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Abstract— Traditional environmental and structural monitor-
ing often uses static sensor networks deployed at predetermined
locations or mobile robots that use a rastering technique for
area coverage. These methods rely on the operators making
assumptions about the nature of the unknown field that is
being measured and are often time-consuming for localizing an
area of interest. Here, we aim to quickly localize possible leaks
within high-level nuclear waste tanks at the Hanford facility.
The structure of these tanks precludes most sensor network
approaches and raises many issues with robotic inspection,
such as navigation within highly constrained environments.
This work uses a Bayesian Optimization approach for guiding
a mobile robot’s search strategy and implements a utility
function that allows for prior knowledge of the structure
to be incorporated when selecting future search locations.
Compared to traditional exhaustive approaches, our method
quickly reduces RMSE error and shortens the distance the
robot must travel.

I. INTRODUCTION
During World War II and the Manhattan Project, large

amounts of high-level radioactive waste were generated.
Some of these wastes are in liquid form and stored in large
double-shell tanks at the Hanford Facility in Washington
state. These structures are now in a surveillance and mainte-
nance phase requiring continuous monitoring to check for
containment failures. Contamination of these and similar
structures can result from leakage, and one tank has been
confirmed to have leaked [1].

Localizing the source of these potential leaks is difficult
due to the structure of the tank: the tanks are buried approx-
imately 4.5m underground, and the bottom of the tank is
another 14m deeper with a diameter of 23m, as illustrated in
Figure 2(a) [2]. Inspection of the structural integrity of the
tanks can only be accessed via narrow annuli at ground level,
further complicating sensor deployment. Moreover, this only
serves to reach the tank along its perimeter. Access to the
rest of the tank bottom must be done through a series of
narrow ∼4cm cooling refractory slots located at the bottom
of the tank. We might consider deploying a sensor network
throughout the refractory slots. However, the sensors may
interfere with the air being circulated through the slots, or the
moving air could dislodge the sensors. Moreover, deployment
in such a constrained environment faces the issues of how
to transport and attach the sensors, and how to power and
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communicate with them over extended periods. Existing
inspection approaches use a pole-mounted camera; however,
this can only inspect the perimeter of the tank and the
outermost segment of the refractory slots. Furthermore, pole-
mounted visual inspection requires that operators manually
inspect each of the refractory slots [3], leading to a labor-
intensive, time-consuming process.

There are sampling methods such as [4] which attempt
to perform a spatial extrapolation given samples at selected
discrete locations. Care must be taken when selecting and
adapting a sampling approach, as an inappropriate regres-
sion model or utility function may cause problems ranging
from non-representative samples to overlooking an important
location. Furthermore, inaccurate estimations of the spatial
variability can lead to incorrect modeling of the underlying
field and contamination properties.

In this paper, we present a methodology for automat-
ing and improving the inspection process of these tanks.
We propose an Adaptive Informative Path Planning (IPP)
approach that would allow a miniature robotic rover to
inspect the tank for locations of interest efficiently. The
IPP algorithm incorporates prior knowledge about the tank
structure, balances exploration and exploitation to initially
locate and then refine the points of interest, and also accounts
for the robot’s movement constraints.

The rest of the paper is organized as follows: In Section
II, we review existing approaches to IPP, including relevant
similarities, and the major differences to our domain. In
Section III, we define the environment and problem being
tackled, and Section IV describes our approach. Sections V
and VI cover the simulated trials, and an analysis of the
results. In Sections VII and VIII we offer a discussion of
the results obtained and final conclusions.

II. RELATED WORK

IPP has broad applicability, used to localize points of
interest in forests, oceans, and disaster areas [5], and contains
myriad domain-specific issues which can render existing
approaches insufficient. Traditional localization such as [6]
often uses a rastering (zig-zag) pattern to cover an area to
map it, or execute a minimum-cost tour of locations deter-
mined to be most informative a priori [7]. These approaches
may take a long time to localize the source if it is opposite
to the starting position.

Adaptive sampling aims to provide better results with
less time by actively adapting its sampling locations. In
this work, we utilize a modified Gaussian Process - Upper
Confidence Bound approach (GP-UCB) [8] to efficiently



select sampling locations. The goal is to deploy a robotic
system for localizing radioactive leaks, and thus has some
similarities to [9], [10] where robots are fitted with optical
and radiation sensors to find radiation sources, and [11]
which has a strong showing of aerial vehicles and their
associated mapping techniques. The approach in this paper
differs in its unique environment and the resulting constraints
such as limited robot movement.

Unlike some existing IPP approaches which rely purely
on the informativeness of possible sampling locations [12],
we also incorporate robot dynamics such as movement and
tether constraints that limit the robot’s ability to visit specific
locations easily. This idea bears some resemblance to work
by [13], [14] where a Gaussian Process is used to model
both the phenomenon and the quality of possible paths. With
regards to path-planning, we look to Brass et al. [15] which
performs path planning for a tethered robot given polygonal
obstacles, and Kim et al. [16] which use a Multi-Heuristic A∗

algorithm to find paths for a tethered robot with a homotopy
invariant augmented graph. For the robot to navigate between
the vertices in the graph representation of the refractory slots,
we use a modified A∗ algorithm similar to that of [17].

III. PROBLEM FORMULATION

The goal of inspecting the tanks is to detect anomalies
- in this case, leaks. As a proxy for finding the leak, we
use the temperature distribution at the bottom of the tank,
which would be impacted by the presence of a leak. We
seek to create a map of the temperature distribution at the
bottom of the tank - which is represented by an unknown
scalar field f : Rd → R, from samples Y selected from a
set of potential sampling locations V . Given the samples,
we wish to find the location with the highest temperature,
corresponding to the most likely source of a leak. Moreover,
we desire to select the sampling locations which best update
the model, but also reduce the overall distance traveled while
respecting the kinematic constraints of the robot. Complete
coverage would map out the entire tank, lending itself to an
exhaustive approach. This formulation instead seeks to find
the leak more quickly than a traditional exhaustive approach.

The approach and simulation in this work were designed
for deployment in the Hanford facility double-shell tanks.
These tanks are composed of an inner tank that holds the
high-level liquid radioactive waste and an outer shell serving
as a fail-safe if the inner tank leaks. Figure 1 illustrates a
cutaway view of the tank, indicating the inner storage vessel,
refractory slots, and the gap between the inner and outer tank
walls. Here, we will describe the structure in further detail.

A. Refractory Slot Structure

Sandwiched between the bottom of the two tanks is a
series of air distribution slots seen in Figure 1, also known
as refractory slots. This system cools the primary tank and
provides an avenue for inspecting the bottom of the inner
tank without actually entering the tank itself. The tanks were
built over multiple years and have slightly varying refractory
slot designs. We focus on the design of the AY-series tanks,

Fig. 1: Tank cutaway showing the inner and outer shells,
refractory slots, and annulus at the sides of the tanks.

(a) (b)

(c)

Fig. 2: Tank Structure

(a) Tank cutaway showing buried tank and access annulus. (b) The
layout of the refractory slots at the bottom of the tanks. (c) View
from (b) with the addition of weld seams. (d) View from (c), with
locations where refractory slots intersect weld seams highlighted.

which consist of ∼4cm-wide slots arrayed radially outwards
as in Figure 2(b).

We model the refractory slots as a graph, with the slots
represented as edges E, and the forks as vertices V . The
robot cannot execute tight turns (cannot turn at a fork to go
down a parallel slot). Given this graph structure, we only
considered vertices as valid sampling locations, rather than
the continuous plane representing the tank floor. As such, we
introduce additional evenly-spaced vertices along edges such
that a minimum desired sampling resolution is achieved.

The bottom of the tank is formed by multiple steel plates
welded together, meaning that there are weld seams between



the various plates. These weld seams run in a pattern as in
Figure 2(c), with occasional overlaps along the refractory
slots indicated by the purple points in Figure 2(d). Many
of the seams had initial high rejection rates, and have been
reworked [18]. Due to the rework, their integrity may be
compromised, making them of higher interest.

B. Temperature Distribution Modeling

Searching for the leak, we might initially consider search-
ing for the liquid that has leaked out. However, there are con-
founding factors such as seepage from other sources, as well
as desiring to avoid the robot coming into contact with the
contamination. We might also mount a radiation sensor to the
robot; however, a typical radiation sensor would not fit within
a refractory slot. Moreover, radiation roughly follows an
inverse-square law, making localization difficult. Instead, we
look towards temperature as a proxy measurement as these
sensors are small and sensitive to temperature variations.
The Gaussian nature of temperature assists in localizing the
leak. The source of the leak corresponds to the peak, and
moving further away from the leak leads to a decaying signal.
The model was generated using a 2-dimensional multivariate
normal distribution with a probability density function such
as that in [19], with mean vector M , a randomly-generated
positive definite covariance matrix Σ. Further details about
the model can be found in Section V.

C. Regression

Gaussian Processes provide a method for modeling un-
known fields non-parametrically. Here, we aim to efficiently
derive a Gaussian Process regression through a process
such as that described in [19]. Given a set of N sampling
locations, each location xi ∈ R2 has a noisy measurement
yi ∈ R given by y = f(x)+ε where f(x) is the ground-truth
and ε ∼ N (0, σ2

n). The predicted mean u∗ and covariance
σ∗ at a specific target location x∗ ∈ X∗ is given by:
µ(x∗) = K(x∗, X)K−1X y
σ(x∗) = K(x∗, x∗)−K(x∗, X)K−1X (X,x∗)
where K(X ′, X ′′) is the covariance matrix, X are the

sampled observation locations, and KX = K(X,X) + σ2
nI .

For the covariance function, our implementation uses a
Matérn kernel. This kernel was chosen as a finitely differen-
tiable kernel can better model physical processes, and does
not assume as much smoothness as other kernels - such as the
infinitely differentiable Squared Exponential kernel - which
can yield unrealistically smooth results when modeling a
physical process [20]. The Matérn kernel is described as:

k(xi, xj) = σ2 21−ν

Γ(ν)

(√
2ν
d

ρ

)ν
Kν

(√
2ν
d

ρ

)
(1)

Here, xi, xj are two locations and d is the distance
between them, which is parameterized by ρ > 0. We control
the smoothness of the function via ν > 0. Γ is the gamma
function, and Kν is the modified Bessel function of the
second kind [19]. We select ν = 1.5 (a once-differentiable
function) to avoid having to compute the Bessel function,
allowing for a roughly 10 times faster computation. For

optimizing the kernel’s parameters, we use the Limited-
memory BFGS (L-BFGS-B) [21] optimization algorithm,
which has linear memory usage. The first run of L-BFGS-
B is done with the kernel’s initial parameters, and then an
additional n restarts using θ derived from a random log-
uniform distribution within the allowed bounds.

D. Robot

In this work, we model the robot as a point robot, capable
of moving along edges in the graph from one vertex to
another. To simplify the problem, we assumed a movement
speed of 0.3m/s and a sampling time of 10s when measuring
the temperature at a location. The robot has a tether, which
was selected to be long enough to allow the robot to access
any point in the refractory slots, but short enough that the
furthest location would require using all the length of the
tether with minimal slack. This tether is needed to:
• Power the robot
• Send / receive commands and sensor data
• Allow for removal of robot in event of system failure
The tether limits the distance the robot can travel and

constrains its movement (loops and tight turns are not
possible). The most noticeable effect of the tether is that the
robot cannot completely circle the tank, and must instead
retract to the insertion point and then go the other direction
when reaching locations on the far side of the tank. This
constraint can be seen in Figure 3(d), where the robot must
circle back before exploring the other half of the tank.

IV. GAUSSIAN PROCESS MODELING AND
SAMPLING LOCATION SELECTION

We begin by accepting as input a graph (G = (V,E))
representation of the refractory slots, and discretizing the
graph to the desired resolution by inserting additional ver-
tices along the edges as needed. This process allows us to
approximate the continuous sampling space using a simpler
discrete representation. The vertices also encode the angles
between each other, preventing the robot from attempting
tight turns which would cause the tether to become stuck.

These restrictive constraints permit the solution to be used
in similar environments such as the tanks at the Savan-
nah River National Laboratory [22], or the Waste Isolation
Processing Plant (WIPP), which also has a channel-like
structure. This method can also be applied to more traditional
open environments. If a graph structure is not initially
available, a Voronoi decomposition or cell decomposition
[23] may be used to generate a graph.

The approach consists of a modified Upper Confidence
Bound algorithm: Given the current state of a Gaussian
Process Regression, we use the predictive output mean µ∗

(Exploitation) and variance σ∗ (Exploration) at the candidate
sampling locations S, which is initially equivalent to V .
Weld seam bias w serves to increase the expected utility
of prospective sampling locations that lie on top of a weld
seam, given the expected higher failure rate of weld seams
due to their high initial rejection rate.
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Fig. 3: Example Robot Trajectory

(a) Isometric view of a Gaussian-Process-like temperature distribu-
tion (with the peak being the leak source) overlaid on refractory
slots. (b) Overhead view of (a). (c) Example time representation of
a robot moving through refractory slots, where the vertical z-axis is
movement through time. (d) Time representation of a robot moving
through refractory slots using an exhaustive approach.

The exploitation and exploration values are normalized at
each step t ∈ T , with regards to the highest-valued predicted
output in the set S. The weld seam value is set to a constant
w = 1. These elements are then respectively weighted by λ,
where ∀i ∈ λ|i ∈ [0, 1] to yield: utility = λ · [µ∗, σ∗, w],
such that utility ∈ [0, 3], where locations with a higher value
are deemed more desirable.

We will now cover each of the parameters in detail, and
how they affect the model’s behavior.

1) Exploration vs Exploitation: We begin by discussing
the most critical component of the modified UCB algorithm:
the trade-off between exploration and exploitation.

We start by constructing a distribution that describes the
Gaussian Process we are looking to reconstruct. Adding more
observations, the distribution improves, and the uncertainty
(variance) diminishes near sampled locations allowing us
to determine which locations need to be further explored.
The UCB algorithm shown in Algorithm 1 is drawn from
[13], [24], and selects a new sampling location based on the
weighted mean and variance. A higher mean biases to rapid
localization and a higher variance to total coverage. This
process is done by finding the maximum of the UCB utility
function, which serves as a computationally simpler proxy
for the task of regression [25], [26]. We must also set α,

Algorithm 1: Bayesian Optimization

1: Input: Possible sampling locations V , Utility function
U , Update Rate r, Number of samples to take n

2: S′ ← V
3: for t ∈ [1, n] do
4: Evaluate U(s) over S′

5: x← argmax U(s)
6: Sample(x)
7: S′ ← S′\x
8: if t%r == 0 then
9: UpdateGP (x)

which is the value added to the diagonal of the kernel matrix
when fitting the model. Small values correspond to less noise,
whereas high values indicate greater noise, equivalent to
using an additional White Kernel. Here, we set α = 0.2,
which roughly correlates to the +/ − 2◦C error margin of
the temperature sensor model.

2) Weld-Seam Bias: The previous section assumes that
the only way to gather information is via new samples.
However, we know that the weld seams are more prone to
failure than the steel plates themselves. With this in mind,
we can bias our search to prioritize weld seams that intersect
our available sampling locations (Figure 2(d)) by adding the
weighted parameter w to the utility function. For vertices
that lie on a weld seam x ∈ Vweld, we add the weighted w
to the utility; otherwise, the value is 0.

V. SIMULATION

Simulation consisted of a series of 200 independent trials,
each with a randomly generated hot-spot representing a leak.
The hot-spots exhibit a distribution that can be described
by a Gaussian Process, and the peak of each hot-spot lies
within the bounds of the tank. One hundred of these trials
had the hot-spot centered on a randomly-selected location
along a weld seam, to reflect the higher failure rate expected
of weld seams compared to the plates themselves. The other
100 trials had the hot-spot generated at a random location
within the bounds of the tank. A visualization of this can be
found in Figure 4.

Without loss of generality, the hot-spot peak intensity
(mean) was set to 100, while the covariance along the x, y
axes was randomly selected from the range [4.5, 18]. This
range was selected as 4.5m is approximately the maximum
distance between two refractory slots - therefore the mini-
mum size for at least one refractory slot to intersects the hot-
spot. The upper value of 18m corresponds to 4 times 4.5 and
was used to provide a varying range of spread. The resulting
hot-spot was then used to evaluate the various weighting
schemes.

While executing a trajectory, the robot would sample if
it visited a previously un-sampled location, and remove that
location from the candidate pool of future sampling locations
S. The regression was fitted at every 3rd new sample. This
process continued until all vertices in the graph had been
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Fig. 4: Example visualization of distributions.

(a) Averaged location of distributions centered on a random location
coinciding with a weld-seam over 100 trials. (b) Averaged location
of distributions placed randomly throughout the tank over 100 trials.
On average 3ft away from the nearest weld seam.

visited and sampled. Apart from IPP, an exhaustive approach
was executed against the same distributions to establish a
baseline. The exhaustive approach used the trajectory shown
in Figure 3(d) where x, y are the planar coordinates, and z
represents time.

The algorithm terminates when there are no more sampling
locations. An operator could ostensibly specify stopping
criteria of either a minimum overall variance or if a high
enough signal is found (which would be known ahead of
time given the contents of the tank).

VI. ANALYSIS

Testing of the different weighting schemes was done by
comparing their Root Mean Square Error (RMSE) for the
predicted value at locations throughout the tank, defined as:
RMSE(µ) =

√
1
n

∑n
i=1(Yi − Ŷi)2 where Y is the vector

of ground-truth values, and Ŷ is the vector of n predictions.
The resulting non-negative loss-value is a measure of

accuracy indicating the difference between the predicted
values and the ground truth, where a value of 0 is the best
score, and larger values correspond to a worse-performing
model. We will also refer to “local RMSE” as the RMSE for
a region surrounding the distributions’ center, with a diameter
of 1σ, the spread given by the covariance of the distribution.
This is done to illustrate the performance of the regression
for the point of interest, rather than the entire area.

A. Illustrative Examples

In this section, we outline the weighting schemes that best
illustrate how different strategies can affect the performance
of the approach described above.

1) Randomly-Located Leaks: We begin by focusing on
a model tank where the leak is generated at a random
location. In Figure 5, we compare the average performance
among the different weighting schemes across the 100 trials.
The y-axis indicates the average local RMSE score every
time the regression was updated, and the x-axis shows
the average time-step at which the regression was updated
across all trials. The models initially begin at an RMSE of
approximately 31.

Fig. 5: RMSE performance of various weighting schemes
given leaks created in random locations throughout the tank.
The y-axis corresponds to the RMSE, and the x-axis indicates
the average sampling step at which the corresponding score
was achieved.

As the leaks are randomly-located, the weld-seam weight
is set to 0 in all cases. The traditional exhaustive approach
performs as expected, with a steady decrease in the local
RMSE. An Exploration-based approach of λ = [0, 1, 0] will
naturally perform poorly, as this will make the robot alternate
between each side of the tank to visit the largest remaining
unexplored region. Switching over to an Exploitation-based
approach of λ = [1, 0, 0], we find a remarkably better per-
formance than either the exploration or exhaustive methods
as the robot quickly converges on the location with the
highest temperature. Attempting to combine exploration and
exploitation as λ = [1, 1, 0] results in the robot occasionally
moving to distant parts of the tank which have high uncer-
tainties.

2) Weld-Seam-Biased Leaks: We now turn our attention
to the trials where the leaks were created over weld-seams.
The accompanying results can be found in Figures 6, 7. The
baseline using the exhaustive approach closely resembles that
of the previous trials with a randomly-located distribution,
beginning at an RMSE of ∼31, and eventually decreasing to
∼5. However, we are primarily concerned with how quickly
we can localize the leak. If we consider the threshold to
be a 50% reduction in the local RMSE (to be conservative,
an RMSE of 15), then an exhaustive approach reaches this
threshold at sampling step 6, 147. Using the previous-best
weighting scheme of [1, 0, 0], we reach a > 50% reduction
of the local RMSE by step 3, 257, or almost half the time
of the exhaustive method. Taking into account our prior
knowledge about weld-seams having a higher failure rate,
we compare this with λ = [1, 0, 1]. Incorporating prior
knowledge provides a slight advantage, shaving off 21% of
the exploitation approach to a sampling step of 2, 584, or
almost 42% of the exhaustive approach. Incorporating the
exploration weight (λ = [1, 1, 1]) again shows the same issue
as before, giving slightly worse results.



Fig. 6: RMSE performance of various weighting schemes
given leaks biased to weld-seams. The y-axis corresponds
to the RMSE, and the x-axis indicates the average sampling
step at which the corresponding score was achieved.

VII. DISCUSSION

A. Path-Planning Considerations

A common theme throughout the results shown above
is the harsh implicit penalty for moving. In a continuous
plane, a robot can easily move from one location to the
next. In the case of the refractory slot structure, moving
between locations requires the robot to exit the refractory
slot, circle the tank, and then enter a different slot, leading to
substantial movement costs. Movement is further constrained
by the tether forbidding any turns within the forked refractory
slots. Therefore exploration is heavily penalized, as seen in
strategies favoring σ.

Readers may notice that the exhaustive approaches have a
slight plateau in the middle of their runs. This result is due
to the structure of the exhaustive approach path, which must
explore one half of the tank, and then circle back before
exploring the other half due to the robot’s tether constraint.
During the circling back of the robot, the regression will be
unaffected as those locations have already been sampled.

B. Leak Behavior and Effects on Weighting Performance

The trials shown here were all simulated with a single
distribution (representing a single leak). In the event of two
or more simultaneous leaks, we expect that slightly favoring
Exploration (σ) might yield better performance as it would
help in avoiding the robot becoming stuck on a local max-
imum. In the case of no leaks and even signal distribution,
an exploitation approach will tend towards a random walk,
and an exploration approach will travel between locations of
high variance.

We might also consider situations where the leak takes on
an elongated shape. This has not been explicitly modeled;
however, we expect that if there is some bias for exploitation,
it would seek the peak, and might miss parts of the leak that
have a lower intensity. In the future, we plan to examine how
the model performs given multiple unknown distributions,
including elongated leaks.

Fig. 7: Sampling steps to reduce the local RMSE to 50% of
the original value. Results shown are with regards to weld-
seam biased leak locations.

C. Performance

As was previously shown in Section VI, we find better
performance using an appropriate weighting scheme such
as λ = [1, 0, 1] than an exhaustive approach. Of interest is
not just the overall reduction in the average time needed
to localize the point of interest, but also the dispersion. In
Figure 7 we show the whisker plot for various schemes
when operating in a weld-seam-biased tank. Of particular
importance is the high variability of the exhaustive approach,
and the lower variability of the UCB techniques.

VIII. CONCLUSIONS
In this paper, we illustrated a methodology for localizing

potential leaks at the Hanford Facility high-level waste
tank farm. We provide simulation results and an analysis
of the results indicating that the solution is feasible and
reduces time compared to a traditional rastering exhaustive
approach. The solution works with a tether constraint and
utilizes a weighting matrix to allow for operator-defined
bias towards exploration or exploitation easily. This work
can also be used when surveying other types of structures
and buildings, allowing for effective remote characterization,
assisting operators to make better decisions about what areas
need decontamination. We have also developed the robotic
mini-rover with a video camera and performed preliminary
testing in mock-up refractory slots [27], [28]. We are now
working to integrate temperature and other sensors. Future
directions for this work include deployment within the actual
working tanks, and applying these techniques to a radiation
signal rather than temperature.
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