
Sampling-Based Planning Algorithms for Multi-Objective Missions

Md Mahbubur Rahman1, Leonardo Bobadilla1, Brian Rapp2

Abstract— Multiple objective navigation is commonly found
in practice, where a path for an autonomous vehicle needs to
be generated to simultaneously optimize a number of different
objectives such as distance, safety, and visibility. Objectives can
be weighted to solve a single objective optimization problem but
appropriate weights may not be known a priori. In this paper,
we formulate a series of missions for a group of vehicles that
need to keep connectivity among themselves, surveil a groupof
targets, and minimize path lengths. These problems are solved
by extending optimal sampling-based algorithms (RRT*) to
support multiple objectives, non-additive costs and cooperative
conditions. We present several increasingly complicated missions
in obstacle-filled environments to illustrate and compare our
ideas with existing methods.

I. I NTRODUCTION

Motion planning for an autonomous system, at its simplest,
involves finding a trajectory that avoids obstacles and respects
differential constraints [1], [13]. An objective function, such
as travel time or length, will then be optimized [10]. However,
for many real-world applications, multiple objectives may
be relevant. It might be desirable to conserve fuel, provide
a comfortable ride, and avoid locations with a high risk
for accidents. Trade-offs are likely to be involved when
optimizing such disparate objectives. The objectives can be
combined using a weighted function, but the appropriate
weights may not be known a priori. Additionally, simple
multi-objective combinatorial problems such as a 2-criteria
shortest path are proven to be NP-Complete [4].

In some contexts like military operations, visibility be-
comes an important aspect of the objective. One typically
wishes to maintain visibility with friendly units or targets of
observation, while avoiding visibility by potential enemies.
One such sample environment is shown in Figure 1 where
a vehicle needs to monitor two blue units, avoid one enemy
firing range and minimize path length from the purple starting
location to the yellow goal area. Unless a weighted objective
function can be specified for such a mission, it may be
necessary to sample the problem space to obtain estimates
for the weight of each objective. Integrating this process into
the motion planning algorithm makes it possible to attempt
an optimization of all the objectives simultaneously. This
paper presents such a method and analyzes its applicability
to certain multiple-objective motion planning problems.

Our work is motivated by the problem posed in [17] that
requires one to determine the positions of a group ofunitsthat
need to perform surveillance over a group oftargetswhile
simultaneously minimizing exposure toenemyunits. In [17],

1M. Rahman and L. Bobadilla are with the School of Computing and
Information Sciences, Florida International University,Miami, FL, 33199,
USA. {mrahm025}@fiu.edu bobadilla@cs.fiu.edu

2B. Rapp is with the United States Army Research Lab.
brian.m.rapp2.civ@mail.mil

Fig. 1. A Dubins vehicle is assigned to observe two blue circular units
while avoiding obstacles and an enemy unit throughout its path from the
start to the goal location. Multi-criteria optimization isrequired to find the
shortest path that resembles the green trajectory. Existing sampling-based
path planning may give an incorrect path like the blue one.

the units and targets are static. The problem is formulated as
a multi-objective correlated geometric optimization problem
and it is solved through Markov chain Monte Carlo methods.
Our goal is to extend this family of problems by allowing the
units, targets, and other teammates to move in an environment
with obstacles while also attempting to optimize other vari-
ables such as completion time, clearance from obstacles, and
communications. We will frame this family of problems as
multi-objective optimal path planning problems.

The contributions of this paper are the following: 1) We
formulate a series of increasingly hard missions that require
a group of vehicles to monitor targets while keeping network
connectivity with other teammates; 2) We present extensions
to optimal sampling-based motion planning algorithms (
such as RRT* [10]) to consider multiple objectives, non-
cooperative, and cooperative scenarios; and 3) We present
several case studies to illustrate the application of our ideas.

The rest of the paper is organized as follows: Section II
presents a discussion about existing solutions along with their
usefulness and shortcomings in the context of our problem.
Section III presents the preliminaries and the problem formu-
lation. Section IV introduces algorithms to solve the classof
multi-objective path planning problems. We then analyze the
complexity and behavior of the proposed methods in Section
V. Section VI presents illustrative case studies of several
field missions. Finally, conclusions and directions for further
research are discussed in Section VII.

II. RELATED WORK

Multi-objective optimization has been studied widely for
many years in different domains. A solution for a multi-
objective problem can be based on scalarization of objectives
where the objectives are weighted according to their priority
and added to form a single scalar value [18]. Related to
our ideas are the methods proposed in [18] for multi-criteria

shortest path computations that compute a number of possible
paths from source to goal and then choose a Pareto efficient
path [19]. Although our methods are initially motivated by
the techniques presented in [18], we propose a solution
that works by incrementally building and rapidly exploring
random trees, as in RRT* [11], [10]. We are also focused on
generating a single path optimizing all of the objectives.

Our ideas are also connected with the method described
in [20] that modifies the RRT* algorithm [11] in order to
adopt multiple criteria during expansion. In contrast with
this approach our algorithm is able to produce a single path
in terms of multiple costs rather than a number of Pareto
optimal paths. Additionally, the weights in theTchebycheff
method and the weighted sum method [22] used in [20]
can be difficult to tune as different objectives have different
costs. Instead, our work solves the multi-criteria optimization
problem by normalizing the objectives using theUtopian
optimal vector [22].

Closely related to our work is [16] where the scalarization
of objectives was also used to get a single objective function.
This work starts with a known graph and usesA∗ search.
A modified Bellman-Ford method is used in [3] to assign a
normalized label to each node in order to find a multi-criteria
shortest path. Another solution that prioritizes one objective
over another is presented in [5]. This type of hierarchization
biases the path mostly towards the top priority objective.
Also, this solution is limited to a 2D grid and cannot be
applied in a higher dimensional configuration space.

Another stream of research proposes visibility-based so-
lutions to monitor a number of units in an environment.
A modified Traveling Salesman (TSP) algorithm was used
by [15] where the problem was solved without optimizing
multiple criteria.

III. PRELIMINARIES

Consider an environmentW = R
2 where a mission is

taking place. LetO = {O1, O2, . . . , Oζ} be the set of
obstacles which are modeled as polygons. The collision-free
space is defined asE =W \O.

Let A = {A1, A2, . . . , Ak} be a number of vehicles
which are deployed, with configuration spacesC1, C2, . . . , Ck,
respectively. The servicing vehicles move inside the bounded
environmentE as car-like robots. Therefore the configuration
of each vehicleAi is defined asCi = E × S1. These
vehicles are like Dubins cars [2], and a given vehicleAi

must satisfy differential constraints and dynamics definedas
ẋi = ui

s cos θ, ẏi = ui
s sin θ, and θ̇i =

ui
s

Li tanu
i
φ, whereui

s

is the forward speed andui
φ is the steering angle of the

vehicle [6]. There are a number of mobile units deployed
in E that can move freely in the world and are modeled as
point robots without rotation. Accordingly, the configuration
for a mobile unit is defined as,Bi = (x, y) ∈ E.

Let X be the state space for one servicing vehicle and
for simplicity assumeX = Ci. There aren cost functions
l1, l2, . . . , ln whereli : X → R

≥0. Each statex ∈ X of the
robot is associated with multiple objective costs. Accordingly,
a vector valued functionL : X → R

n assignsn cost labels

to a particular statex and is defined as,

L(x) = (l1(x), l2(x), . . . , ln(x)) wherex ∈ X (1)

Let Xobs = {x ∈ X : x ∩ O 6= ∅ where O ∈ O} be
the obstacle state space. The collision-free state space isthen
Xfree = X \Xobs. We define the initial configuration state
of the vehicle as,xI ∈ Xfree, and a set of goal states as
XG ⊂ Xfree.

Let σ be an obstacle-free feasible trajectory that starts from
xI and leads a vehicle to its goal regionXG.

Problem 1: Generation of multi-cost optimal paths for
servicing vehicles.
Given an initial configurationxI and a set of goal statesXG,
find a collision-free continuous trajectory,σ : [0, t]→ Xfree

for some timet, such thatσ(0) = xI andσ(t) ⊂ XG attempts
to optimizeL.

We are also interested in finding paths in cooperative
environments. For these scenarios, we will have a number of
vehicles deployed inside the environment which have a com-
mon objective and perform cooperative behavior. An example
of such behavior is maintaining visibility for communication.

Problem 2: Generation of multi-objective optimal paths
for cooperative robots.
Given a set of friendly robot vehiclesA1, A2, . . . , Ak, with
a common costlc, find a set of collision-free continuous
trajectories,σ1, σ2, . . . , σk, that solve Problem1 and best
optimizelc : X1 ×X2 × · · · ×Xk → R

≥0.

IV. M ETHODS

Our ideas for multi-objective optimal motion planning are
modifications to the algorithms proposed by Karaman and
Frazzoli [10], [8]. Algorithm 1 presents a procedure that
computes a trajectoryσ fromxI toXG based on the sampling
algorithm RRT* [10]. In our modified version, we start a tree
structureT (line 1) and continue to expand it by sampling
random states.

Algorithm 1 MultiObjectiveRRTStar(xinit)

1: T .init(xinit)
2: for i← 1 to K do
3: xrand ← RandomConfig()
4: xnearest ← NearestNode(T , xrand)
5: xnew ← Steer(xrand, xnearest)
6: if ObstacleFree(xnew, xnearest,O) then
7: xopt ← ChooseParent(xnearest, xnew , T)

8: L← (la(xopt) + c(xopt, xnew),
lna(xopt)+lna(xnew)

2)
9: T ← InsertNode(xopt, xnew, T)

10: T ← ReWire(T , xnew)
11: end if
12: end for
13: return T

In addition to the state costL(x), we assign edge cost,
(c1, c2, . . . , cn) to an edgẽxij that connects two successive
statesxi and xj . Here, a cost functionci for a particular
objectivei is defined as,ci : X ×X → R

≥0.
Additive/Non-Additive Cost:There are two types of costs

assigned to the nodes in a tree. An additive costla is
cumulative and depends on the parent’s cost and thearc cost

that connects it to its parent. On the other hand a non-additive
costlna is independent and calculated based on the state (e.g.
visibility, safety, clearance).

The primitives of the Algorithm 1 are similar to other
sampling-based motion planning algorithms [9], [12], [14]:

Sampling: A tree is initialized in line1 of Algorithm 1.
In line 3 the methodRandomConfig() samples a random
configurationxrand ∈ Xfree.

Nearest Node: In line 4, xnearest =
NearestNode(T , xrand) returns the nodexnearest of
the treeT that is nearest to the sampled nodexrand in terms
of a distance metric.

Steer: The methodSteer(x1, x2) is used to solve control
inputs us and uφ and producesxnew from xrand for a
dynamic control system.

Collision Checking: Method Obstaclefree() checks
whether a path fromxnew to xnearest avoids all the obstacles
O and is therefore collision-free.

We completely modified theChooseParent() and
ReWire() methods of standard RRT* to support multiple
objectives.

A. Choosing a Parent

Algorithm 2 is used to select the best parentxopt of
the newly sampled nodexnew in terms of a multi-objective
optimization. We choose a set of candidate nodes,Xnear

based on a nearness metric (e.g. point distance in Euclidean
space) using methodNearestNeighbours() in line 1.

Domination and Non-Domination: A nodexj ∈ Xnear is
dominated by another nodexi ∈ Xnear (defined asxi ≺ xj)
if and only if all then costs ofxi are better than those of
xj . Accordingly the cost vectorL(xj) is dominated by cost
vectorL(xi) (denoted byLi ≺ Lj).

xi ≺ xj ⇔ ∀k, lk(xi) ≤ lk(xj); where 1 ≤ k ≤ n. (2)

Therefore the set of dominated nodesDX is defined as,

DX = {xj ∈ Xnear|∃i xi ≺ xj}. (3)

We only consider the nodes that are not dominated by
another node. Accordingly the set of non-dominated nodes
PX comprises thePareto frontier,

PX = Xnear \DX . (4)

We must select a node from thePareto set PX that
best optimizes all the costs. Therefore we first calculate the
minimum cost tupleL∗,

L∗ = (min
1≤i≤|PX |

l1(xi), . . . , min
1≤i≤|PX |

ln(xi)) (5)

Next, we calculate thearc costs, C = (c1, c2, . . . , cn)
associated with anarc, x̃j,new, which connects the new
nodexnew to a nearest non-dominated nodexj ∈ PX . The
minimum costsc∗i designated to an arc for each objectivei

are calculated and the optimum cost tuple for arc costs is:

C∗ = (min
1≤i≤|PX |

c1(xi, xnew), . . . , min
1≤i≤|PX |

cn(xi, xnew))

(6)

A weighting variableαi = [0, 1] is assigned to each
objectivei to control the effect of the objective cost on a path
to be planned where

∑

1≤i≤n αi = 1. This weighting variable
is different from that used in scalarization methods [20], [22]
and is only used to define priority. Our algorithm is capable
of running withoutα unlike the methods described in [20],
[22]. Accordingly, we select a nodexj ∈ PX as the parent
(line 7) that yields the minimumnormalizedcosts to come
to xnew,

argmin
xj∈PX

n
∑

i=1

αi

[

li(xj)

l∗i
+

ci(xj , xnew)

c∗i

]

(7)

Algorithm 2 ChooseParent(xmin ← xnearest, xnew , T)

1: Xnear ← NearestNeighbours(xnew, T ,O)
2: DX ← {xi ∈ Xnear|∃j ∀k lk(xi) ≤ lk(xj)}
3: PX ← Xnear \DX

4: L∗ ← (l∗1 , l∗2, . . . , l∗n)
5: C∗ ← (c∗1, c∗2, . . . , c∗n)
6: for x ∈ PX do
7: if

∑

i

[

li(x)
l∗
i

+ ci(x,xnew)
c∗
i

]

<
∑

i

[

li(xmin)
l∗
i

+ ci(xmin,xnew)
c∗
i

]

then
8: xmin ← x
9: L(xmin)← L(x)

10: end if
11: end for
12: return xmin

B. Updating the Tree

Different Costs: In line 8 of Algorithm 1, we assign a cost
labelL defined in (1) to the current nodexnew once a parent
xopt is selected for that node. Suppose we havek additive
costs andn− k non-additive costs.Additivecostsla(xnew)
like distanceare allocated by combining the cost of a parent
and the arc cost to resembles the total cost from the root
node.

lai (xnew) = lai (xopt) + ci(xopt, xnew); ∀ i, 1 ≤ i ≤ k. (8)

Non-additive costslna (such asvisibility) do not propagate,
and require in-place computation. The parent’s cost and
the current node’s cost (computed in-place) are averaged to
assign the costlna(xnew).

lnaj (xnew) =
lnaj (xopt) + lnaj (xnew)

2
; ∀ j, k + 1 ≤ j ≤ n.

(9)
Node Insertion: Once we know the parentxopt of the newly

sampled nodexnew , we add it to the treeT along with the
corresponding edgẽxopt,new andarc costc(x̃). The modified
costsL(xnew) for the involved node are also updated in this
step (line9 in Algorithm 1).

Algorithm 3 ReWire(T , xnew)

1: Xnear ← NearestNeighbours(xnew, T ,O)
2: for x ∈ Xnear do
3: if

∧k

i=1(l
a
i (xnew) + c(xnew , x) ≤

lai (x)) and
∧n

j=k+1 l
na
j (xnew) ≤ lnaj (x.parent)

then
4: x.parent← xnew

5: L(x)← (la(xnew) + c(xnew , x),
lna(xnew)+lna(x)

2)
6: T .update(x)
7: end if
8: end for
9: return T

C. Refining Connections

Algorithm 3 is used to refine the existing connections
in the neighborhood of a newly connected vertexxnew .
This procedure makesxnew the parent of the neighboring
nodes x ∈ Xnear if this yields better costs compared
to the costs incurred through the current parent. Method
NearestNeighbours() in line 1 computes the nearest node
setXnear. A neighborx ∈ Xnear is connected through the
newly added nodexnew if the following two conditions are
satisfied:

∀ i, 1 ≤ i ≤ k; lai (xnew) + c(xnew , x) ≤ lai (x) (10)

∀ j, k + 1 ≤ j ≤ n; lnaj (xnew) ≤ lnaj (x.parent) (11)

This implies that we makexnew the parent of the neighboring
nodex if a) the connecting cost reduces the existing cost
la(x) as shown in (10) and b)xnew provides a better cost than
x.parent in terms of non-additive costslna(x). For example,
if a node’s parent has better visibility or safety thanxnew ,
then makingxnew the new parent is not desirable. Algorithm
3 terminates by updating the cost vectorL(x) and treeT in
lines 5 and6 respectively.

D. Cooperative Path Generation for Multiple Robots

A cooperative scenario is developed when multiple friendly
vehicles want to communicate while optimizing their own
objectives. We propose Algorithm 4 where two cooperative
treesTu andTv expand in parallel while affecting each other.
Lines 4− 10 from Algorithm 1 are used for their expansion
(called in lines4 and 6 of Algorithm 4). A function lc :
X×X → {0, 1} is defined that checks whether the two newly
sampled verticesxu, xv of the two trees cooperate (in line8).
A reward functionωk : X×X → R

≥0 is defined that helps to
decrease the costs for objectivek if the two nodes cooperate
(lines 9− 10). Otherwise, a penalty functionρk : X ×X →
R

≥0 is used to increase each of the costs (lines12−13). In the
cases of non-cooperative planning scenarios, the reward and
penalty functions are swapped. Finally,PropagateCost() is
used in lines15 − 16 to pass the effect of the updated cost
down towards all the nodes throughout the child chain.

V. A NALYSIS

Running Time Analysis: The main modification in our
proposed model is implemented in Algorithms 2 and 3

Algorithm 4 RRTStarCooperative(xinit
u , xinit

v)
1: i← 0
2: while i ≤ K do
3: xu ← RandomConfig()
4: Tu ←MultiRRT ∗ Expansion(Tu, xu)
5: xv ← RandomConfig()
6: Tv ←MultiRRT ∗ Expansion(Tv, xv)
7: if xu 6= NULL andxv 6= NULL then
8: if lc(xu, xv) then
9: ∀k, 1 ≤ n, lk(xu)← lk(xu)− ωk(xu, xv)

10: ∀k, 1 ≤ n, lk(xv)← lk(xv)− ωk(xu, xv)
11: else
12: ∀k, 1 ≤ n, lk(xu)← lk(xu) + ρk(xu, xv)
13: ∀k, 1 ≤ n, lk(xv)← lk(xv) + ρk(xu, xv)
14: end if
15: PropagateCost(xu, Tu)
16: PropagateCost(xv, Tv)
17: end if
18: end while

compared to the standard RRT* [10], [8]. In order to take
care ofn objective costs, both of them runn times more than
the standard RRT* algorithm. Therefore the running time of
our multi-objective RRT* algorithm isO(n · RRT ∗), which
is a constant multiple of the running time of the standard
RRT*.

Proposition 5.1:ChooseParent() selects a non-
dominated optimal parent.

Proof: (sketch) It is trivial that we select a non-
dominated node as a parent as we select it from the non-
dominated setPX according to line6 of Algorithm 2.

We now prove the optimality by contradiction. Let
ChooseParent() select xp as a parent of a nodexnew

which does not provide the optimal costs and let there
be a parentx′

p that provides the optimal costs such that:
∑n

i=1

[

li(x
′

p)

l∗i
+

ci(x
′

p,xnew)

c∗i

]

≤
∑n

i=1

[

li(xp)
l∗i

+
ci(xp,xnew)

c∗i

]

This contradicts definition (7), where we select the node as
a parent which minimizes the above cost. Therefore,xp is
chosen overx′

p implies thatxp andx′
p cannot be different.

This essentially proves that the methodChooseParent()
selects the optimal non-dominated parent in terms of multi-
objective cost.

Proposition 5.2:ReWire() computes the optimal parent
in terms of multiple cost vectorL in a particular treeT .

Proof: (sketch) This is trivial from the conditions in (10)
and (11) where the current parent of a nodex ∈ Xnear is
changed to the newly sampled nodexnew if and only if xnew

is better in alln cost metricslk where1 ≤ k ≤ n. See line
3 of Algorithm 3.

Proposition 5.3:A solution pathσ is a non-dominated
solution for a particular MultiObjectiveRRT* treeT .

Proof: (sketch) It is a necessary condition that a subpath
of an optimal path generated by RRT* is also optimal. From
propositions 5.1 and 5.2, we guarantee that the local sub-
solutions are non-dominated. This implies that once a treeT
is generated, the corresponding pathσ is a non-dominated
path.

VI. CASE STUDIES

We developed an implementation of multiple cost vectors
on top of the MIT SMP library [7] that was originally devel-

RRT* MultiObjectiveRRT*

(a) (b)

(c) (d)

Fig. 2. Trajectory finding for a car-like vehicle while monitoring the blue
circular landmark: (a) Standard RRT* tree and trajectory after 500 iterations.
The purple rectangle is the initial position and the yellow region is the
goal. (b) Our MultiObjectiveRRT* tree and trajectory after500 iterations.
(c) Standard RRT* tree after 3000 iterations. (d) Our MultiObjectiveRRT*
tree after 3000 iterations.

oped by the authors of RRT*. We modeled a problem based
on Figure 1 where a number of point robotsB1, B2, . . . , Bm

must be served through visible light communication [21] by a
number of serving vehicles (Dubins cars)A1, A2, . . . , Ak. An
optimal trajectoryσ maintains visibility while optimizing the
traveling distance from the starting location (purple) to the
goal location (yellow). Additionally, there might be a number
of friendly units we want to observe and a number of enemy
units we want to avoid.

A. Case Study 1: Single Unit Visibility and Patrolling

In Figure 2, we present a case where a single vehicle is
present to serve the blue unit while avoiding an obstacleO
at the middle of the map. An optimal trajectory is required to
minimize the traveling distance and maximize LoS visibility
to the unit.

Figure 2(a) and (c) are the resulting tree and trajectory
(red) that are computed by the standard RRT* [10] algorithm
after500 and3000 iterations respectively. We then apply our
algorithm and the results are shown in Figure 2(b) and (d).
Clearly the red trajectoryσ of Figure 2(b) is better than
Figure 2(a) as it is more visible to the unit. Similarly the
path converges to optimality in terms of both length and
visibility as shown in Figure 2(d) after3000 iterations while
the standard RRT* in Figure 2(c) only optimizes the length.

B. Case Study 2: Two Vehicles, Two Units

In Figure 3, we present a more complex case where two
blue unitsB1 andB2 need to be monitored by two Dubins
vehicles A1 and A2 while reaching their respective goal
regions. Figure3(a), (c) and (e) are the results from our
algorithm and Figure 3(b), (d) and (f) are the outcomes of
the weighted sum andTchebycheffmethods used in the state
of art [22], [20] solutions.

The path forA1 (green) first covers unitB1 and turns
towards the unitB2 to optimize visibility and path length after
500 iterations in Figure 3(a). SimilarlyA2’s path (red) makes
a turn to maximize visibility and then follows the optimal
distant path.

The weighed sum and Tchebycheff [22], [20] methods
both use scalarization of objectives and show similar char-
acteristics as shown in Figure 3(b). In Table I, we provide
a numerical comparison of our method with these prevalent
techniques. We found that these methods frequently become
biased towards a particular objective.A1’s trajectory opti-
mizes path length whileA2’s trajectory is mostly out of the
visibility range of unitB2.

In Figure 3(c), we present the result after2000 iterations
which achieves good compromisation between length and vis-
ibility. However, the weighted sum method generates longer
trajectory (red one) with a slightly increased visibility as
presented in Table I.

Finally we ran the methods for5000 iterations as shown
in Figures 3(e) and (f). Our method converged to a near
optimal non-dominated solution. On the other hand, the
Tchebycheff method generated the green trajectory with a
slightly increased visibility (0.47 vs 0.53) and a longer path

MultiObjectiveRRT* Weighted Sum Scalarization

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Dubins car trajectory finding for two car-like robots. Vehicles start
from two small rectangular positions (purple colored): (a)Our MultiObjec-
tiveRRT* tree and trajectory after 500 iterations. (b) RRT*tree with weighted
sum (scalarization) method after 500 iterations. (c) Our Multi RRT* at 2000
iterations.(d) Tchebycheff (scalarization) method after2000 iterations. (e)
Our Multi RRT* after 5000 iterations.(f) Tchebycheff (scalarization) method
after 5000 iterations.

TABLE I
TRAJECTORYANALYSIS IN TERMS OFMULTIPLE OBJECTIVES

Iteration Objective Tchebycheff Our Multi RRT*

V ehicle 1

500
Visibility 0.62 0.46

Distance 98 111

2000
Visibility 0.81 0.46

Distance 106 111

5000
Visibility 0.47 0.53

Distance 91 88

V ehicle 2

500
Visibility 0.80 0.58

Distance 83 96

2000
Visibility 0.80 0.58

Distance 103 96

5000
Visibility 0.55 0.58

Distance 117 96

(91 vs88). The red trajectory generated by our method is very
short compared to the trajectory generated by the Tchebycheff
method (96 vs 117) with very good visibility cost (0.58).

C. Case Study 3: Cooperative Motion Planning

A case is presented with two vehiclesA1, A2 and two units
B1, B2 in Figure 4.A1 is assigned to monitorB1 andA2

is assigned to monitorB2. Additionally, an extra cooperative
costlc(x1, x2) is assigned that allows a rewardω to the costs
of A1 andA2 when they are visible to each other. Otherwise
it incurs a penaltyρ on the costs of the statesx1, x2 (See
lines 8− 14 of Algorithm 4). In Figure 4(a), we see that the
paths of the two vehicles attract each other while keeping
visibility to their respective blue units. In contrast, Figure 4(b)
is the outcome of MultiObjectiveRRT* where the vehicles
only keep proximity to their assigned blue units and finish
the calculated paths without cooperation.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we formulated the problem of a group of
units that need to monitor a group of targets in a contested
environment as a multi-objective optimal motion planning
problem. We presented modifications to optimal sampling-
based planning algorithms to include multiple objectives and
non-additive costs. Additionally, we proposed algorithmsthat
can handle cooperative missions based on the ideas in [8].
We found that our proposed system can generate better paths
than the weighted sum and Tchebycheff model [20] for
certain types of motion planning problems. Several interesting
directions are left for future work.

Multi-optimality problems in motion planning appear nat-
urally in several practical domains. The modifications of
Algorithm 1 should work for other motion planning problems.
An immediate goal would be testing the performance of the
multi-objective addition to RRT* on benchmark problems
in manipulation of an articulated robot body to see its
performance.

We also want to extend the possible set of multi-objective
missions in contested environments. Simple extensions will
include modeling moving units as unmanned aerial vehicles
(UAVs) that want to maintain a connected visibility network.
Following such units to cover them makes the problem
more complex where a tuning among velocity, safety, and
monitoring is required. We believe that the proposed system
can be a useful aid to calculate a feasible solution in these
complex scenarios.

(a) (b)

Fig. 4. (a) Cooperative path generation using MultiObjectiveRRT* Algo-
rithm; (b) MultiObjectiveRRT* path generation without cooperation.

REFERENCES

[1] J. Barraquand and J. Latombe. On nonholonomic mobile robots and
optimal maneuvering. InIntelligent Control, 1989. Proceedings., IEEE
International Symposium on, pages 340–347. IEEE, 1989.

[2] L. E. Dubins. On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents.American Journal of Mathematics, 79(3):497–516, 1957.

[3] J. S. Dyer, P. C. Fishburn, R. E. Steuer, J. Wallenius, andS. Zionts.
Multiple criteria decision making, multiattribute utility theory: the next
ten years.Management science, 38(5):645–654, 1992.

[4] M. Ehrgott. Approximation algorithms for combinatorial multicriteria
optimization problems. International Transactions in Operational
Research, 7(1):5–31, 2000.

[5] K. Fujimura. Path planning with multiple objectives.Robotics &
Automation Magazine, IEEE, 3(1):33–38, 1996.

[6] P. R. Giordano and M. Vendittelli. Shortest paths to obstacles for a
polygonal dubins car.Robotics, IEEE Transactions on, 25(5):1184–
1191, 2009.

[7] S. Karaman and E. Frazzoli. sampling-based motion planning library
for dynamical systems.https://svn.csail.mit.edu/smp.

[8] S. Karaman and E. Frazzoli. Incremental sampling-basedalgorithms
for a class of pursuit-evasion games. InAlgorithmic Foundations of
Robotics IX, pages 71–87. Springer, 2010.

[9] S. Karaman and E. Frazzoli. Incremental sampling-basedalgorithms
for optimal motion planning.Robotics Science and Systems, 2010.

[10] S. Karaman and E. Frazzoli. Sampling-based algorithmsfor optimal
motion planning. The International Journal of Robotics Research,
30(7):846–894, 2011.

[11] S. Karaman, M. R Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime
motion planning using the rrt*. InRobotics and Automation (ICRA),
2011 IEEE International Conference on, pages 1478–1483. IEEE,
2011.

[12] J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach
to single-query path planning. InRobotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, volume 2,
pages 995–1001. IEEE, 2000.

[13] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.

[14] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for
multiple robots having independent goals.Robotics and Automation,
IEEE Transactions on, 14(6):912–925, 1998.

[15] K. J. Obermeyer, P. Oberlin, and S. Darbha. Sampling-based path
planning for a visual reconnaissance unmanned air vehicle.Journal of
Guidance, Control, and Dynamics, 35(2):619–631, 2012.

[16] B. K. Oleiwi, R. Al-Jarrah, H. Roth, and Bahaa I. K. Multiobjective
optimization of trajectory planning of non-holonomic mobile robot
in dynamic environment using enhanced ga by fuzzy motion control
and a*. InNeural Networks and Artificial Intelligence, pages 34–49.
Springer, 2014.

[17] D. A. Richie, J. A. Ross, S. J. Park, and D. R. Shires. A monte
carlo method for multi-objective correlated geometric optimization.
Technical report, DTIC Document, 2014.

[18] Z. Tarapata. Selected multicriteria shortest path problems: An analysis
of complexity, models and adaptation of standard algorithms. In-
ternational Journal of Applied Mathematics and Computer Science,
17(2):269–287, 2007.

[19] A. Warburton. Approximation of pareto optima in multiple-objective,
shortest-path problems.Operations Research, 35(1):70–79, 1987.

[20] D. Yi, M. A. Goodrich, and K. D. Seppi. Morrf: sampling-based multi-
objective motion planning. InProceedings of the 24th International
Conference on Artificial Intelligence, pages 1733–1739. AAAI Press,
2015.

[21] Z. Yu, R. J. Baxley, and G. T. Zhou. Multi-user miso broadcasting for
indoor visible light communication. InAcoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, pages
4849–4853. IEEE, 2013.

[22] Q. Zhang and H. Li. Moea/d: A multiobjective evolutionary algorithm
based on decomposition.Evolutionary Computation, IEEE Transac-
tions on, 11(6):712–731, 2007.

