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Abstract— Multiple objective navigation is commonly found
in practice, where a path for an autonomous vehicle needs to
be generated to simultaneously optimize a number of diffenet
objectives such as distance, safety, and visibility. Objéges can
be weighted to solve a single objective optimization probfe but
appropriate weights may not be known a priori. In this paper,
we formulate a series of missions for a group of vehicles that
need to keep connectivity among themselves, surveil a grougf
targets, and minimize path lengths. These problems are said
by extending optimal sampling-based algorithms (RRT*) to
support multiple objectives, non-additive costs and coopative
conditions. We present several increasingly complicated issions

in obstacle-filled environments to illustrate and compare ar  Fig. 1. A Dubins vehicle is assigned to observe two blue @ircunits
while avoiding obstacles and an enemy unit throughout ith f@m the

Standard RRT* Path

“. | .Enemy Firing Range

Enemy Location

ideas with existing methods. start to the %oal location. Multi-criteria optimization equired to find the
shortest path that resembles the green trajectory. Egistampling-based
. INTRODUCTION path planning may give an incorrect path like the blue one.

Motion planning for an autonomous system, at its simplest,
involves finding a trajectory that avoids obstacles andeetsp
differential constraints [1], [13]. An objective functipsuch the units and targets are static. The problem is formulased a
as travel time or length, will then be optimized [10]. Howgve a multi-objective correlated geometric optimization desb
for many real-world applications, multiple objectives mayand it is solved through Markov chain Monte Carlo methods.
be relevant. It might be desirable to conserve fuel, provideur goal is to extend this family of problems by allowing the
a comfortable ride, and avoid locations with a high riskunits, targets, and other teammates to move in an enviranmen
for accidents. Trade-offs are likely to be involved wherwith obstacles while also attempting to optimize other vari
optimizing such disparate objectives. The objectives can kables such as completion time, clearance from obstaclés, an
combined using a weighted function, but the appropriattommunications. We will frame this family of problems as
weights may not be known a priori. Additionally, simplemulti-objective optimal path planning problems.
multi-objective combinatorial problems such as a 2-cidter The contributions of this paper are the following: 1) We
shortest path are proven to be NP-Complete [4]. formulate a series of increasingly hard missions that requi

In some contexts like military operations, visibility be-a group of vehicles to monitor targets while keeping network
comes an important aspect of the objective. One typicallyonnectivity with other teammates; 2) We present exterssion
wishes to maintain visibility with friendly units or targebf to optimal sampling-based motion planning algorithms (
observation, while avoiding visibility by potential eneesi such as RRT* [10]) to consider multiple objectives, non-
One such sample environment is shown in Figure 1 wheiboperative, and cooperative scenarios; and 3) We present
a vehicle needs to monitor two blue units, avoid one enemyeveral case studies to illustrate the application of oeasd
firing range and minimize path length from the purple startin - The rest of the paper is organized as follows: Section I
location to the yellow goal area. Unless a weighted objectivpresents a discussion about existing solutions along Wi t
function can be specified for such a mission, it may besefulness and shortcomings in the context of our problem.
necessary to sample the problem space to obtain estimagsction I1l presents the preliminaries and the problem ferm
for the weight of each objective. Integrating this procede i lation. Section IV introduces algorithms to solve the claks
the motion planning algorithm makes it possible to attemphulti-objective path planning problems. We then analyze th
an optimization of all the objectives simultaneously. Thisomplexity and behavior of the proposed methods in Section
paper presents such a method and analyzes its applicabiNty Section VI presents illustrative case studies of several
to certain multiple-objective motion planning problems.  field missions. Finally, conclusions and directions fortlfigr

Our work is motivated by the problem posed in [17] thatesearch are discussed in Section VII.
requires one to determine the positions of a grouprifsthat I
need to perform surveillance over a grouptafgetswhile
simultaneously minimizing exposure é&memyunits. In [17],

. RELATED WORK

Multi-objective optimization has been studied widely for
many years in different domains. A solution for a multi-
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shortest path computations that compute a number of pessiltb a particular state: and is defined as,

paths from source to goal and then choose a Pareto efficient

path [19]. Although our methods are initially motivated by~ ~(%) = (L), a(), ..., In()) wherex € X (1)

the techniques presented in [18], we propose a solutionlet X,,, = {z € X : 2N O # 0 where O € O} be

that works by incrementally building and rapidly exploringthe obstacle state space. The collision-free state spaberis

random trees, as in RRT* [11], [10]. We are also focused oi,,.. = X \ X,;,. We define the initial configuration state

generating a single path optimizing all of the objectives. of the vehicle asgy; € X;..., and a set of goal states as
Our ideas are also connected with the method described, ¢ X/,...

in [20] that modifies the RRT* algorithm [11] in order to  Leto be an obstacle-free feasible trajectory that starts from

adopt multiple criteria during expansion. In contrast with;; and leads a vehicle to its goal regidfy;.

this approach our algorithm is able to produce a single path Problem 1: Generation of multi-cost optimal paths for

in terms of multiple costs rather than a number of Paretgervicing vehicles.

optimal paths. Additionally, the weights in ttiichebycheff Given an initial configuration:; and a set of goal stateX;,

method and the weighted sum method [22] used in [2G]nd a collision-free continuous trajectory, : [0,¢] — X frec

can be difficult to tune as different objectives have différe for some time, such thatr(0) = x; ando(t) C X attempts

costs. Instead, our work solves the multi-criteria optatian  to optimizeL.

problem by normalizing the objectives using thiopian We are also interested in finding paths in cooperative

optimal vector [22]. environments. For these scenarios, we will have a number of
Closely related to our work is [16] where the scalarizatiovehicles deployed inside the environment which have a com-

of objectives was also used to get a single objective functiomon objective and perform cooperative behavior. An example

This work starts with a known graph and usé$ search. of such behavior is maintaining visibility for communicati

A modified Bellman-Ford method is used in [3] to assign a Problem 2: Generation of multi-objective optimal paths

normalized label to each node in order to find a multi-créterifor cooperative robots.

shortest path. Another solution that prioritizes one alijec Given a set of friendly robot vehicles;, A, ..., A, with

over another is presented in [5]. This type of hierarchi@ati a common cost,., find a set of collision-free continuous

biases the path mostly towards the top priority objectivarajectories, oy, 05, ...,0, that solve Probleml and best

Also, this solution is limited to a 2D grid and cannot beoptimizel, : X; x X3 x --- x X — R0,

applied in a higher dimensional configuration space.

L IV. METHODS
Another stream of research proposes visibility-based so- ) o . . .
lutions to monitor a number of units in an environment. ©Ur ideas for multi-objective optimal motion planning are

A modified Traveling Salesman (TSP) algorithm was useffedifications to the algorithms proposed by Karaman and

by [15] where the problem was solved without optimizing™r@zzoli [10], [8]. Algorithm 1 presents a procedure that
multiple criteria. computes a trajectory from x; to X based on the sampling

algorithm RRT* [10]. In our modified version, we start a tree
I1l. PRELIMINARIES structure7 (line 1) and continue to expand it by sampling

Consider an environmenty = R2 where a mission is random states.
taking place. LetO = {01,0,,...,0:} be the set of - —
obsta?clgs which are mod{eled as polygéis. The collisiom-fré1901thm 1 MultiObjectiveRRTStar(;q.i)
space is defined a& = W\ O. L Tinit(Tinit)

Let A = {A;, Ay, ..., Ax} be a number of vehicles z for i< 1to K do :

: 1442 ey Bk g _ 3 Tyrand < RandomConfig()
which are deployed, with configuration spacesCs, . . ., Cy, 4 Tpearest < NearestNode(T, Trand)
respectively. The servicing vehicles move inside the bednd 5:  Znew < Steer(Trand, Tnearest)
environment as car-like robots. Therefore the configuration 8:  if ObstacleF'ree(znew, Tnearest, O) then
of each vehicleA; is defined asC; = E x S!. These : Lopt < Choosepare"t(17"6“’“65}1;’27%6”’T)m ,

; ; ; ; ; 8: L+ (1%(x A(Topt, T Zopt) U (@new)
vehicles are like Dubins cars [2], and a given vehielg (*(opt) + c(Topt, Tnew), 2 )
must satisfy differential constraints and dynamics defiagd 9: ;: é T:j}% ijz (‘%‘feg(cxopts Tnew, T)

i = ulcosf,y; = ulsinf, and 0; = Z—%tanufb, whereu!  11-  end if o

is the forward speed andfzb is the steering angle of the 12: end for

vehicle [6]. There are a number of mobile units deployed3: "¢twrn T

in £ that can move freely in the world and are modeled as

point robots without rotation. Accordingly, the configuoat In addition to the state cost(x), we assign edge cost,
for a mobile unit is defined af3; = (z,y) € E. (c1,¢2,...,cy) to an edget;; that connects two successive

Let X be the state space for one servicing vehicle anstatesz; and z;. Here, a cost functior; for a particular
for simplicity assumeX = C,. There aren cost functions objectivei is defined as¢; : X x X — R20,

Ii,ls,...,1, wherel; : X — R29, Each statez € X of the Additive/Non-Additive CostThere are two types of costs
robot is associated with multiple objective costs. Accoglly, assigned to the nodes in a tree. An additive clistis

a vector valued functior, : X — R™ assignsn cost labels cumulative and depends on the parent’s cost andtheost




that connects it to its parent. On the other hand a non-additi
cost!™ is independent and calculated based on the state (e.g

visibility, safety, clearance). = Sggg}('cl(xi,znew), S ;g%i‘l}gx‘ cn (T, Tnew))

The primitives of the Algorithm 1 are similar to other (6)
sampling-based motion planning algorithms [9], [12], [14]

Sampling A tree is initialized in linel of Algorithm 1. A weighting variablea; = [0,1] is assigned to each
In line 3 the methodRandomConfig() samples a random Objectivei to control the effect of the objective cost on a path
configurationz,qna € Xfree. to be planned Whergjlgign a; = 1. This weighting variable

Nearest Node In line 4, Zpearest — is different from that used in scalarization methods [22P][

NearestNode(T, #rang) returns the nodez,earest Of and is only used to define priority. Our algorithm is capable
the treeT that is nearest to the Samp|ed naﬂ%nd in terms of running withouta unlike the methods described in [20],
of a distance metric. [22]. Accordingly, we select a node; € Py as the parent

Steer The methodSteer(z1, z2) is used to solve control (line 7) that yields the minimurmormalizedcosts to come
inputs us and ug and producest,., from z,.,q for a 0 Tnew,

dynamic control system. n Li(z))  cila), Znew)
Collision Checking Method Obstaclefree() checks argmin »  a; [ ZZ*J - j’c* = (7)
whether a path from,,.,, 10 2,,cqre5¢ @voids all the obstacles zi€Px o i i

O and is therefore collision-free.
We completely modified theChooseParent() and
ReWire() methods of standard RRT* to support multiple

Algorithm 2 ChooseParent(,in < Tnearests Tnew, T)

objectives. 1: Xpear < NearestNeighbours(pew, T, O)
20 Dx < {z; € Xpear|Fj Yk lLp(x;) < lp(z;)}
A. Choosing a Parent 30 Px « Xpear \ Dx
4 LF (15, 13, ..., 1)
Algorithm 2 is used to select the best parent, of 5 C* < (cf, ¢, ..., ¢
the newly sampled node,.., in terms of a multi-objective 6 for = € Px do
optimization. We choose a set of candidate nod€s,,.  7: |if > [ll(—x) T M] <

based on a nearness metric (e.g. point distance in Euclidean 3. |:l7:(7«'mm) + ci(imm,wnew)q} then
space) using methot earest Neighbours() in line 1. 8: ot L " €
. . . . . . man

Domination and Non-DominatiorA nodez; € X,cqr IS o: L(Zmin) < L(x)
dominated by another nodg € X, (defined as; < z;) 10 %nfd if
if and only if all then costs ofx; are better than those of g ena for

) . . s return Tmin

x;j. Accordingly the cost vectoE(x;) is dominated by cost

vector L(x;) (denoted byL; < L;).

x; <= xj < Yk lp(z) <lp(z;); where 1 <k <n. (2) B. Updating the Tree
) ) . Different CostslIn line 8 of Algorithm 1, we assign a cost
Therefore the set of dominated nodBs is defined as, label L defined in (1) to the current nods,.., once a parent
g - . Zopt IS selected for that node. Suppose we havadditive
Dx ={#j € Xnear|[Ji w1 < 2} (3) costs andh — k non-additive costs.Additive costsl®(xew )

We only consider the nodes that are not dominated tﬂ}(e distanceare allocated by combining the cost of a parent

another node. Accordingly the set of non-dominated nodédd the arc cost to resembles the total cost from the root
Px comprises théPareto frontier node.

PX — Xnear \ DX (4) l;l(mnew) - lg(mopt) + Ci(xopt; mne'w);v ia 1 S 1 S k (8)

We must select a node from thRareto set Px that Non-additive cost$™* (such agisibility) do not propagate,

best optimizes all the costs. Therefore we first calculage gfind require |n-p,lace computation. The parents cost and
minimum cost tupler* the current node’s cost (computed in-place) are averaged to

assign the cost™*(zyew ).

13 (Topt) + 17 (Tnew)

L* = i l i)y i ln i 5 7 new) — 3 ] <7 <n.
(1§Iir%1\1113x\ (@) 1<i Py | (1)) G G (@new) 2 VI k+1—]—729)
Next, we calculate theurc costs,C = (c1,c2,...,¢p) Node InsertionOnce we know the parent,,; of the newly

associated with arurc, ;new, Which connects the new sampled node:,.,,, we add it to the treg along with the
nodez,., to a nearest non-dominated nogdg € Px. The corresponding edge,,: ne. andarc coste(z). The modified
minimum costsc; designated to an arc for each objective costsL(x,..,) for the involved node are also updated in this
are calculated and the optimum cost tuple for arc costs is:step (line9 in Algorithm 1).



Algorithm 3 ReWire(/', zncw) Algorithm 4 RRTStarCooperative{", 2"

1. Xpear < NearestNeighbours(Tpew, T, O) 1: i+ 0
2: for z € X%e,w do 2: while i < K do
3 f /\1:1(121 (Tnew) + A(ZTnew, ) < 3 Ty — Rand_omConfig() _
1%(x)) and /\?Zk_H 13 (Tnew) < 17%(z.parent) 40 Ty MultzRRT*_Expanszon(ﬂ, Ty)
then 5. @y < RandomConfig()
4 z.parent < Tnew 6: Ty < MultiRRT*_Expansion(T,, )
5 L(2)  (1%(2nen) + (o, @), LlEme) @)y 7 i 2y, # NULL anda, 7 NULL then
& Toupdat B 5 if 1(ry2,) then
: -upaa €($) 9: Vk,l < n,lk :Z?u) < lk(zu) — wk(x,lhxv)
;: en?ﬂn%rIf 10: IV/% L <n,lk(zy) < lk(20) — Wi (T, 7o)
) 11: else
9: return T 12: VEk,1 <mn,l Z‘u) (—lk(zu)quk(zu’xu)
13: VE, 1 < n,lp(xy) < le(zy) + pr(@y, 2v)
14 end if c )
. . 15: PropagateCost(x,, T,
C. Refining Connections 16 PropagateCostExU,'ﬁ)

Algorithm 3 is used to refine the existing connectionst7:  end if
in the neighborhood of a newly connected vertex.,. & €nd while
This procedure makes,.,, the parent of the neighboring

nodesz € X, If this yields better costs compared

to the costs incurred through the current parent. MethdePmpared to the standard RRT* [10], [8]. In order to take
NearestNeighbours() in line 1 computes the nearest nodeCare 0fn objective costs, both of them runtimes more than
set Xeqr- A neighborz € X,,.q, is connected through the the standard RRT* algorithm. Therefore the running time of

newly added node:.., if the following two conditions are ©ur multi-objective RRT* algorithm i€)(n - RRT™), which
satisfied: is a constant multiple of the running time of the standard
RRT*.
g Prpposgion 5.1:|OhooseParemf() selects a non-
Vil<i<k 1% )<l 10 ominated optimal parent.
blsishs nen) + c(@nen, 7) < 1H(2) (10) Proof: (sketch) It is trivial that we select a non-
Vi k4+1<j<n; I7(%new) < 17%(x.parent)  (11) dominated node as a parent as we select it from the non-

L ) . dominated sef’x according to line6 of Algorithm 2.
This implies that we make,.., the parent of the neighboring  \\a  now prove the optimality by contradiction. Let

naode:c if a) thg connecting cost ret_juces the existing Cos(tjhooseParent() selectz, as a parent of a node,c.
[*(x) as shown in (10) and bj,.,, provides a better costthan , hich does not provide the optimal costs and let there
z.parent in terms of non-additive costs* (z). For example, pe 5 parent’ that provides the optimal costs such that:
if a node’s parent has better visibility or safety thag.,,, no [lia)) . ci(@) Tnew) n [lmy) | ci(@pmnen)

then makingr,..., the new parent is not desirable. Algorithm2=i=1 |7 T — e | < 2oy | + =

3 terminates by updating the cost vecfofr) and tree7 in  This contradicts definition (7), where we select the node as
lines 5 and 6 respectively. a parent which minimizes the above cost. Therefargjs

) . . chosen overr;, implies thatz, and x;, cannot be different.

D. Cooperative Path Generation for Multiple Robots This essentially proves that the meth6thoose Parent()

A cooperative scenario is developed when multiple friendlgelects the optimal non-dominated parent in terms of multi-
vehicles want to communicate while optimizing their ownobjective cost. |
objectives. We propose Algorithm 4 where two cooperative Proposition 5.2: ReWWire() computes the optimal parent
trees7,, and7, expand in parallel while affecting each other." térms of multiple cost vectaL in a particular treey .

Lines 4 — 10 from Algorithm 1 are used for their expansion Proof: (sketch) This is trivial from the conditions in .(10)
(called in lines4 and 6 of Algorithm 4). A functioni. : and (11) where the current parent of a nade XTW"' IS
X xX — {0,1} is defined that checks whether the two newlyFhanged to the newly sampled nadg.., if and only if zc.
sampled vertices,, =, of the two trees cooperate (in ligg. 'S Petter in alln cost metricsl, wherel < k < n. See line
A reward functionuy, : X x X — R>0 is defined that helps to 3 ©f Algorithm 3. u

o Proposition 5.3: A solution patho is a non-dominated
decrease the costs for objectivef the two nodes cooperate solution for a particular MultiObjectiveRRT* treg.

(lines9 —10). Otherwise, a penalty functiop, : X x X — Proof: (sketch) It is a necessary condition that a subpath
R=" is used to increase each of the costs (lifs13). Inthe  of an optimal path generated by RRT* is also optimal. From

cases of non-cooperative planning scenarios, the rewatd aropositions 5.1 and 5.2, we guarantee that the local sub-
penalty functions are swapped. FinallyyopagateCost() is  solutions are non-dominated. This implies that once aTree

used in linesl5 — 16 to pass the effect of the updated cosis generated, the corresponding paths a non-dominated
down towards all the nodes throughout the child chain.  path. ]

V. ANALYSIS VI. CASE STUDIES

Running Time AnalysisThe main modification in our  We developed an implementation of multiple cost vectors
proposed model is implemented in Algorithms 2 and 3n top of the MIT SMP library [7] that was originally devel-




RRT* MuliObjectiveRRT~ The path forA; (green) first covers uniB; and turns

oz towards the unif3; to optimize visibility and path length after
= > = 500 iterations in Figure 3(a). Similarlys’s path (red) makes

\ a turn to maximize visibility and then follows the optimal
distant path.

The weighed sum and Tchebycheff [22], [20] methods

acteristics as shown in Figure 3(b). In Table I, we provide

biased towards a particular objectivd;’s trajectory opti-
mizes path length whilel,’s trajectory is mostly out of the
visibility range of unitBs.

In Figure 3(c), we present the result aft#i00 iterations

trajectory (red one) with a slightly increased visibilitg a

o d .
©) (d) presented in Table I.

Fig. 2. Trajectory finding for a car-like vehicle while mamiing the blue . . .

circular landmark:”(a) Standard RRT* tree and trajectorgre00 iterations. Finally we ran the methods fd¥000 iterations as shown

The purple rectangle is the initial position and the yelloggion is the i
oal. (b) Our MultiObjectiveRRT* tree and tragectory afte@0 iterations. in Figures 3(e) and (f). Our method converged to a near

c) Standard RRT* tree after 3000 iterations.

_ d) Our MutfieztiveRRT*  optimal non-dominated solution. On the other hand, the
tree after 3000 iterations.

slightly increased visibility .47 vs 0.53) and a longer path

oped by the authors of RRT*. We modeled a problem based

on Figure 1 where a number of point robdts, B, ..., B, MuTtiObjectiveRRT* || Weighted Sum Scalarizatioh
must be served through visible light communication [21] by 4§
number of serving vehicles (Dubins cark), Ao, ..., Ax. An
optimal trajectoryr maintains visibility while optimizing the
traveling distance from the starting location (purple) e t
goal location (yellow). Additionally, there might be a nuetb
of friendly units we want to observe and a number of enem
units we want to avoid.

A. Case Study 1: Single Unit Visibility and Patrolling

In Figure 2, we present a case where a single vehicle
present to serve the blue unit while avoiding an obst&dzle
at the middle of the map. An optimal trajectory is required tg
minimize the traveling distance and maximize LoS visibilit
to the unit.

Figure 2(a) and (c) are the resulting tree and trajector,
(red) that are computed by the standard RRT* [10] algorithn
after 500 and3000 iterations respectively. We then apply our
algorithm and the results are shown in Figure 2(b) and (d).
Clearly the red trajectoryr of Figure 2(b) is better than
Figure 2(a) as it is more visible to the unit. Similarly the
path converges to optimality in terms of both length and
visibility as shown in Figure 2(d) afte3000 iterations while
the standard RRT* in Figure 2(c) only optimizes the length

B. Case Study 2: Two Vehicles, Two Units

In Figure 3, we present a more complex case where two
blue unitsB; and By need to be monitored by two Dubins (€)

vehicles A; and A; while reaching their respective goal Fig. 3. Dubins car trajectory finding for two car-like robowehicles start
. . from two small rectangular positions (purple coloredg{: @)r MultiObjec-
regions. Figure3(a), (c) and (e) are the results from 0l4|\'/eR?T* Itre_e and grajec}]oré/ aff{er g(())%lyeratlpns. ((b))Ré Fﬁemt_P*wel Ogeod
i i m (scalarization) method after iterations. (C) OURtMRRT* at
algorithm and Figure 3(b), (d) and (f) are the outcomes qqférations_.gge Tehebychel (Scalarization) method aB800 flerations. (€)
the weighted sum anf@ichebychefimnethods used in the state Our Multi RRT* after 5000 iterations.(f) Tchebycheff (sagization) metho

of art [22], [20] solutions. after 5000 iterations.

both use scalarization of objectives and show similar char-

a numerical comparison of our method with these prevalent
techniques. We found that these methods frequently become

which achieves good compromisation between length and vis-
ibility. However, the weighted sum method generates longer

Tchebycheff method generated the green trajectory with a



TABLE |
TRAJECTORYANALYSIS IN TERMS OFMULTIPLE OBJECTIVES
lteration | Objective | Tchebycheff| Our Multi RRT*
500 Visibility 0.62 0.46
Distance 98 111
Vehicle 1 2000 Visibility 0.81 0.46
Distance 106 111
Visibility 0.47 0.53
5000 Distance 91 88
500 Visibility 0.80 0.58
Distance 83 96
Vehicle 2 2000 Visibility 0.80 0.58
Distance 103 96
5000 Visibility 0.55 0.58
Distance 117 96 (a) (b)
Fig. 4. (a) Cooperative path generation using MultiObjed®RT* Algo-
ritﬁm; (b)(l\%ultiotﬁ)jectiveRgT* pgath generation %vithout queration. 9

(91 vs 88). The red trajectory generated by our method is very
short compared to the trajectory generated by the Tchelffyche
method 06 vs 117) with very good visibility cost (.58).

C. Case Study 3: Cooperative Motion Planning

A case is presented with two vehiclds, A, and two units
By, Bs in Figure 4. A, is assigned to monitoB; and A, 2l
is assigned to monitoB,. Additionally, an extra cooperative 3]
costl.(z1,z2) is assigned that allows a rewarcdto the costs
of A; and A; when they are visible to each other. Otherwise[4]
it incurs a penaltyp on the costs of the states, =2 (See
lines8 — 14 of Algorithm 4). In Figure 4(a), we see that the [5]
paths of the two vehicles attract each other while keepingg)
visibility to their respective blue units. In contrast, &g 4(b)
is the outcome of MultiObjectiveRRT* where the vehicles [7]
only keep proximity to their assigned blue units and finishyg;
the calculated paths without cooperation.

VIl. CONCLUSIONS ANDFUTURE WORK E)

In this paper, we formulated the problem of a group of'%
units that need to monitor a group of targets in a contestjgll
environment as a multi-objective optimal motion plannin
problem. We presented modifications to optimal sampling-
based planning algorithms to include multiple objectived a [12]
non-additive costs. Additionally, we proposed algorithiest
can handle cooperative missions based on the ideas in [g;
We found that our proposed system can generate better p {14:?
than the weighted sum and Tchebycheff model [20] fo
certain types of motion planning problems. Several intergs |15
directions are left for future work.

Multi-optimality problems in motion planning appear nat-[16]
urally in several practical domains. The modifications of
Algorithm 1 should work for other motion planning problems.
An immediate goal would be testing the performance of thg7
multi-objective addition to RRT* on benchmark problems
in manipulation of an articulated robot body to see itd!8l
performance.

We also want to extend the possible set of multi-objectivgg
missions in contested environments. Simple extensions wj
include modeling moving units as unmanned aerial vehicles
(UAVs) that want to maintain a connected visibility network
Following such units to cover them makes the problerf?ll
more complex where a tuning among velocity, safety, and
monitoring is required. We believe that the proposed systeppp;
can be a useful aid to calculate a feasible solution in these
complex scenarios.

(1]
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