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Movement primitives and formal methods have been proposed for many robotic applica-
tions. In this paper, we discuss work-in-progress utilizing formal methods for synthesizing
high-level specifications written in linear temporal logic (LTL) realized with low-level prim-
itives that ensure these specifications produce physically feasible swarm behaviors. The
methodology synthesizes higher-level, choreographed behaviors for virtual kinematic chains
of planar mobile robots that are realized with primitives consisting of (a) a one-dimensional
distributed flocking algorithm with verified properties and (b) planar homogeneous trans-
formations (rotations and translations). We show how to use the methodology to construct
verified distributed algorithms for higher-dimensional (planar) shape formation. The ex-
isting one-dimensional algorithm has two main properties: (safety) avoidance of collisions
between swarm members, and (progress) eventual flock (platoon) formation, which in one
dimension is a roughly equal spacing between adjacent robots. By combining this one-
dimensional flocking algorithm with other simple local operations, namely rotations and
other distributed consensus (averaging) algorithms, we show how to create planar forma-
tions with planar safety and progress properties.

Nomenclature

N Number of agents (robot) in swarm system
[N] Set of unique robot identifiers
xi[k] x-axis Position of robot i at time step k
yi[k] y-axis Position of robot i at time step k
x̂i[k] x-axis Position of robot i at time step k in rotated reference frame
ŷi[k] y-axis Position of robot i at time step k in rotated reference frame
θi[k] Rotation angle for rotated reference frame of robot i at time step k
Aθi [k] Rotation matrix using θi[k] for robot i at time step k
L(i) Identifier of robot left of robot i in rotated reference frame, if any
R(i) Identifier of robot right of robot i in rotated reference frame, if any
G Set of agent groups that partition [N]
rs Safety spacing
rf Nominal flocking spacing
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rti Tight flocking spacing preset
rlo Loose flocking spacing preset
θac Acute group angle preset
θob Obtuse group angle preset
¬ Boolean operator, negation (not)
∨ Boolean operator, disjunction (or)
∧ Boolean operator, conjunction (and)
→ Boolean operator, implication
X Temporal operator, next
U Temporal operator, until

F Temporal operator, eventually
G Temporal operator, always
Π Set of propositions
φ Linear temporal logic formula (or specification)

I. Introduction

Developing robust algorithms with verified properties for distributed robotics systems is challenging, but
there are robust methods for forming flocks [25] and planar vee’s (wedges) [2, 7], as well as one-dimensional
platoons that are safe (verified collision avoidance) with multiple platoons and platoon merging [15]. There
are many algorithms and methods for the formation of shapes like flocks [25,26] and planar vee’s (wedges) [2].
The one-dimensional flocking algorithm used in this paper was inspired by [12], developed into a safe and
self-stabilizing (fault-tolerant) with multiple groups of robots and group merging in [14, 15]. Even simple
one-dimensional flocking algorithms, like the one we use in this paper, are beyond state-of-the-art automatic
verification techniques [13], let alone planar or three-dimensional algorithms, but efforts like the one we
undertake at least have a hope of being automatically verified due to their relative simplicity and lower
dimensionality. The composition of continuous spatial programs in the Proto spatial computing language
was developed in [1] and is similar in spirit to our work, albeit without any formal verification guarantees.

Our work is related to the stream of research that converts high-level specifications of robotics plans
into low-level feedback based control laws. More concretely, our work uses Linear Temporal Logic (LTL)
framework that has been recently proposed [3,4,8–10,17–20,27,30]. The main differences of these ideas with
the present work are: 1) instead of translating to feedback based controllers, high-level plans are translated
to verified low-level primitives whose sensing and communication requirements are reduced; and 2) the
propositions are made over a discretization of the configuration space for a group of robots instead of over
regions in the robots’ workspace.

The methodology and contributions of our work include: (a) specifying behaviors with linear temporal
logic (LTL) and synthesizing high (swarm)-level behaviors for set points of verified lower-level primitives,
(b) extending a previously verified one-dimensional distributed flocking algorithm [14,15] for creating planar
formations by combining it with homogeneous transformations (rotations and translations) and distributed
averaging algorithms that require mostly local information, (c) an extension of the previously verified one-
dimensional safety and progress properties to planar safety and progress properties, and (d) a first step
toward synthesizing verified distributed algorithms for forming “virtual” kinematic chains of mobile robots.

II. Low-Level Formation Primitives

Notation. The swarm robot system consists of N robots, each with a unique identifier in the set [N]
∆
=

{1, . . . ,N}. Identifiers name robots, and the special symbol ⊥ means no robot. Subscripts refer to individual

robots’ state components, e.g., xi is robot i’s position. For a set S, let S⊥
∆
= S ∪ {⊥}.

One-Dimensional Flocking Primitive. Each robot has a position at some discrete time on the real-
line. The one-dimensional position of robot i at time step k is xi[k] : N→ R. We assume that one robot is
positioned at the origin, and all other robots are positioned toward positive infinity. The leader is the robot
with the position at the origin, the tail is the robot with greatest position, and the other robots are interior.
For robot i, let L(i) be the robot with position immediately left of i’s, that is, ({j ∈ [N] | j 6= i ∧ xi[k] >
xj [k] ∧ |xi[k]− xj [k]| is smallest} or ⊥ if none), and let R(i) be the robot with position immediately right
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Figure 1: Vee-formation example con-
sisting of two groups for N = 9 robots,
with robot 1 as a shared leader. The
two groups are: H = {1, 3, 5, 7, 9} and
G = {1, 2, 4, 6, 8}, where 1 is the leader,
8 is G’s tail, 3 is H’s tail, and all other
robots are interior. Video: http://www.
youtube.com/watch?v=Znt3qSzGnN4.
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Figure 2: Y-formation and rotation
for N = 13 robots in three groups
that each form a one-dimensional flock
while rotating (see Figure 3), each
group respectively situated along the
lines with θ = 0, θ = 2π

3
, and θ =

4π
3

. Video: http://www.youtube.com/

watch?v=zeaFQ0zAk9U.
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Figure 3: Y-formation and rotation
positions with respect to time for N =
13 robots in three groups. The leader’s
position is the origin. In the sim-
ulation, we add sensing noise to il-
lustrate the robustness of the algo-
rithms, due to their exponential stabil-
ity. Video: http://www.youtube.com/

watch?v=zeaFQ0zAk9U.

of i’s, that is, ({j ∈ [N] | j 6= i∧xi[k] < xj [k]∧ |xi[k]− xj [k]| is smallest} or ⊥ if none). Each robot updates
its position using the following method:

xi[k + 1] :=


xi[k] if i is leader
xL(i)[k]+xR(i)[k]

2 if i is interior
xL(i)[k]+xi[k]+rf

2 if i is tail

, (1)

where xL(i)[k] is the position of the robot left of i at time k—which exists for all robots except the leader—
and xR(i)[k] is the position of the robot right of i at time k—which exists for all non-tail robots. Note
that the algorithm depends only on local information: robot i needs at most information from its left and
right neighbors to update its position. Furthermore, while we assume robots update positions in a global
coordinate system, the intuitive update of Equation 1 for an interior robot i is: “go to the midpoint of your
nearest neighbors.” It can be shown [15, Invariant 3.2] that this simple algorithm maintains safety, specified
as:

ζN(k)
∆
= ∀i, j ∈ [N] : i 6= j ⇒ |xi[k]− xj [k]| ≥ rs .

Safety holds if all robots always maintain a minimum real distance rs > 0 between one another, so no two
robots on the line collide, specified formally as ∀k ∈ N, we have ζN(k). In higher dimensions, safety is
defined using an appropriate higher-dimensional norm for |·|, e.g., the 2-norm ‖·‖. Furthermore, it can be
shown [15, Theorem 3.3] that the algorithm stabilizes exponentially to a flock, defined as states where each
adjacent robot is spaced apart by rf , for some real rf > rs > 0:

φN(k)
∆
= ∀i ∈ [N] \ {leader} :

∣∣xi[k]− xL(i)[k]
∣∣ = rf .

Two-Dimensional Formations with One-Dimensional Flocking

Using the one-dimensional update from Equation 1, we next show how to create and maintain two-dimensional
formations (e.g., as shown in Figures 1 and 3). At time k, let xi[k] = (xi[k], yi[k]) be the position of robot i
in the plane, where xi[k] is i’s x-coordinate and yi[k] is i’s y-coordinate.

For vee formation, we use two one-dimensional flocking updates, one for each of two groups of robots
along two rays composing the vee-shape, which share a common leader at the vee’s vertex (see Figure 1).
The one-dimensional flocking update is performed in a virtual rotated reference frame. We denote the x-axis
in the virtual reference frame as the x̂-axis, and the y-axis in the rotated reference frame as the ŷ-axis. The
rotated reference frame is one where the robots are situated along an axis, and we pick the x̂-axis arbitrarily,
but it could be the ŷ-axis or even an offset from another group.
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The robots update their positions using the one-dimensional flocking method of Equation 1, then rotate
their positions back to the original reference frame to yield a position update (control) in the original reference
frame. That is, we solve the one-dimensional flocking problem in a rotated reference frame to determine a
position update, then transform this updated position back into the original coordinate system. We assume
the robots are roughly along the vee initially, so that left and right neighbors may be uniquely identified.
For example, in Figure 1, for i = 6, L(i) = 1 and R(i) = 2, and earlier definitions of L(·) and R(·) in terms
of xi[k] and xj [k] now use x̂i[k] and x̂j [k].

The algorithm is summarized by the following local sequential steps executed by each robot i ∈ [N]:
(a) Rotate xi[k] to a point x̂i[k] in a virtual rotated reference frame (roughly on the x̂-axis),
(b) Execute the one-dimensional flocking algorithm in the rotated reference frame for the x̂i[k] position

(Equation 2 , which is Equation 1 in the rotated reference frame),
(c) Execute a one-dimensional distributed averaging update for the ŷi[k] position (Equation 3), and
(d) Rotate the virtual reference frame back to the original physical frame and update the xi[k] positions.

Each robot needs primarily local sensing and communication information: the ability to estimate distance
from its left and right neighbors (if any), an ability to estimate a distance rf away (for the tail only), the
position of the leader (for movement only, described later), and an ability to estimate the angles of groups
oriented along different lines (e.g., the two lines making the vee).

Let G and H partition [N], except each has one identifier in common, that of the leader robot, which
could be selected using a distributed leader election algorithm [23]. We refer G and H as groups of robots,
and extend the definitions of leader, interior, and tail robots to refer to corresponding robots in each group.
For example, in Figure 1, 1 is the leader, G contains the leader and robots with even identifiers less than
N = 9, and H contains the leader and robots with odd identifiers. For each robot i ∈ [N], let its rota-
tional angle be denoted by θi[k] ∈ [0, 2π), which is the angle offset from the x-axis of the line on which
robot i resides. Suppose robots in the same group are roughly on the same line, so for every i, j ∈ G,
min (|θi[k]− θj [k]| , 2π − |θi[k]− θj [k]|) ≤ ε for some small real ε > 0, and likewise for H. This assumption
is easy to satisfy, using, e.g., a distributed consensus (averaging) algorithm on the angle [6, 29]. For each
robot i ∈ [N], its two-dimensional position in the rotated reference frame at time k is denoted by x̂i[k] ∈ R2,
for x̂i[k] = Aθi [k]xi[k], where:

Aθi [k] =

 cos θi[k] − sin θi[k]

sin θi[k] cos θi[k]

 .
Figure 1 shows an example where the rotation angles for G and H are π

4 and 3π
4 off the x-axis, respectively.

In the rotated reference frame, the x̂-axis position of each robot is updated according to the one-
dimensional method (Equation 1), so:

x̂i[k + 1] :=


x̂i[k] if i is leader
x̂L(i)[k]+x̂R(i)[k]

2 if i is interior
x̂L(i)[k]+x̂i[k]+rf

2 if i is tail

. (2)

Additionally, each robot i updates its ŷ-position in the rotated reference frame as:

ŷi[k + 1] :=


ŷi[k] if i is leader
ŷL(i)[k]+ŷR(i)[k]

2 if i is interior
ŷL(i)[k]+ŷi[k]

2 if i is tail

, (3)

so that each robot’s position converges to the average of their original positions in the rotated reference
frame (ŷi[k + 1] → 0). We note that this does not cause the ŷi[k] to converge to zero, so there is an offset
from the axis. An alternative is to update ŷi[k + 1] = 1

2 ŷi[k], which would cause the robots to converge
to the x̂-axis in the rotated reference frame, but this requires that robot i know its distance from the axes
(rather than just local information). This update, along with the previous flocking algorithm, are special
cases of general distributed averaging algorithms, and have exponential stability so long as connectivity is
maintained and are independent of which specific robots are used in the averaging [6,25,29]. Finally, rotate
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back to the original reference frame to determine the new position of robot i: xi[k + 1]

yi[k + 1]

 = A−θi [k]

 x̂i[k + 1]

ŷi[k + 1]

 ,
where A−θi [k] is the inverse rotation of Aθi [k].

III. General Multi-Group Formations

Next, we generalize the notion of groups from 2 as in the vee-formation case to 3 for y-formation (see Fig-
ure 3) and beyond. The one-dimensional algorithm each robot uses is the same as in the vee formation
described in Equation 2. Let G be a set that partitions [N], except with a common leader (as in G and H in
the vee formation), and we refer to G as the set of groups, and each G ∈ G as a group. The robots in each
group in G perform the same local operations described as in the vee case, and the only difference now is
that each group has its own distinct rotation angle θ.

Rotated Planar Safety and Progress to Flocking. The definitions of safety and progress to
flocking are updated to the rotated reference frame as follows for planar formations in groups. A flock is
defined the same as in the one-dimensional case, except restricted to groups, so, for a group G ∈ G:

φ(G, k)
∆
= ∀i ∈ G \ {leader} :

∣∣x̂i[k]− x̂L(i)[k]
∣∣ = rf ,

which specifies that all robots in group G are spaced apart by rf , for some real rf > rs > 0. Let planar
flocking be specified as:

φN(k)
∆
= ∀G ∈ G : φ(G, k),

which is where all the G groups are in one-dimensional flocks. Each of the flocking and averaging algorithms
executed by the robots are exponentially stable. Since each group G ∈ G converges exponentially to states
where φ(G) is satisfied, the robots converge exponentially to states where φ(N) holds using our method.

Next, we update the one-dimensional version of safety to groups, and also discuss more general notions
of planar safety. For a group G ∈ G, let:

ζ(G, k)
∆
= ∀i, j ∈ G : i 6= j ⇒ |x̂i[k]− x̂j [k]| ≥ rs ,

for some rs > 0, and safety holds for group G ∈ G, if for all k ∈ N, we have ζ(G, k). Safety of the entire
swarm is specified as all groups being safe:

ζN(k)
∆
= ∀G ∈ G : ζ(G, k),

and safety holds for the swarm if for all k ∈ N, we have ζN(k). Since each group’s one-dimensional flocking
algorithm maintains safety, all the composition will maintain this notion of safety.

General Planar Safety and Progress to Flocking. However, better definitions of flocking and
safety compare the planar distance of each robot in the plane. For a group G ∈ G, let:

φ(G, k)
∆
= ∀i ∈ G \ {leader} :

∥∥xi[k]− xL(i)[k]
∥∥ = rf ,

ζ(G, k)
∆
= ∀i, j ∈ G : i 6= j ⇒ ‖xi[k]− xj[k]‖ ≥ rs ,

respectively specify flocking and safety for group G, where ‖·‖ is the 2-norm. Flocking and safety for the
entire swarm are specified respectively as:

φN(k)
∆
= ∀G ∈ G : φ(G, k) and

ζN(k)
∆
= ∀G ∈ G : ζ(G, k).

If the difference in rotation angles θ for robots in different groups is sufficiently large—i.e., min (|θi[k]− θj [k]| ,
2π − |θi[k]− θj [k]|) ≥ δ for i ∈ G1, j ∈ G2 where G1 6= G2, and for δ > 0—the swarm maintains ζN(k). This
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Figure 4: Formation and rotation for N = 21 robots in four
groups, that each form a one-dimensional flock while rotating.
Video: https://www.youtube.com/watch?v=LtI0GiyEhQw.
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Figure 5: Formation and rotation for N = 21 robots in seven
groups, that each form a one-dimensional flock while rotating
(and translating). Video: https://www.youtube.com/watch?

v=0MX2iZOBMLE.

avoids scenarios where different groups have similar θ values where safety would not be maintained, so an
additional distributed mutual exclusion algorithm can ensure robots in different groups do not utilize similar
values of θ. In Section IV, we will illustrate a way to synthesize high-level behaviors from safety specifications
that ensure this mutual exclusion property on choices of θ. For flocking, the same restriction in rotation
angles is sufficient, along with the requirement that the initial positions of robots’ have an average ŷ position
in the rotated reference frame of 0. This ensures the distributed averaging algorithm from Equation 3
converges to ŷi[k] = 0, so that the robots’ positions in the rotated reference frame lie along the ŷ-axis.

While we present simple two (vee) and three (y) group formations in Figures 1, 2, and 3, the general
framework is extensible to arbitrary numbers of groups. For example, we have conducted simulations (in
our Matlab simulator) with up-to tens of groups. Figure 4 shows a rotation scenario with four groups and
N = 21 robots, and Figure 5 shows a rotation scenario with seven groups and N = 21 robots. Additionally,
more general “virtual” open kinematic chains may be created by generalizing the notions of groups but using
basic homogenous transformations that make up the flocking algorithm and verified primitives [21].

Swarm Rotational and Translational Movements. Rotational movement of robots in a group G
may be accomplished by adding the same small constant δ > 0 to θi[k] for each robot i ∈ G at each time
step:

θi[k + 1] = θi[k] + δ,

and update Aθi [k + 1] = Aθi [k]. Another distributed consensus algorithm can be run to decide a common
δ. If δ is small and the same for all robots in all groups, then ζ(N) and φ(N) are both maintained. This
is also what we observed in our simulations, illustrated in Figure 3. Due to space, we omit the details of
performing translations of the swarms, but the non-leader robots basically subtract off the leader’s position
in the rotated reference frame (so the leader is situated at the origin), perform the one-dimensional flocking,
then add back the leader’s position. Overall, the operations of the rotation and translation are standard
homogeneous transformations [21].

IV. High-Level Synthesis for Low-Level Primitives

Such two dimensional and more complex formations of two or more subgroups can be generated more
naturally with a high-level specification language like linear temporal logic (LTL). High-level LTL specifica-
tions determine the behavior of a group of agents. Each agent is a member in one of several one-dimensional
flocks (groups). This membership implies a set of rules that utilize minimal information, avoid inter-agent
collisions, and have exponential stability (for example under consensus these networks will remain connected
and converge to their centroid). Alone, however, these flocks do not engage in especially interesting or com-
plex patterns, although one-dimensional flocks are useful for modeling phenomena like platooning. Thus,
we will specify more complex behavior at a higher level of abstraction using LTL as in [16, 22], and leave
collision avoidance, etc. to a verified low-level flocking algorithm such as [15]. This is in line with previous
attempts at organizing robotic behavior [5], generating more complex movements from simpler ones [22],
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and creating unusual multi-agent patterns [28]. This section explains the use of LTL for composing these
flocking primitives, establishes a transition system model, and provides example specifications.

Notation. The spacing factor for each flock will be variable between the minimal rs to two preset values
rlo > rti > rs . The angle of the flock off the leader with respect to the x-axis will vary between three presets
as well, θ0 < θac < θob .

Representation via a Labeled Transition System. The behavior of i one-dimensional flocks may
be formally modeled as a labeled transition system (see Figure 6): T = (Q, q0,→,Π, h), where Q is a set of
states with initial state q0, → indicates the transitions, Π is the set of atomic propositions, and h labels each
state with the appropriate proposition as in [22]. The states of T correspond to manipulatable primitive
parameters (rf , θ) and are labeled with the propositions dealing with descriptions of the resulting formations
given in Equation 4. Our low-level flocking behaviors ensure the system is constantly switching between
distinct formations out of some set and the structure of this transition system will describe the dynamics
of this process. In Figure 6, descriptive, high-level words associated with each formation are used along
with other words that might be natural to frame a specification around. Key formations of interest are
enumerated for illustrative purposes, labeled F1, F2, F3, and pictured in Figure 7.

To make more complex formations, with multiple primitives, this primary transition system may be
composed with others. For example, the transition system governing the behavior of two flocking primitives
would be given by T1 ⊗ T2 with (Q1 ×Q2, q01 × q02,→P ,Π1 ∪ Π2, hP ). The new transition function →P is
defined if and only if a transition existed between both single states, i.e. (q, q′) ∈→P if and only if q 6= q′,
(q1, q

′
1) ∈→1 and (q2, q

′
2) ∈→2, where q = (q1, q2) and q′ = (q′1, q

′
2). The labeling function hP associates any

proposition that was true for either single leg state with the joint state, i.e. hP : Q1 ×Q2 7→ 2Π1∪Π2 .

3 2 1

4

rlortirs 3 2 1

4

⇥
{minimal} {tight} {loose} {even}{acute}{obtuse}

✓0✓ac✓ob

Figure 6: The transition system governing the behavior of a single primary flock is given in the figure above
as the Cartesian product of two simpler machines. Each state is augmented with a set of atomic propositions
over which a specification may act and their atomic propositions (labels).

High-Level Control via Formal Language Specification

A high-level controller is constructed for the transition system such as to impart rules—which may be style
based—and to generate more diverse behavior. The atomic propositions are statements which are either
true or false about every state of our system. We use temporal logic to watch the evolution of our system in
terms of these statements of particular interest; hence, we often think of these propositions as observations.

We use the following notation for our LTL formulas (see [16,22] for more detail): a set of atomic propo-
sitions Π, Boolean operators ¬ (negation), ∨ (disjunction), ∧ (conjunction), → (implication) and temporal
operators X (next), U (until), F (eventually), G (always). The semantics of LTL formulas are given over
infinite words generated by a labeled transition system (T ); states of the transition system are labeled with
atomic propositions. We can then watch T evolving according to these propositions: that is, a word of T
corresponds to a (infinite) sequence of sets of the propositions in Π.

For the flocking primitives outlined in the previous section, we will use the transition system in Figure 6,
where we consider the state of our system to be based on a spacing parameter and angle of orientation of
the leader agent, and name the following set of atomic propositions:

Π = {minimal, tight, loose, even, offset, orthogonal}, (4)

where “minimal,” “tight,” and “loose,” refer to the value of a spacing factor rf and “even,” “offset,” and
“orthogonal” refer to the value of the angle of the leader agent. From these descriptive parameters, we can
name specific formations and generate specifications to see that these formations are achieved in the desired
way. A subscript of 1 or 2 will be appended to indicate to which flocking primitive each proposition refers.
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Safety Specification. First, universal specifications regarding the safe inter-operation of the individual
flocks will be enumerated. These two specifications will govern the system simultaneously with additional
specifications in all formations constructed in Section III. First, a specification is needed to ensure that the
two (or more) composed flocks are not oriented in the same way, which would be equivalent to requesting
the groups to operate in the same space. The second specification ensures that each flock operates with the
same spacing parameter. This consideration may be necessary in certain environments or at certain speeds
of the agents, where greater or lesser spacing may be required. These two specifications are written in this
framework as:

1. Request that the system never uses the same orientation for composed flocks.
Never use the same orientation as subgroup 1:
φs1 = G[(even1 → ¬(even2)) ∧ (acute1 → ¬(acute2)) ∧ (obtuse1 → ¬(obtuse2))].

2. Request that the system always uses the same spacing for composed flocks.
Always use the spacing of subgroup 1:
φs2 = G[(minimal1 → minimal2) ∧ (tight1 → tight2) ∧ (loose1 → loose2)].

F1 F2 F3

�F1
= tight ^ acute �F2

= tight ^ even �F3
= loose ^ even

Figure 7: Key formations of interest, described by an appropriate LTL formula.

Formation Control. In order to create formations of interest such as those shown in Figure 7, particular
configurations may be denoted or specified with their own LTL formula as shown in Figure 8. Then, additional
specifications may be phrased as follows.

1. Request that the system always returns to Formation 2: φf1 = G F φF2
.

2. Request that the system never enter Formation 3 after Formation 1: φf2 = φF1 ∧X¬(φF3).

3. Request that the system form a vee-formation: φf3 = G [(acute1 ∧ obtuse2) ∨ (obtuse1 ∧ acute2)].

From these four formula, two final specifications may be concatenated:

1. Request that the system always returns to Formation 2 and adhere to safety considerations: φ1 =
φf1 ∧ φs1 ∧ φs2.

2. Request that the system never enter Formation 3 after Formation 1 and adhere to safety considerations:
φ2 = φf2 ∧ φs1 ∧ φs2.

3. Request that the system achieve vee-formation and adhere to safety considerations: φ3 = φf3 ∧ φs1 ∧
φs2.

From each of the final specifications a Büchi automaton, Bφ = (S, S0,Σ = 2Π, δ, F ), is constructed as in
[22]. These automata were constructed using LTL2BA [11] and are shown in Figure 8. Then, the automata
are composed with the system transition model, T1 ⊗ T2. This final system allows only sequences in line
with the original system dynamic and the structure of atomic propositions as governed by the specifications.
Formally, it is given as A = (T1⊗T2)×Bφ = (Q×S, q0×S0, δA, FA) where (qj , sl) ∈ δA((qi, sk)) iff (qi, qj) ∈→
and sl ∈ δ(sk, h(qi)). In other words, A encodes the system dynamics of T and the specification contained

in φ. Another way of thinking of it is that the Büchi automaton generated by φ is a kind of high-level
controller for the system T . Acceptable runs of A are thought of as output behavior.
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Figure 8: Büchi automatongiven by the specifications; these automata act as supervisors for T1 × T2 for φ1,
φ2, and φ3, left to right.

Satisfying Example Runs. Under the final specification φ1, an accepted sample of system behavior is
given by:

{(Minimal1,Obtuse1), (Minimal2,Acute2)}, {(Minimal1,Acute1), (Minimal2,Obtuse2)},
{(Minimal1,Even1), (Minimal2,Obtuse2)}, {(Tight1,Acute1), (Tight2,Obtuse2)},
{(Tight1,Acute1), (Tight2,Obtuse2)}, {(Tight1,Even1), (Tight2,Acute2)}, .... (5)

Under the final specification φ2, an acceptable sample of system behavior is given by:

{(Minimal1,Obtuse1, (Minimal2,Acute2)}, {(Tight1,Obtuse1), (Tight2,Even2)},
{(Loose1,Acute1), (Loose2,Even2)}, {(Tight1,Acute1), (Tight2,Even2)},

{(Loose1,Obtuse1), (Loose2,Acute2)}.... (6)

Under the final specification φ3, an accepted sample of system behavior is given by:

(Minimal1,Obtuse1), (Minimal2,Acute2), (Minimal1,Acute1), (Minimal2,Obtuse2),

(Tight1,Acute1), (Tight2,Obtuse2), (Loose1,Acute1), (Loose2,Obtuse2).... (7)

This example shows how the work in the previous section may be achieved in a more natural way with
this framework – made possible by the primitive formalism. More complex formations depend on further
generalizations of the flocking primitives. For example, one state may be where the agents form a more
general kinematic chain structure, or a circle and it may have the labels ‘circle,’ ‘concave,’ and ‘convex.’

V. Conclusion and Future Work

We present a methodology for synthesizing control actions for verified low-level primitives using higher-
level formal specifications in LTL. Specifically, we present a simple method to combine one-dimensional
distributed flocking/platooning and averaging protocols—that have some verified properties like safety (col-
lision avoidance) and exponential stability—to generate complex higher-dimensional behaviors, such as
vee-formation, y-formation, and movements and rotations thereof. Beneficial properties of the underly-
ing primitives—such as exponential convergence—allow robustness of the higher-dimensional behaviors to
disturbances like noise, and are able to guarantee safety under some reasonable assumptions about over-
lapping angles. We also plan to study a more formal proof of the exponential stability of the composed
system, perhaps by using methods for composing stability proofs [24]. Additionally, while we present our ap-
proach for planar formations, the compositional approach also can be used for constructing three-dimensional
formations (e.g., using yaw, pitch, and roll).
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