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Abstract— Buildings account for a majority of energy con-
sumption in the United States. One of the major factors
affecting the energy performance of buildings is occupant
behaviors. Decoding occupant behaviors is a key to identifying
energy waste and to discovering strategies to curtail energy
consumption in buildings. We propose an information space
approach for automated detection and proactive monitoring
of energy waste due to occupant behaviors. In this paper we
present a set of filtering algorithms to capture the minimum
amount of information necessary to detect wasteful states and
trajectories that occupants may have, in order to pro-actively
modify occupant behaviors. We also describe and implement a
sensor network consisting of inexpensive distance, light, temper-
ature sensors and electricity consumption monitors utilized in
order capture data related to occupancy behaviors. By keeping
count of the number occupants and energy expenditures in
different regions of a building, we accurately estimate how
occupancy behavior is affecting energy use, in a non-invasive
way. Furthermore, we present a methodology to pro-actively
eliminate energy expenditure by calculating a score associated
with occupants in different regions. This score will be used to
suggest policies to users or facility managers to help reduce
energy costs related to occupancy behaviors.

I. INTRODUCTION

Buildings consume 73% of electricity load in the United
States [23]. In addition to the climate factors and building
design parameters (e.g., orientation, envelope, materials, and
HVAC system), a main factor affecting the energy perfor-
mance of buildings is occupant behaviors. In fact, the energy
performance of a building is an emergent property arising
due the interaction of occupants with the building units
and appliances. Hence, a better understanding of emergent
occupant behaviors is critical in discovering opportunities for
energy saving in buildings [24], [11]. However, decoding
emergent occupant behaviors at the interface of human-
building-appliance interactions is a challenging task. Data
related to occupancy behaviors could be captured indirectly
or directly. The indirect measurement of occupants behavior
is done using occupant surveys. Such self-report surveys are
susceptible to different errors such as the social desirability
bias. Direct measurements of occupant behaviors could be
problematic as well due to privacy issues. Various stud-
ies (e.g., [6] and [5]) have utilized sensors for detecting
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occupants behaviors and building energy parameters (such
as lighting and temperature). Despite the growing literature
in this area, a formalized methodology for understanding
emergent behaviors affecting the energy performance and
pro-actively detecting energy waste in the building is still
missing.

Our study contributes to two major streams of research
related to the analysis of occupant behaviors in building
energy assessment: (1) automated detection of energy waste
due to occupant behaviors, and (2) monitoring and tracking
occupancy movements for smart building systems.

Our ideas are complementary to the areas of heating, ven-
tilation, and air conditioning (HVAC) control [22] building
automation systems (BAS) [13], and Smart Buildings [20].
We also aim at developing the formalized approach for
automated detection of energy waste at the interface of
human-building-appliance interactions. Our ideas differ from
the existing approaches in several important aspects: 1) We
are concerned about the general problem of modeling emer-
gent energy performance at the interface of human-building-
appliance interactions; these emergent behaviors could be
captured by state spaces and information spaces in buildings.
2) We would like to obtain simple minimalist solutions that
are inexpensive, easy to deploy, and avoid state estimation
for automated detection of energy waste in buildings. 3) We
include in our formulation and in our experimental setup
smaller residential units that are usually out of the scope of
HVAC, BAS, and Smart Building analysis.

Another stream of research related to our efforts are
approaches that attempt to count and track occupants in
buildings through occupancy sensors such as [1], [25], [19],
[14], [18], [2] and [3]. Tracking and counting occupants
in different regions of buildings is a key for development
of smart building solutions. Our work borrows from ideas
that try to monitor in a non-invasive manner the behavior of
one [21] or multiple agents [4] using detection beams.

The contributions of the paper are the following: 1)
We formalized the physical state space of buildings and
concretely formulated three problems of energy waste in
buildings that include occupant behavior, temperature, light-
ing, and plug load consumption. 2) We presented easy
to implement filtering algorithms in the information space
that can detect states, trajectories, and attempt to positively
modify occupant behaviors in buildings. 3) We proposed an
inexpensive, non invasive, hardware architecture to imple-
ment our ideas. 4) We tested the system in a residential
setting.



The rest of the paper is organized as follows. Section
II presents the preliminaries and formulates three problems
related to energy waste. Section III presents the mathematical
methodology and hardware used to solve the problems
proposed in section II. Section IV presents a complete case
study in a household residence to illustrate the practical use
of our methodology. Finally, section V presents conclusions
and directions for future work.

II. PROBLEM FORMULATION

A. Physical State Space
In this section, we will formalize the problems of detecting

wasteful energy states, analyzing energy trajectories, and
proposing policies to save energy. Our notation is heavily
influenced by Motion Planning [15], physical state spaces
and information space approaches [16], [17].

A buildings indoor environment (or work space) is mod-
eled as a collection of floors in a building, each of them
in 2-dimensions such that W = R2, since we are only
concerned with the location of people in a building, and not
their exact orientations and positions. We will do a complete
analysis and formulation of energy problems concerning a
single floor which can be extended without loss of generality
to a building with multiple floors. Each of the floors will
have a set of obstacles, O, that represent areas that are not
accessible.

A set of n occupants will move in the free space of a floor
defined as E = W \ O. Let Ci represent the configuration
space or set of all possible positions and orientations of the
ith occupant in an environment. More precisely, Ci = E ×
[0, 2π), where E is the position of an occupant in the free
space and [0, 2π) is the set of all possible orientations of an
occupant. Then, the configuration space for all n occupants
is defined as C = C1 × C2 × . . .× Cn.

Another interesting physical variable is lighting. A par-
ticular lighting configuration is modeled as the function, l :
E → R≥0, which assigns any given point in the environment
a positive light intensity. Then, L is the set of all the possible
energy assignments such that l ∈ L.

Temperature is another variable of interest in building
energy performance. Like the lighting definition, temperature
can be modeled as a mapping, k : E → R≥0, which assigns a
positive temperature to every point in the environment. Then,
K can be defined as the set of all possible temperatures such
that k ∈ K.

Lastly, we will consider the plug load of the physical
state space of a building. We will denote the configuration
of each power socket of a building as P j = R≥0 × E
where the value R≥0 represents the power sockets (or plug
loads) energy consumption (as a positive, increasing value)
and E represents the location of one of the m sockets. Then,
P = P 1×P 2×. . .×Pm can represent the joint configuration
of all the plug loads in a building.

Collectively, the physical state-space of a building is given
by X = C × L × K × P . A particular state, x ∈ X , is
represented by a tuple, x = (q, l, k, p), which defines the
complete state of the building. Here, q ∈ C and p ∈ P .

The physical state space of a building can be represented
as a collection of static snapshots as described above. How-
ever, the state of a building evolves over time. Let T =
[0,∞) represent a time interval of execution for analysis. We
define a state trajectory as x̃ : T → X . A particular value
x̃(t) represents the building state at time t, for example x̃(0)
represents the state of the building at time 0.

B. Wasteful Energy States and Trajectories

There exist certain wasteful energy states in the physical
state space. Some examples of these wasteful energy states
are: a) An empty room with high lighting levels. b) A
high level of plug load consumption in a room with few
occupants. c) When there is a discrepancy between the indoor
temperature and the comfort level of the occupants. We will
call Xw ⊂ X the set of wasteful states. This motivates the
first problem of our paper:

Problem 1: Determination of wasteful states
Characterize the set of wasteful states, Xw, and detect if

a certain state in a building belongs to the set of wasteful
states such that x ∈ Xw.

When evaluating a buildings energy performance, we will
also want to know if an occupants trajectory is wasteful in
terms of energy consumption. This evaluation of particular
physical trajectories for energy waste is different from an
evaluation of wasteful states as formulated in Problem 1.
For example, suppose that a plug load associated with an
appliance has stayed on and has been consuming energy
for a long time. Each particular x̃(t) is not particularly
wasteful but this long interval of activity can be a cause
for energy concern, and possibly form a negative, wasteful
energy trajectory. This helps to motivate our next problem:

Problem 2: Trajectory Evaluation
Given a physical space trajectory, x̃, evaluate if it is energy

wasteful.

C. Action Spaces, State Transition Functions, and Plans

The action space represents the actuation components of
the system and is denoted by U . Several actuation elements
can be found in a building. For instance, in the classical
thermostat problem the goal is to control the temperature of
the building. Lights can be turned on and off, so the action
space is Ul = {on, off}. Technology, such as LED lighting,
allows for more fine grained control of lighting intensity.
In this case, the the action space is Uled = {0, lmax},
where 0 means that the light is off and lmax represents the
maximum intensity of the light. A similar definition can be
made for plug load consumption levels of appliances and
other electronic devices.

Action spaces for temperature control have been widely
studied. In the case of action spaces for building occupants,
it is difficult to tightly control occupants and force them
to change their configurations, since occupant behavior is
usually autonomous. However, action spaces for humans can
become useful in evacuation scenarios in building evacuation
and emergencies [10], [8].



Using action spaces, we can define a state transition
function, f : X × U → X , to model how a buildings state
changes with the application of actions. In order to have
a proactive approach to curtail energy waste in buildings,
we need to define plans that will indicate what actions
should be taken in particular states. A common example of
plans and control policies in the context of building energy
performance are given in examples of controlling HVAC
systems. However, our system differs from HVAC control
systems, since we try to characterize wasteful energy states
and pro-actively prevent them.

A plan is formally defined as a mapping from physical
states to actions, π : X → U , that allow us to solve some
problems of interest. A simple example of this will allow
us to turn off the lights of a room when it is empty. This
motivates our third problem:

Problem 3: Energy Saving Plans and Policies
Can we find suitable plans, π, that try to avoid energy

wasting configurations or steer the system away from such
configurations?

Occupants can visit different regions of the building, cre-
ating a trajectory of movement. Many trajectories exist, but
not all the trajectories are the same. A trajectory is wasteful
if an occupant frequently forgets to turn appliances off
after changing regions. Also, some trajectories are partially
wasteful if the occupant has left appliances on for a part
of his trajectory. Some trajectories are more wasteful than
others, which leads to our next problem:

Problem 4: Trajectory Ranking
Given a trajectory x̃ and its wasteful energy information,

calculate its rank, or how wasteful it is as compared to an
optimal trajectory.

In the following sections, we will propose solutions for
the four problems described above.

III. METHODS

A. Decomposition of the Environment

In order to solve the problems above, we will decom-
pose an environment or work space using the following
Motion Planning formulations. The work space, W , is de-
composed into a countably finite set of regions R where
R = {R1, R2, . . . , Rm}. The set of regions R is a partition
of the free space E with E =

⋃
iRi. Each region Ri ∈ E has

an occupancy count denoted by o : R→ N∪{0} , in addition
to lighting, temperature and plug load information defined in
the section above. We will create these decompositions using
two Infrared distance sensors placed side by side and we
will collect lighting, plug load, and temperature information
utilizing additional sensors - creating a sensor network as
described below.

B. Information Space

Since the state space defined in section II is impossible
to completely detect using available sensors, we need to
reduce our state space to a smaller, more manageable in-
formation/observation space.

Fig. 1. Left: The sensors inside a node (with connections removed for
clarity). The components are (from left hand side moving clockwise): a xBee
communications module, a TEMT6000 light sensor, two Sharp 2Y0A02
distance sensors, an Arduino micro controller, and a TMP102 temperature
sensor. Right: Kill A Watt energy consumption monitor.

To begin, we can define a generalized light sensor output
as Yl = {on, off}. We defined the output of the light
sensor, l, as a positive real number, however, it is difficult to
observe this output in practice so we define an approximation
function, hl : L → Yl, for its output. This function maps the
set of all possible light values, L, to a value that is either
0(light is off) or 1(light is on).

Similarly, temperature is measured in the range from 0 to
a max temperature, kmax, and the corresponding observation
is Yk = {0,4k, 24k, . . . , kmax}. The function hk : K →
Yk approximates all the continuous valued output of K to a
discrete interval Yk.

Next, the observation space for plug loads are defined as
Yp = {0,4p, 24p, . . . , pmax} and their mapping is defined
as hp : P → Yp. Lastly, the observation for occupant count
is defined as ho : E → N ∪ {0} .

Using the condensed definitions above for our sensor
observations, we can define the observation space for the
entire environment as Y = Yl × Yk × Yp × Yo and in a
finite time interval, T = [0, t], we can define a continuous
observation sequence as ỹ : [0, t]→ Y .

C. Hardware

Our hardware setup consists of low-cost Infrared (IR)
sensor beams, a temperature sensor, a lighting sensor and
a wireless communication system which are all packaged
into an enclosure. We will refer to these packaged sensors
as ”nodes”. The internal components of a node are shown
in Figure 1. Separate from our nodes, but also part of our
sensor system, are Kill A Watt energy usage monitors (see
Figure 1). These energy usage monitors collect plug-load
information for any electronic devices or appliances plugged
into the apparatus.

We chose to to create sets of parallel directed beams
using paired IR emitter-sensors, because they will allow us to
track which region an occupant is crossing into, depending
on which beam is occluded first. Each node also contains
an Arduino Uno micro-controller which processes the data
collected from the distance, light, and temperature sensors.



Fig. 2. Placement of a node at a crossing. The light sensor is placed
outside, pointing towards the light source of a region.

Results are then transmitted through an xBee wireless Radio-
Frequency (RF) module [9], [7]. The xBee modules are con-
nected using the DigiMesh networking protocol, providing
a peer-to-peer topology with minimal protocol overhead and
optimized power consumption for longer deployment times.
Moreover, its network is self-healing and automatically ex-
pandable, allowing for simple and quick deployment.

Each node’s Xbee module transmits its data to a single
receiver which is connected to a computer. A program
running on this computer aggregates and stores the data with
corresponding time stamps.

The light sensor used in the node units is a SparkFun
TEMT6000 Ambient Light Sensor Breakout board, which
sends the Arduino a voltage reading, depending on the
intensity of light in a room. It sits outside of the node
enclosure and is placed so that it is facing the primary light
source of a given region (see Figure 2). It is calibrated
depending on the intensity of light in the region, which
accounts for such factors as window lighting, and how strong
the artificial lighting in a room is.

The temperature sensor is a Texas Instruments TMP102
Digital Temperature Sensor Breakout board. It is attached
on the enclosure on the outside wall of the box so that it can
accurately detect ambient temperature.

The hardware and design of the node modules were
based on the need for an easy deployment in a commercial,
business, or residential setting. These nodes can be battery
operated or plugged into a wall and they utilize wireless net-
working technology which requires almost no configuration.

The materials chosen are small, have a low-cost, and and
are easy to use as compared to expensive camera systems [1].
The total cost for a single node is $115, including the cost
of cables, batteries, and breadboard which can be bought in
bulk, further lowering the cost for large scale deployments.

D. Identifying the Wasteful States of an Environment
In this section, we will use data collected from our

experimental setup in order to identify the wasteful or non-
energy-efficient states of a given environment over a period
of time. These wasteful states are those periods of time when
the lights are on, energy is being consumed by appliances,
and/ or an HVAC system is on but there are no occupants
in a region. Our sensor system can be used to identify these

states by recording occupancy, light usage, temperature, and
power consumption information.

We can imagine the space comprised of these four at-
tributes as a 4-dimensional hyper-rectangle defined as H.
Certain regions of H are considered wasteful states, as
defined by energy experts. An example of a wasteful state
can be modeled if the parameters exceed some threshold, to
be set by the expert.

Let λthl , λ
th
k , λ

th
p , λ

th
o be the thresholds for lighting, tem-

perature, plug load and occupant count, respectively. The
region Hl = {(l, k, p, o) ∈ H|l > λthl } is defined as the
wasteful space for lighting. Similarly Hk = {(l, k, p, o) ∈
H|k > λthk }, Hp = {(l, k, p, o) ∈ H|p > λthp }, Ho =
{(l, k, p, o) ∈ H|o < λtho } are the wasteful spaces for
temperature, plug load and occupant count, respectively. A
wasteful region in the hyper-rectangle is , Hw = Hl×Hk×
Hp×Ho. Let a function fo : C×R→ Z≥0 give the occupant
count in a region Ri ∈ R based on configuration q ∈ C.
Then, the wasteful state space for a region Ri can be defined
as:

Xi
w = {(q, l, k, p) ∈ X|(l, k, p, fo(q,Ri)) ∈ Hw}. (1)

Utilizing the nodes described in section III-C, we can
record this information for every region inside an environ-
ment. In order to capture this information, a sensor node
will be placed at an entrance to a region, and another node
will be placed at the exit of a region. This node will detect
people crossing into a region and keep a log of how many
people are currently in a region, along with a time stamp
indicating when people enter and leave a region. Our node
units will also have a light sensor in order to record when a
light is turned on or off, along with a time stamp of when
this happens. The final component, an energy consumption
recording device, will record how much energy is consumed
in a particular region in kilowatts per hour (kWh).

This information will be recorded and analyzed to identify
wasteful states. For example, if node 1 and node 2 are set up
in the entrance and exit of region 1, respectively, they will
help to determine the occupancy of the region at any given
point of time during a data recording session. If from time,
t1, until time, t2, there are no occupants in the region and
there is a light on and/or energy is being used, as determined
by the energy consumption meter, then this period of time
can be identified as a wasteful state.

E. Identifying the Wasteful Trajectories in an Environment

As mentioned in section II-B, wasteful trajectories need to
be identified. These trajectories are formed when users move
among regions and produce wasteful states in the different
regions they visit. For example, if there is some occupant in
a given region, R1, and he moves to another region, R2, but
he leaves the light on in R1 and/or leaves some appliances
on in R1 and then moves to R3, leaving the light on in R2

as well, this user has produced a wasteful trajectory which
can be identified as such by our sensor system.



Therefore, a trajectory is a sequence of visited regions.
We define an index set, I = {1, 2, . . . ,m}, and formally
we define a trajectory as x̃ = 〈Ri : i ∈ I〉. A score, sx̃, is
associated with each trajectory, x̃, and is defined as:

sx̃ =
∑
Ri∈x̃

[hl ◦ l(Ri) + hk ◦ k(Ri) + hp ◦ p(Ri)]. (2)

A trajectory is wasteful if the calculated score is greater
than a certain threshold. In order to solve this particular
problem of identifying wasteful trajectories, information will
be collected using the same method as described in the
previous section. First, we will define a period of time that
we want to analyze for wasteful trajectories (from t1 to t2).
Then, we will find the occupancy data for the regions in the
environment using our captured sensor data. We will identify
any shifting of occupancy from R1 to R2 and determine if
R1 is no longer occupied. If it is empty, we will check if
any lights and/or appliances where left on. If they were left
on, we can identify this movement of occupancy from R1 to
R2 and from t1 to t2 as a wasteful trajectory.

F. System Policies to Conserve Energy
Using data related to wasteful states and trajectories, the

next step will be to eliminate these instances of energy wast-
ing behavior, solving problem 3 as stated in II. Policies could
be enforced through our system to automatically eliminate
instances of waste. For example, a light can be turned off
automatically when a region has no occupants for a certain
duration of time. Another policy could be that a buildings
HVAC load is determined based on trajectories of occupancy.
Although not implemented in our current system, creating
such policies will be a direction for future work.

G. Ranking the Trajectories
We need to rank trajectories to know how energy efficient

they are, as stated in problem 4 in section II. We use
the ranking method defined in [26]. Let us perceive an
observation trajectory ỹ = yR1

, yR1
, . . . , yRE

generated by
visiting the regions x̃ = R1, R2, . . . , RF . We assume that
we already know the ideal observation trajectory defined as
ỹ′ = yR1

, yR1
, . . . , yRF

which has the optimal energy usage.

Fig. 3. Residence where experiment was conducted in. Node placement is
indicated in blue, along with the corresponding partitioned regions in red.
The red-dashed lines that there is no actual wall present but a partition is
created by the IR sensor beams.

Therefore, the Manhattan distance between a trajectory, ỹ,
and an ideal trajectory, ỹ′, is d(ỹ, ỹ′) =

∑
Ri∈x̃ |yRi

− y′Ri
|.

To do the ranking we need a set of training trajectories for
which we know the ranks. A weighted network is computed
based on the pairwise distances, d. Consequently, these
source trajectories spread a rank to the unknown trajectory
ỹ and are included into the known set of trajectories [12].
This spreading process will converge once the ranking is
computed for a large number of trajectories. Then, the new
trajectories will receive an accurate ranking score.

We computed a set of rankings for some sample temper-
ature data trajectories using a ranking script in the R Pro-
gramming language and obtained the results shown in Figure
4. Note that these rankings are computed using temperature
only, however, we can choose other features to rank on
like lighting and energy consumption. The rankings shown
compare trajectories of temperature information, created by
occupants moving among different regions, against an op-
timal trajectory. The fourth trajectory is the highest ranked
trajectory as it is most similar to the optimal trajectory.

IV. RESULTS

This section will report the findings of our experimental
deployment of nodes throughout a single-story residential
home. We will also evaluate our results to solve the problems
described in section II.

A. Experimental Setup

Hardware nodes, such as in Figure 1, were placed through-
out a single-story residential home. Paired IR beams on
the nodes allowed us to detect the crossing direction of an
occupant moving from one region to another region. This is
unlike previous studies which have used single beams which
cannot detect the direction of a crossing such as [25].

Figure 3 shows the setup of the nodes throughout the
home. Each blue box represents a node, which is placed at
doorways and crossings between different rooms. The house
is divided into 5 regions (R1-R5) with 6 nodes creating the
partitions. The front entrance/exit of the house is monitored
by node 1 and crossing past this node leads into R1-
the living room. Node 2 leads into R2 which contains a
bathroom, bedroom and hallway. The hallway from R2 leads
into R3 which is a home office. At another side of R1 is node
4 which leads into R4, a kitchen/dining room. It is bordered
by node 5 which leads into R5, a multipurpose room in the

Fig. 4. Ranking of 4 temperature trajectories against an optimal trajectory.
Occupancy movement is captured moving through 5 regions (Ra−Re) and
corresponding temperature is recorded (in C◦). The optimal trajectory, 1, is
shown in red and the highest ranked trajectory, 4, is shown in orange text.



back of the house. The last node is R6, which leads to the
back entrance/exit of the house.

Figure 5 shows a resident crossing in front one of the
nodes. Using code uploaded to our Arduino micro con-
trollers, our nodes can determine which region the occupant
is crossing into, and a script uploaded on the receiving host
computer determines how many occupants are in the region
the occupant exited from and entered into. In this figure, an
occupant is leaving R2 and entering R3 which is detected by
node 3. Since the distance sensors on the nodes are placed
side by side, distance sensor a will be triggered first(as it is
closest to R2, the region the occupant is leaving), followed
by distance sensor b (the sensor closest to R3, the region the
occupant is going into). This will cause the direction of the
crossing to be recorded as a → b on the node, which will
increment the occupancy count of R3 by 1 and decrement
the occupancy of R2 by 1.

Other components of our system included light sensors
and kWh consumption monitors. Light sensors were attached
to node units but placed outside the enclosures facing ceiling
lights, as seen in Figure 2. There were a total of 5 light
sensors used in this experiment: a light sensor was placed
on node 2 to detect the hallway light in R2, another sensor
was placed on node 3 to detect the lighting in R3, another on
node 4 to detect lighting in R1, another on node 5 to detect
lighting in R4 and finally one on node 6 to detect lighting
in R5.

We ran an experiment over a course of roughly 20 hours
collecting occupancy data using the setup described above.
We also present energy consumption data from the local
electrical company, Florida Power and Light (FPL), in order
to compare our results with actual energy expenditure. The
following data represents our solutions to problems 1 and
2 from section II. Note that kWh consumption information
was only collected for region 3. Also, for analysis, we will
only look at data collected from R3, R4 and R5, as these
had the most reliable sensor readings from the whole setup.

As shown in Figure 7, 12 PM was a time of high energy
consumption(3.15 kWh) with an outdoor temperature of

Fig. 5. Resident crossing in front of a node. The red lines represent the
beams emitted by the IR distance sensors. The node is circled in green.

about 23◦ C. We can identify this time in our data using
Figure 6. From 12 PM to 1 PM, R3, had 2 people in
the region and the temperature was 20◦ C, R4 was empty
with a temperature of 22◦C and R5 was also empty with
a temperature of 23◦C. The dots on Figure 6 indicate if a
light is turned on at a given time. We can see that the lights
were on a majority of the time for R4 and R5, however,
these regions were empty. This indicates that the regions
were consuming electricity and these periods of time can
be classified as a wasteful state as indicated by problem 1
above.

Another wasteful state can be seen at about 7 PM. During
this time, the three regions are empty most of the time,
but the lights are on a majority of the time. Again we can
classify these times and regions as wasteful states since they
were empty and had lights on. The corresponding data from
FPL in Figure 7 indicates that there were some appliances
being used causing high energy consumption during this
time, indicating an overall wasteful state in the household.

In addition to wasteful energy states, we can identify
wasteful trajectories, as introduced in section II-B, utilizing
the data we collected from our nodes. For example, lets look

Fig. 6. Crossing data recorded from 3 regions, the dot on the temperature
line indicates whether a light is on/off in a region. Also note, that any time
”skipped” in the x-axis indicates that no changes occurred for that period
of time.



Fig. 7. Data recorded from electric company along with outdoor temper-
ature. The yellow line is the average kWh consumed by the home office.

at the time period from 5 AM to 8 AM. Looking at Figure
6, we can see that R4 is empty. Although not shown in the
graph, a detailed view of the activity during this time period
indicated that an occupant was moving throughout the house
and turning on lights. This occupant entered R4 from R1 and
turned on the light, then entered R5 and turned on a light.
This occupant therefore created a wasteful trajectory for this
time period while traveling from R1 → R4 → R5.

V. CONCLUSIONS AND FUTURE WORK

The methods presented in this paper contribute to the
efforts towards automated building operation and smart
buildings. While the majority of the existing studies in these
areas focus on automated operation of building systems (such
as HVAC), our study is geared toward capturing, modeling,
and analyzing occupant behaviors for proactive monitoring of
energy waste in buildings. This could lead to more adaptive
and proactive approaches toward automated building energy
control. We presented our problem formulation and ideas for
the solutions through our methodology, and a preliminary
case study in this paper. Our ongoing work is geared toward
improving the accuracy of sensed data, developing robust
policies for automated elimination of wasteful states, and
implementing these policies based on real time feedback to
building systems (e.g., HVAC) and occupants.

Some future directions for our work include expanding
our sensor system to larger areas, including business or
commercial settings, which will allow us to explore other
concerns such as communications systems for such large
areas. We also can create more complicated geometric spaces
in our regions and more finely analyze occupants behaviors
in a region. Another possible direction for further study is
making more policy suggestions and exploring that area as
well as improving our current hardware configurations to
obtain more accurate results.
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