPLECELLMAPPING(E, φ)
Input: E, φ – Environment and bouncing angle
Output: G = {G1, . . . , Gr} – Set of periodic group I-state

graphs
1 g[1..N]← 0, s[1..N]←∞, c[1..N]← ⊥
2 r ← 0
3 for i← 1 to N do
4 if gi == 0 then
5 k ← 0, z ← i
6 x, y, θ ← CELLCONFIGURATION(z)
7 while cz == ⊥ do
8 gz ← −1
9 x′, y′, θ′ ← NEXTCELL(x, y, θ, φ)

10 z′ ← CELLNUMBER(x′, y′, θ′)
11 cz ← z′, z ← z′ // save and update next cell
12 k ← k + 1

13 if gz == −1 then // new periodic group
14 r ← r + 1, Pr ← ∅, Tr ← ∅
15 if i == z then // same initial and ending cells
16 for j ← 0 to k − 1 do // add periodic group
17 gi ← r, Pr ← Pr ∪ {i}, si ← 0
18 i← ci

19 else // different initial and ending cells
20 for j ← 0 to d− 1 do // cycle at d-th index
21 gi ← r, Tr ← Tr ∪ {i}, si ← d− j
22 i← ci // add transient trajectory

23 for j ← d to k − 1 do // add periodic group
24 gi ← r, Pr ← Pr ∪ {i}, si ← 0
25 i← ci

26 else // cell appeared in one of the previous sequences
27 for j ← 0 to k − 1 do // add transient trajectory
28 gi ← gz , Tr ← Tr ∪ {i}, si ← sz + k − j
29 i← ci

30 G ← {BUILDI-STATEGRAPH(Pi, Ti) | i ∈ {1, . . . , r}}
31 return G

All periodic cells in the j-th periodic group where j ∈
{1, . . . , r} are found with the update of their group number
j and step number as zero (lines 16–18, 23–25). All transient
cells in transient trajectories of the j-th periodic group are
found with the update of their group number j and corre-
sponding mapping number to get to the j-th periodic group as
a step number (lines 20–22, 27–29).

For each periodic group and its associated transient tra-
jectories, Algorithm 1 adds two consecutive cells to the
vertex set, and their ordered pair to the edge set of the
corresponding periodic group I-state graph, using the function
BUILDI-STATEGRAPH (line 30). In this function, the absolute
difference between orientations of these two consecutive cells,
i.e., |θ − θ′| > 0 is checked. If the difference is not greater
than zero, which means the robot moves forward with the
same orientation, then the edge of this consecutive cell pair
is labeled with 0. Otherwise, the transition between vertices
causes a ‘bump’ event at the boundary of the environment
∂E ⊂ E and the robot changes its orientation from θ to θ′,
thus the edge of this consecutive cell pair is labeled with 1.
After construction, each periodic group I-state graph forms an
octopus-like structure.

We repeat the same procedure for all r periodic groups and
union the disjoint graphs. Thus, the set of r periodic group
I-state graphs G is constructed. The total number of vertices
of the r periodic group I-state graphs G is |G.V | = N . We
denote the set of vertices in the periodic groups of G as G.VP
where G.VP ⊂ G.V . We illustrate one periodic group I-state
graph in Fig. 3. In the periodic group I-state graph, vertices
(cells) in a periodic group form a cycle and vertices (cell) in
transient trajectory can terminate in one of two ways. It can
terminate with its last vertex (cell) being either coincident with
a cell (vertex) in the periodic group or coincident with a vertex
(cell) in another transient trajectory which itself terminates in
the aforesaid periodic group.

Fig. 3: A periodic group I-state graph.

Complexity of Algorithm: The running time of Algorithm 1
is O(N) where N is the total number of cells since its
complexity is dominated by line 4, which iterates over all the
cells, processing each cell exactly once.

B. Creating Nondeterministic I-State Automaton
In the next step, we create a nondeterministic I-state automa-

ton, A, amalgamating the entire set of periodic group I-state
graphs G and define a nondeterministic I-state automaton as
follows:

Definition 6: (Nondeterministic I-State Automaton) Let
A , (Q,Σε, δ, q0, F) be a nondeterministic automaton which
accepts a stream of discrete observations from Y in which:

1) Q = {q0} ∪ G.V is a finite set of states.
2) Σε = Y ∪ {ε} is a finite alphabet where Y = {0, 1}.
3) δ is the state transition function for any q ∈ Q and any

input alphabet a ∈ Σε as below:

δ(q, a) =

{q′} q ∈ Q \ {q0}, a = `(q, q′)

and (q, q′) ∈ G.E,
Q \ {q0} q = q0 and a = ε,

ALAM et al.: SPACE-EFFICIENT FILTERS FOR MOBILE ROBOT LOCALIZATION FROM DISCRETE LIMIT CYCLES 5

and |δ(qj , 0)|+ |δ(qj , 1)| = 1,∀j = 1, . . . , N .
4) q0 is the newly created initial state.
5) F = G.VP is the set of final states that represents the

set of vertices in periodic group I-state graphs.
The states of A except the initial state q0 are essentially the
same states (or vertices) as the periodic group I-state graphs G.
The number of states of A becomes N+1. A nondeterministic
I-state automaton using only the periodic group I-state graph
of Fig. 3 is illustrated in Fig. 4.

Fig. 4: A nondeterministic I-state automaton.

C. Nondeterministc I-State Automaton to Deterministic I-State
Automaton Conversion

Given the nondeterministic I-state automaton A, we con-
struct a deterministic I-State automaton A′, converting the
ε−nondeterminstic automaton into a deterministic one using
lazy evaluation method as follows:

Definition 7: (Deterministic I-State Automaton) Let A′ ,
(Q′, Y, δ′, q′0, F

′) be a deterministic automaton that also ac-
cepts the stream of discrete observations from Y as [24] where:

1) Q′ =
{
S : S ⊆ Q and S = ε-Closure(S)

}
where

ε-Closure(S) is the set that contains S including all
states reachable from any state in S following one or
more ε-transitions.

2) Y = {0, 1}.
3) δ′(S, a) =

⋃{
ε-Closure(p) : p ∈ δ(s, a) for

. some s ∈ S}.
4) q′0 = ε-Closure(q0).
5) F ′ =

{
S : S ∈ Q′ and S ∩ F 6= ∅

}
.

All transitions that are not defined lead to the ‘trap’ state
implicitly. The converted deterministic I-state automaton A′

produces a directed graph in which the outdegree of each
state is at most two and each state represents one or more
vertices of the periodic group I-state graphs G. The states
of A′ that represent vertices in the transient trajectories of
G form a directed acyclic graph. The states that represent the
last vertices of transient trajectories lead to simple cycles (e.g.
closed paths where no vertices and edges are repeated) in A′.
We use the term knowledge cycles for these cycles. The states
in the knowledge cycles of A′ represent set of the vertices of
periodic groups, G.VP , of G. These knowledge cycles act like
attractors; once the robot reaches one via states in the transient
trajectories, it cannot leave.

Proposition 1: The number of states in the deterministic I-
state automaton A′ is O(N2) with respect to the number of
states N in the nondeterministic I-state automaton A.

Proof: The only non-determinism in A is the ε-transitions
from the initial state to all other states. Moreover, there are
no transitions in A that return back to the initial state. Every
transition, except the initial one, is deterministic as there is at
most one observation (either a ‘1’ or a ‘0’) from a state. There
are no self-loops in A because translation or rotation of the
robot changes the underlying state of the system. There are two
parts in A′: the first part consists of states that represent set

of states composed of both transient states and periodic states
in A and the second part consists of states that represent set
of periodic states in A. Let N = Nt + Np where Nt is the
number of transients states in A, Np is the number of periodic
states in A. The states in the first part of A′ form a full binary
tree in the worst case because these states have two children,
labeling two observations (0 and 1) on their transitions, and
no child has more than one parent. In this part, the number of
transient states decreases or remains same from the root to the
leaves of the tree because applying the transition function δ′

on the root q′0 that represents Q, for two observations creates
two disjoint sets Q1 and Q2 such that |Q1|+ |Q2| ≤ |Q| and
subsequent states follow this inequality. Thus, it follows by
induction that the height of the binary tree is O(log(Nt)) and
the total number of states in the first part of A′ is O(2Nt−1).
This tree has at most Nt leaves that transition to knowledge
cycles, which is the second part of A′. Hence, the second
part of A′ has at most Nt knowledge cycles; one cycle for
each leaf. The length of each knowledge cycle is at most Np
because in the worst case the states in the cycle can include all
periodic states Np and each state represents one periodic state
(or singleton) of Np. Then, the total number of states in the
second part of A′ becomes O(NtNp). Therefore, the number
of states in A′ is O(NtNp) +O(2Nt − 1) or O(N2).

D. Filters for the Closed- and Open-World Problems

The final step produces filters to solve the two localization
problems formulated in Section III. We follow the standard
filter definition from [20]. The definitions of localization filters
for closed and open world problems are as follows:

Definition 8: (Filter for the closed-world) A localiza-
tion filter for the closed world problem is a tuple FC ,
(Q′, Y, δ′, q′0, c : Q′ → N), where function c augments the
deterministic I-state automaton by adding a color to its states.

The filter FC receives an observation string as input and
reports a color as output. There are no final states in FC .
Instead, we assign color 1 to every state that represents the
transient trajectory vertices of G. We assign the different color
numbers to the states of different knowledge cycles ranging
from 2 to one more than the number of cycles in A′. The same
color number is assigned to every state of the same knowledge
cycle. A filter for the closed world problem augmenting the
deterministic I-state automaton is depicted in Fig. 5. Here, the
states in two knowledge cycles are assigned green and cyan
colors, and the states that are not in knowledge cycles are
assigned the white color.

Fig. 5: A filter for the closed-world localization problem.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2017

The filter FC is used for localization of a robot in the
closed-world problem case. When the robot enters into the
colored knowledge cycle, it looks up the state q′ ∈ Q′. Each
state q′ in the knowledge cycle of A′ represents a set of
states in the A. The cardinality of this set of states in A
determines the uncertainty level of robot’s position for solving
localization problem. These states of A are also indexed by
cell numbers. As these cell numbers indicate the configurations
of the robot in E, the robot localizes itself. Depending on the
aforementioned number, the robot may localize itself in one
or more configurations in E. As an example, in Fig. 5, if the
robot gets to a green knowledge cycle then it can localize up
to a single configuration as it has an uncertainty of 1. On the
other hand, if the robot gets to the cyan knowledge cycle then
it can localize up to two configurations as it has an uncertainty
of 2.

This filter solves the localization problem, and because it
is a deterministic automaton, captures all the state needed
to localize explicitly. The running time of FC based on the
deterministic I-state automaton is O(n) where n is the length
of an observation string as there is only one path through the
automaton for the given observation string.

Definition 9: (Filter for the open-world)) A localization
filter for the open world problem is a tuple FO , (Q =
Q′ ∪ {qt}, Y, δ′, q′0, c : Q→ N). It augments the deterministic
I-state automaton adding a “trap” state qt along with assigning
colors to all states.

The filter FO also receives an observation string as input
and reports a color as output to indicate whether the robot
is in E or not. In the filter FO, there is no state transition
for some states on a specific observation symbol. From these
states on the missing observation symbol, we add transitions to
the “trap” state qt. We assign a new color number to qt. Aside
from this, we do the same process as FC for the construction
of FO. The “trap” state acts as a reject state in FO. Once
the robot observes an observation string and if the evaluation
of the observation string using FO takes it to qt, the robot
can report that it is not in the environment E. Otherwise, FO
gives an output color as FC which solves the closed world
localization problem.

If the robot needs to localize itself in one of the k envi-
ronments, then FO can solve this problem too. For example,
the robot knows a set E of three possible environments
{E1, E2, E3} and some bouncing angle φ. Following the
above method, we create three filters FO for three envi-
ronments. Then, we run them in parallel inside the robot.
The robot will be able to declare that it is in one of these
environments or not because of the “trap” state in the FO.

V. EXPERIMENTAL RESULTS

In this section, we present an implementation of our pro-
posed modified simple cell-to-cell mapping algorithm to find
periodic groups and their transient trajectories for a point robot
in a variety of environments and construct periodic group I-
state graphs. We also provide experiments illustrating both
simulation and physical implementation of the localization
filters using an iRobot Create platform.

A. Simulation Results
We implemented the proposed modified simple cell mapping

presented in Algorithm 1 in a simulation. The algorithm takes

as an input the environment E and a bouncing angle φ and
models the robot as a point.

Fig. 6: A simple environment with three randomly placed obstacles
(completely interior) and one static obstacle (touching boundary).

We set the size of the environment E of Fig. 6 to 200
× 125 grid unit lengths, excluding variable-size obstacles,
S1 = [0, 2π). The cell size was set to 1 unit × 1 unit ×
1◦. We executed a simulation of Algorithm 1 and changing
the obstacle region as follows:
• E1: Randomly placing a square obstacle of fixed size

inside the environment.
• E2: Randomly placing a square and rectangular obstacles

with fixed size inside the environment.
• E3: Randomly placing a square, a rectangular, and a

rectilinear obstacle with fixed size inside the environment.
• E4: Randomly placing a scaled square obstacle inside the

environment.
We ran the simulation of Algorithm 1 100 times for each of

the four environments (E1, E2, E3, E4), keeping the bouncing
angle φ = 90◦. We recorded the total number of periodic
groups r and maximum transient trajectory length. Fig. 7left
and right illustrate the values of r and maximum transient
trajectories lengths. From these results, we conclude that
values of r increase with the addition of obstacles and change
with the scaling of an obstacle and also that the maximum
transient trajectory length varies with increasing numbers of
obstacles and the modification of the size of an obstacle.
Some outliers are present in the plot of maximum transient
trajectory length in Fig. 7(right) that are potentially useful for
the coverage problem.

Fig. 7: A comparison of simulations for different environment types:
(left) total number of the periodic groups r; (right) length of the
longest transient trajectory.

B. From Simulation to Physical Implementation

We tested our Algorithm 1 with a differential drive robot,
the iRobot Create/Roomba, in two environments using the
bouncing angles φ = 45◦, 135◦. The Roomba is equipped with
many sensors but we only use the bump sensors and the clock.
Since the Roomba is a disk robot, rather than a point robot,
we analytically calculate the free configuration space Xfree
of the robot for both environments. For both environments,
the free space which is also the cell state space Xfree is
discretized in N = 152 cells having 19 cells in each of 8
different orientations of S1 with 45◦ separation between each
orientation.

ALAM et al.: SPACE-EFFICIENT FILTERS FOR MOBILE ROBOT LOCALIZATION FROM DISCRETE LIMIT CYCLES 7

Fig. 8: The first lab environment (left) and the simulation result
showing the visualization of the periodic group for this environment
and the bouncing angle φ = 45◦ (right).

We ran our first simulation test on the Xfree of the environ-
ment of Fig. 8(left) using the bouncing angle φ = 45◦ and
our second simulation test on the Xfree of the environment of
Fig. 9(left) using the bouncing angle φ = 135◦. We found
r = 1 periodic group including its corresponding transient
trajectories from the first simulation test and r = 2 periodic
groups along with their corresponding transient trajectories
from the second simulation test. We visualize one periodic
group of our first simulation run in Fig. 8(right) and rest
of the configurations are the transient trajectories part of the
illustrated periodic group. We also show two periodic groups
of our second simulation run in Fig. 9(right).

Fig. 9: The second lab environment (left) and the simulation result
showing the visualization of all periodic groups for this environment
and the bouncing angle φ = 135◦ (right).

From the periodic group and the transient trajectories of
the first simulation run, we constructed G = {G1}, the set
of periodic group I-state graph. Based on G, we created the
nondeterministic I-state automaton A as shown in Fig. 10. In
A, we added a new initial state and ε-transitions to all other
states from it and made the states in the periodic group as final
states. We made use of JFLAP [25] to create A. The indices
of the states of A except the newly added initial state are the
cell numbers in Xfree.

Fig. 10: Created non-deterministic I-state automaton for the environ-
ment and the simulation result of Fig. 8.

Again using JFLAP, we converted the nondeterministic
automaton A into deterministic automaton A′ as illustrated in
Fig. 11. This deterministic automaton has 3 knowledge cycles.
One of the knowledge cycles has an uncertainty of 1, one of
them has an uncertainty of 3, and one has an uncertainty of
4. We created the localization filter for solving Problem 1,
adding 3 colors to the states of the deterministic automaton.
We colored the states outside of knowledge cycles white and
chose 3 distinct colors for the states of 3 knowledge cycles.
Next, we produced a filter for solving Problem 2 by adding a
new “trap” state to the previous filter and we assign 5 colors
to it as a new color is required for the “trap” state.

Fig. 11: Converted deterministic I-state automaton from the non-
deterministic I-state automaton of Fig. 10.

We applied the same process to the periodic groups and the
transient trajectories of the second simulation run and created
the localization filters. We present the empirical results of 1)
the number of states in deterministic I-state automaton A after
converting from non-deterministic I-state automaton A′, and
2) the computation time for this conversion in Table I. This
conversion was performed on a GNU/Linux computer with
Intel Core i7 3.6GHz processor and 16GB memory.

Table I: No. of states and computation time comparison.

Input

No. of states No. of states
of non- of Computation

deterministic deterministic time (sec.)
I-state auto- I-state

E φ maton, N + 1 automaton

E of 45◦ 153 129 24
Fig. 8(left) 135◦ 153 124 20
E of 45◦ 153 147 27

Fig. 9(left) 135◦ 153 202 71

Fig. 12: Physical localization experiment in the environment of
Fig. 8(left): (left) The robot was placed initially in the top left part
of the environment; (right) after moving forward and bouncing with
φ = 45◦, it was localized up to 3 configurations in the periodic group
visualized in Fig. 8(right).

Fig. 13: Physical localization experiment in the environment of
Fig. 9(left): (left) The robot was placed initially in the top right part
of the environment; (right) after moving forward and bouncing with
φ = 135◦, it was localized up to 1 configuration in one of the periodic
groups visualized in Fig. 9(right).

We deployed the created localization filters on a Roomba
and performed 10 physical experiments using the environ-
ments of Fig. 8 (left) and Fig. 9(left), and the bouncing angles
φ = 45◦, 135◦. Two of them are illustrated in Fig. 12 and
Fig. 13. In these experiments, the robot was localized and
stopped once a knowledge cycle of the filter was reached
starting from the initial state. Since all states in each cycle
represent the same cardinality of the set of configurations, the
maximum and minimum number of configurations represented
by the states where the robot was able to localize, are tabulated
in Table II. Thus, the localization limits for an environment
E and a bouncing angle φ are determined by the minimum

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JULY, 2017

and maximum number of configurations of the robot, and
the strongest possible localization is the minimum number of
possible configurations of the robot.

Table II: Comparison of no. of localization configurations.
Input Number of localization configurations

E φ Minimum Maximum

E of Fig. 8(left) 45◦ 1 4
135◦ 1 2

E of Fig. 9(left) 45◦ 1 2
135◦ 1 1

VI. DISCUSSION AND FUTURE WORK

We have presented a localization method for a robot
equipped with a contact sensor and a clock. Our method
finds the periodic groups and their transient trajectories from a
known environment and generates I-state graphs. We then use
these I-state graphs to synthesize filters for solving localization
problems. We demonstrated the practical feasibility of our
localization solution in experiments with a real robot.

In practice, the online computation time of our localization
filter is the time required to evaluate an observation string,
which is linear with respect to the length of the observation
string only. The offline construction of the filter is linear in
terms of the number of cells, and the conversion from the
nondeterministic automaton to the deterministic automaton is
quadratic in terms of the number of cells. We adapted the
comparison of different mobile robot localization methods
from [26] (see Section 7.8) by adding our combinatorial filter
(CF) based localization method as illustrated in Table III
to show the pros and cons of the proposed method. These
localization methods use stronger robot sensing models with
cameras and range sensors which make them more robust
compared to our sensing model, having only the clock and
contact sensors. In addition, our cell-to-cell mapping based
algorithm is scalable for a large configuration space by de-
composing the whole free space into subspaces and processing
them independently which allows its use in large environ-
ments. Several interesting directions remain for future work
as described below.

Table III: Comparison of different localization methods.

EKF MHT
Coarse Fine

MCL
CF

(topological) (metric) (our
grid grid method)

Measurements Landmarks Landmarks Landmarks

Time and
Raw Raw bump

measure- measure- measure-
ments ments ments

Measurement Gaussian Gaussian Any Any Any Nonenoise

Posterior (on
Gaussian

Mixture
Histograms Histograms Particlesnew of Single

observation) Gaussian state

Efficiency ++ ++ + - + O(log N2)
(memory)

Efficiency ++ + + - + +++
1

(time)

Ease of + - + - ++ ++
2

implementation

Resolution ++ ++ - + + + 3

Robustness - + + ++ ++ - 4

Global No No Yes Yes Yes Yeslocalization

We wish to reduce the uncertainty of the robot’s config-
uration in the environment analyzing the structure of our
localization filter. In order to do this, the robot may have

1Our filter takes constant time for the sensor update on a new observation.
2Ease of implementation of our filter is the same as MCL.
3The resolution of our method is similar to the fine (metric) grid method.
4Our method is not robust to the noise or erroneous output.

to switch its bouncing angle and we can find the minimum
number of changes to reduce the uncertainty. Since we dis-
cretize the state space and use a finite abstraction, our ideas
connect naturally with finite bisimulations [27], [28]. We
assume that our cell-to-cell abstraction is deterministic and
also that the system resets to the cell center in each step.
Since we can bound the execution time by the longest path
from the initial state to a knowledge cycle, the time horizon
of the localization is bounded and our assumptions may hold
for short time intervals. Alternatively, we can model the non-
deterministic cell-to-cell transitions by using Generalized Cell-
to-Cell Mapping (GCM) [11] which uses a probabilistic cell
transition map. We have implemented and used GCM to model
the imperfect rotation of the robot for solving the coverage
problem [29] and we believe that it can be used to account
for the non-determinism in our localization method.

REFERENCES
[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University

Press, 2006. Available at http://planning.cs.uiuc.edu/.
[2] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo localization

for mobile robots,” Artificial intelligence, vol. 128, no. 1-2, pp. 99–141, 2001.
[3] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile robots in

dynamic environments,” J. of Artificial Intelligence Research, vol. 11, pp. 391–
427, 1999.

[4] F. Dieter, “Adapting the sample size in particle filters through kld-sampling,” The
Int. J. of Robotics Research, vol. 22, no. 12, pp. 985–1003, 2003.

[5] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by tracking
geometric beacons,” IEEE Trans. on Robotics and Automation, vol. 7, no. 3,
pp. 376–382, 1991.

[6] L. Jetto, S. Longhi, and G. Venturini, “Development and experimental validation
of an adaptive extended kalman filter for the localization of mobile robots,” IEEE
Trans. on Robotics and Automation, vol. 15, no. 2, pp. 219–229, 1999.

[7] L. H. Erickson and S. M. LaValle, “Toward the design and analysis of blind,
bouncing robots,” in Proc. of IEEE ICRA, pp. 3233–3238, 2013.

[8] L. H. Erickson, J. Knuth, J. M. O’Kane, and S. M. LaValle, “Probabilistic
localization with a blind robot,” in Proc. of IEEE ICRA, pp. 1821–1827, 2008.

[9] J. M. O’Kane and S. M. LaValle, “Almost-sensorless localization,” in Proc. of
ICRA, pp. 3764–3769, 2005.

[10] J. M. O’Kane and S. M. LaValle, “Localization with limited sensing,” IEEE Trans.
on Robotics, vol. 23, no. 4, pp. 704–716, 2007.

[11] C. S. Hsu, Cell-to-cell mapping: a method of global analysis for nonlinear systems,
vol. 64. Springer Science & Business Media, 2013.

[12] C. S. Hsu, “A theory of cell-to-cell mapping dynamical systems,” J. of Applied
Mechanics, vol. 47, no. 4, pp. 931–939, 1980.

[13] J. S. Lewis and J. M. O’Kane, “Reliable indoor navigation with an unreliable robot:
Allowing temporary uncertainty for maximum mobility,” in Proc. of IEEE ICRA,
pp. 160–165, 2012.

[14] J. S. Lewis and J. M. O’Kane, “Planning for provably reliable navigation using
an unreliable, nearly sensorless robot,” The Int. J. of Robotics Research, vol. 32,
no. 11, pp. 1342–1357, 2013.

[15] L. Bobadilla, O. Sanchez, J. Czarnowski, K. Gossman, and S. M. LaValle,
“Controlling wild bodies using linear temporal logic,” in Proc. of RSS, 2012.

[16] B. Tovar, A. Yershova, J. M. O’Kane, and S. M. LaValle, “Information spaces for
mobile robots,” in Proc. of RoMoCo, pp. 11–20, 2005.

[17] S. M. Kristek and D. A. Shell, “Orienting deformable polygonal parts without
sensors,” in Proc. of IEEE/RSJ IROS, pp. 973–979, 2012.

[18] B. Tovar, R. Murrieta-Cid, and S. M. LaValle, “Distance-optimal navigation in
an unknown environment without sensing distances,” IEEE Trans. on Robotics,
vol. 23, no. 3, pp. 506–518, 2007.

[19] J. Yu and S. M. LaValle, “Shadow information spaces: Combinatorial filters for
tracking targets,” IEEE Trans. on Robotics, vol. 28, no. 2, pp. 440–456, 2012.

[20] J. M. O’Kane and D. A. Shell, “Automatic reduction of combinatorial filters,” in
Proc. of IEEE ICRA, pp. 4082–4089, 2013.

[21] F. Z. Saberifar, M. R. Ali Mohades, and J. M. O’Kane, “Combinatorial Filter
Reduction: Special Cases, Approximation, and Fixed-Parameter Tractability,” J. of
Computer and System Sciences, vol. 85, pp. 74–92, May 2017.

[22] D. H. V. Van Campen, E. L. B. Van De Vorst, J. A. W. Van Der Spek, and
A. De Kraker, “Dynamics of a multi-dof beam system with discontinuous support,”
Nonlinear Dynamics, vol. 8, no. 4, pp. 453–466, 1995.

[23] J. A. W. Van Der Spek, Cell mapping methods: modifications and extensions. PhD
thesis, Eindhoven University of Technology, Netherlands, 1994.

[24] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and
computation. Addison Wesley, MA, first edition, 1979.

[25] JFLAP. Available at http://www.jflap.org/.
[26] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.
[27] A. J. Van der Schaft, “Equivalence of dynamical systems by bisimulation,” IEEE

Trans. on Automatic Control, vol. 49, no. 12, pp. 2160–2172, 2004.
[28] P. Tabuada and G. J. Pappas, “Finite bisimulations of controllable linear systems,”

in Proc. of IEEE CDC, vol. 1, pp. 634–639, 2003.
[29] T. Alam, L. Bobadilla, and D. A. Shell, “Minimalist robot navigation and coverage

using a dynamical system approach,” in Proc. of IEEE IRC, pp. 249–256, 2017.

http://planning.cs.uiuc.edu/
http://www.jflap.org/

	Introduction
	Related Work
	Robot Localization
	Combinatorial Filters

	Preliminaries
	Robot Model
	Cell-to-Cell Mapping
	Problem Formulation

	Method
	Finding Periodic Groups & Transient Trajectories and Constructing Periodic Group I-State Graphs
	Creating Nondeterministic I-State Automaton
	Nondeterministc I-State Automaton to Deterministic I-State Automaton Conversion
	Filters for the Closed- and Open-World Problems

	Experimental Results
	Simulation Results
	From Simulation to Physical Implementation

	Discussion and Future work

