
OverviewofAnnotationCreation:
Processes andTools

Mark A. Finlayson and Tomaž Erjavec

Abstract

Creating linguistic annotations requires more than just a reliable
annotation scheme. Annotation can be a complex endeavour potentially involv-
ing many people, stages, and tools. This chapter outlines the process of creating
end-to-end linguistic annotations, identifying specific tasks that researchers often
perform. Because tool support is so central to achieving high quality, reusable
annotations with low cost, the focus is on identifying capabilities that are nec-
essary or useful for annotation tools, as well as common problems these tools
present that reduce their utility. Although examples of specific tools are provided
in many cases, this chapter concentrates more on abstract capabilities and prob-
lems because new tools appear continuously, while old tools disappear into disuse
or disrepair. The two core capabilities tools must have are support for the chosen
annotation scheme and the ability to work on the language under study. Additional
capabilities are organized into three categories: those that are widely provided;
those that often useful but found in only a few tools; and those that have as yet
little or no available tool support.

Keywords

Annotation creation · Annotation processes · Annotation workflow · Annotation
tooling

M.A. Finlayson
Florida International University, Miami, Florida, USA
e-mail: markaf@fiu.edu

T. Erjavec (B)
Jožef Stefan Institute, Ljubljana, Slovenia
e-mail: tomaz.erjavec@ijs.si

© Springer Science+Business Media Dordrecht 2017
N. Ide and J. Pustejovsky (eds.), Handbook of Linguistic Annotation,
DOI 10.1007/978-94-024-0881-2_5

167



168 M.A. Finlayson and T. Erjavec

1 Annotation: More Than Just a Scheme

Creating manually annotated linguistic corpora requires more than just a reliable
annotation scheme. A reliable scheme, of course, is a central ingredient to successful
annotation; but even the most carefully designed schemewill not answer a number of
practical questions about how to actually create the annotations, progressing from raw
linguistic data to annotated linguistic artifacts that can be used to answer interesting
questions or do interesting things. Annotation, especially high-quality annotation
of large language datasets, can be a complex process potentially involving many
people, stages, and tools, and the scheme only specifies the conceptual content of
the annotation. By way of example, the following questions are relevant to a text
annotation project and are not answered by a scheme:

• How should linguistic artifacts be prepared? Will the originals be annotated
directly, or will their textual content be extracted into separate files for anno-
tation? In the latter case, what layout or formatting will be kept (lines, paragraphs
page breaks, section headings, highlighted text)? What file format will be used?
How will typographical errors be handled? Will typos be ignored, changed in the
original, changed in extracted content, or encoded as an additional annotation?
Whowill be allowed tomake corrections: the annotators themselves, adjudicators,
or perhaps only the project manager?

• How will annotators be provided artifacts to annotate? How will the order of
annotation be specified (if at all), and how will this order be enforced? How
will the project manager ensure that each document is annotated the appropriate
number of times (e.g., by two different people for double annotation).

• What inter-annotator agreement measures (IAAs) will be measured, and when?
Will IAAsbemeasured continuously, on batches, or on other subsets of the corpus?
How will their measurement at the right time be enforced? Will IAAs be used to
track annotator training? If so, what level of IAA will be considered to indicate
that training has succeeded?

These questions are only a small selection of those that arise during the practical
process of conducting annotation. The first goal of this chapter is to give an overview
of the process of annotation from start to finish, pointing out these sorts of questions
and subtasks for each stage.Wewill start with a known conceptual framework for the
annotation process, theMATTER framework [29] and expand upon it. Our expanded
framework is not guaranteed to be complete, but it will give a reader a very strong
flavor of the kind of issues that arise so that they can start to anticipate them in the
design of their own annotation project.

The second goal is to explore the capabilities required by annotation tools. Tool
support is central to effecting high quality, reusable annotations with low cost. The
focus will be on identifying capabilities that are necessary or useful for annotation
tools. Again, this list will not be exhaustive but it will be fairly representative, as
the majority of it was generated by surveying a number of annotation experts about
their opinions of available tools. Also listed are common problems that reduce tool



Overview of Annotation Creation: Processes and Tools 169

utility (gathered during the same survey). Although specific examples of tools will be
provided in many cases, the focus will be on more abstract capabilities and problems
because new tools appear all the timewhile old tools disappear into disuse or disrepair.

Before beginning, it is well to first introduce a few terms. By linguistic artifact,
or just artifact, we mean the object to which annotations are being applied. These
could be newspaper articles, web pages, novels, poems, TV shows, radio broadcasts,
images, movies, or something else that involves language being captured in a semi-
permanent form. When we use the term document we will generally mean textual
linguistic artifacts such as books, articles, transcripts, and the like.

By annotation scheme, or just scheme, we follow the terminology as given in
the early chapters of this volume, where a scheme comprises a linguistic the-
ory, a derived model of a phenomenon of interest, a specification that defines the
actual physical format of the annotation, and the guidelines that explain to an
annotator how to apply the specification to linguistic artifacts. (chapter “Designing
Annotation Schemes: From Model to Representation” by Ide et al.)

By computing platform, or just platform, we mean any computational system on
which an annotation tool can be run; classically this has meant personal computers,
either desktops or laptops, but recently the range of potential computing platforms
has expanded dramatically, to include on the one hand things like web browsers
and mobile devices, and, on the other, internet-connected annotation servers and
service oriented architectures. Choice of computing platform is driven by many
things, including the identity of the annotators and their level of sophistication.

We will speak of the annotation process, or just process, within an annotation
project. By process, we mean any procedure or activity, at any level of granularity,
involved in the production of annotation. This potentially encompasses everything
from generating the initial idea, applying the annotation to the artifacts, to archiving
the annotated documents for distribution. Although traditionally not considered part
of annotation per se, we might also include here writing academic papers about
the results of the annotation, as these activities also sometimes require annotation-
focused tool support.

We will also speak of annotation tools. By tool we mean any piece of computer
software that runs on a computing platform that can be used to implement or carry out
a process in the annotation project. Classically conceived annotation tools include
software such as the Alembic workbench, Callisto, or brat [12,13,32], but tools can
also include software like Microsoft Word or Excel, Apache Tomcat (to run web
servers), Subversion or Git (for document revision control), or mobile applications
(apps). Tools usually have user interfaces (UIs), but they are not always graphical,
fully functional, or even all that helpful.

There is a useful distinction between a tool and a component (also called an
NLP component, or an NLP algorithm; in UIMA [2] called an annotator), which are
pieces of software that are intended to be integrated as libraries into software and can
often be strung together in annotation pipelines for applying automatic annotations
to linguistic artifacts. Software like tokenizers, part of speech taggers, parsers [23],
multiword expression detectors [20] or coreference resolvers [28] are all components.

http://dx.doi.org/10.1007/978-94-024-0881-2_3
http://dx.doi.org/10.1007/978-94-024-0881-2_3


170 M.A. Finlayson and T. Erjavec

Sometimes the distinction between a tool and a component is not especially clear
cut, but it is a useful one nonetheless.

The main reason a chapter like this one is needed is that there is no one tool that
does everything. There are multiple stages and tasks within every annotation project,
typically requiring some degree of customization, and no tool does it all. That is why
one needs multiple tools in annotation, and why we need a detailed consideration of
tool capabilities and problems.

2 Overview of the Annotation Process

The first step in an annotation project is, naturally, defining the scheme, but many
other tasks must be executed to go from an annotation scheme to an actual set of
cleanly annotated files useful for other tasks.

2.1 MATTER andMAMA

A good starting place for organizing our conception of the various stages of the
process of annotation is the MATTER cycle, proposed by Pustejovsky and Stubbs
[29]. This framework outlines six major stages to annotation, corresponding to each
letter in the word, defined as follows:

M = Model: In this stage, the first of the process, the project leaders set up the
conceptual framework for the project. Subtasks may include:

• Search background work to understand existing theories of the phenomena
• Create or adopt an abstract model of the phenomenon
• Define an annotation scheme based on the model
• Search libraries, the web, and online repositories for potential artifacts
• Create artifacts if appropriate artifacts cannot be found
• Measure overall characteristics of artifacts to produce estimates of representative-

ness and balance
• Collect the artifacts on which the annotation will be performed
• Track artifact licenses
• Measure various statistics of the collected corpus
• Choose an annotation specification language
• Build an annotation specification that distills the scheme and model
• Update annotation model and schemes on the basis of feedback from the Annotate

stage
• Track differences between different versions of the models, schemes, and speci-

fications



Overview of Annotation Creation: Processes and Tools 171

A=Annotate: This stage is the actual application of annotations to artifacts. Usually
this stage involves multiple trained workers (annotators) who inspect the linguistic
artifacts and decide which annotations are appropriate. Subtasks within this stage
may include:

• Normalize artifacts, removing typos and other errors
• Create files in a standard file format
• Associate appropriate metadata with artifacts
• Write annotation guidelines
• Define necessary annotator skills and knowledge
• Recruit annotators
• Train annotators in the annotation workflow, including annotation tools to be used
• Train annotators in the scheme to reach an acceptable level of inter-annotator

agreement (IAA)
• Plan the annotation order and assignments (respecting multilayer constraints)
• Distribute documents to the annotators
• Monitor annotators’ progress
• Collect annotations from the annotators
• Ensure that annotation process metadata is captured (e.g., time to annotate, anno-

tator identity, etc.)
• Track IAAs to ensure quality annotations
• Track annotation guideline versions
• Examine large sets of annotations for common errors or inconsistencies and apply

corrections
• Update annotations in older versions of the specification to a new version
• Schedule annotator and adjudicator meetings
• Adjudicate multiple annotations into a gold standard
• Track worker hours and project budget
• Estimate artifact and corpus completion times

T = Train and T = Test: Pustejovsky and Stubbs were specifically interested in
linguistic annotation for developing machine learning algorithms. In the second and
third stage, therefore, they focused on training machine learning classifiers, and
how to appropriately test them. This is a very important, yet specific, application of
linguistic annotation and is not always the goal of an annotation project. Researchers
may, for example, be interested in justmeasuring a phenomenonof interest, validating
some theory, or preparing data for others to use. Thus here we abstract away from
the matter cycle a bit and replace ‘TT’ with L = Leverage. Namely, once you have
the annotations, you should leverage them for your goal, be that training machine
learning algorithms, manual inspection for testing linguistic theories, or something
else.

E = Evaluate: No matter how you are planning on using your annotations, you
should evaluate their utility for your purpose. In practice this usually involves one
more or steps like:



172 M.A. Finlayson and T. Erjavec

• Explore and visualize the annotated data to get a qualitative sense of its scope,
quality, and character

• Measure accuracy, precision, recall, or other statistics to numerically characterize
the data

• Calculate confusion matrices, error classes, or other measures to categorically
characterize the data

R = Revise: If the evaluation results are not satisfactory, one needs to revise some
aspects of the annotation process. This is not a stage in and of itself, but acts more
like an arrow pointing back to one of the previous steps.

Within this full cycle, Pustejovsky andStubbs note that there is a subcycle,MAMA,
which often happens at the beginning of an annotation project when you are still
developing your model. This cycle involves iterating between modeling and pilot
annotations, to increase the quality of the annotation scheme before investing the full
amount of time and energy annotating the complete corpus. It is akin to developing
a scientific hypothesis. You start by proposing a model, and then translating those
into a specification and annotation guide. You train several annotators, have them
annotate a small amount of data, and then inspect the data (either directly or with
IAA measures). If the data fails inspection (e.g., you are missing a major category
present in the data, or IAAs are too low), you return to modify the model.

If the model itself is sound but the specification or guidelines fall short, there is an
even smaller cycle that often takes place with the Annotation stage itself, whereby
the guidelines are rewritten to be clearer. This cycle is illustrated in this volume
(chapter “Inter-annotator Agreement” by Artstein, Fig. 1).

2.2 Additional Stages

While the MATTER framework is an excellent start, it still does not cover the full
extent of an annotation project. We propose three additional stages: Idea, Procure,
and Distribute.

Idea: Before creating the initial model, one must solidify one’s question vis-a-vis
existing linguistic knowledge and theory, plus have a rough idea of what language
data might be used for the project. This may involve:

• Search the literature for concrete linguistic theories pertaining to the linguistic
question of interest

• Verify that the phenomenon does not have an annotation scheme or annotated
corpus that answers the question you are asking

• Explore existing corpora to determine if it might be profitable to annotate on top
of those corpora

• Visualize existing corpora to determine if the information they contain is relevant
to your question

http://dx.doi.org/10.1007/978-94-024-0881-2_11


Overview of Annotation Creation: Processes and Tools 173

Fig. 1 An abstracted and enhanced MATTER cycle. The loop connecting “Annotate” to itself is
expanded in the chapter by Arstein (citation to chapter “Inter-annotator Agreement” by Artstein,
Fig. 1). Note that in course of looping you may naturally skip a number of steps. For example,
you probably wouldn’t re-procure tools within the MAMA subcycle as long as your technical
requirements hadn’t changed dramatically

Procure: After developing the model, but before beginning annotation, you must
find the appropriate annotation tools for each task of the process. This stage may
entail:

• Identify the various subtasks which follow from your annotation project design
• Identify tools that support these subtasks
• Identify tool capabilities that are critical to the project’s success
• Obtain the tools that provide needed capabilities
• Modify existing tools to provide missing capabilities
• Create new tools that provide missing capabilities
• Verify that the tools work on the required computing platforms
• Verify that the tools can be assembled into a working annotation process
• Distribute patches and bugfixes for tools to annotators as they are working

Distribute: Once the data has been annotated and evaluated to the researcher’s sat-
isfaction, it is often the case that the researcher desires to distribute the data to the
world at large. Although in-house, private corpora can be useful for certain limited
pursuits, generally the best effect comes from a corpus when it is made available to
the community. This stage may involve:

• Exporting the annotated artifacts from the annotation tool for distribution
• Cleaning the annotations of extraneous information
• Packaging annotated data and other material into downloadable or otherwise dis-

tributable archives
• Checking that artifact licenses are compatible with the planned distribution model
• Archiving data and other materials in a permanent archive (e.g., Institutional

DSpace, LDC, etc.)
• Exporting data selections in publication-quality formats

The additional stages can be integrated into our abstract MATTER framework as
shown in Fig. 1.

http://dx.doi.org/10.1007/978-94-024-0881-2_11


174 M.A. Finlayson and T. Erjavec

3 Basic Tool Considerations

Theoverviewabove listed seven stages of the annotation process, eachwith numerous
subtasks. Each of the subtasks outside of the “Procure” stage is a candidate for
annotation tool support. Usually you do not need as many tools as there are subtasks:
often a single tool has the ability to performmany subtasks. Other subtasks youmight
accomplish without software support because it is easier or faster. On the other hand,
you will most likely not be able to find a single tool that will handle all the required
subtasks. This means you will need a number of tools to create your annotations.

The most important tool you choose is the one that provides the annotation user
interface (AUI). This is the tool that annotators interact with to actually apply anno-
tations to the linguistic artifacts. The degree to which the AUI is intuitive, easy to
use, and bug-free has a direct and major impact on the speed and quality of the
annotations. Moreover, the project often requires that the AUI have certain features,
without which the project cannot proceed. Because of this centrality, usually the first
major tool decision is to decide on the AUI. This will constrain a number of other
decisions about how to carry out other subtasks of the annotation project. For exam-
ple, the project might require crowdsourcing, in which case only AUIs that have this
capability can be used. The project might involve annotating multimodal data such
as video, audio, images, or combinations thereof: again, only certain AUIs can deal
with this sort of data, and thus your choice is restricted to those tools.

Once the AUI is chosen this will also constrain what other tools you need andwhat
other tools you canuse.AparticularAUImight only accept or export data in particular
formats, meaning you will either have to live with those formats or transduce to and
from them (chapter “The Evolution of Text Annotation Frameworks”. A particular
AUI might not implement certain capabilities (for example, version, document, user,
or task control), and so you might have to adopt additional tools to provide those
capabilities.

In this section and the next we discuss the requirements for the various tools
involved in an annotation project, and how to choose between different tools, with a
particular emphasis on capabilities that are usually found in the AUI.

3.1 Choosing the Right Tools

Choosing the right tools to accomplish an annotation project is not always a simple
matter. Not only can each capability be accomplished with multiple tools, but each
tool brings multiple capabilities to the table; so while tool X may be inferior to tool
Y with regard to a particular capability C, tool Y might have some other capability D
which tool X lacks, and which makes annotating with Y preferable to X on balance.
Although small annotation projects may admit this strategy, it is not always as simple
as ranking your desired capabilities, ranking tools according to their utility for those
capabilities, and then proceeding down the lists in linear order.

As an example, consider the AUI which the annotators use to mark up artifacts.
Suppose the annotators are marking a TimeML time link scheme, which consists of

http://dx.doi.org/10.1007/978-94-024-0881-2_6


Overview of Annotation Creation: Processes and Tools 175

marking “before” and “after” temporal relationships between events and times in a
document. One might use brat [32] for this, which provides a generic relationship
annotation facility with an attractive UI that runs in a web browser. If the annotation
project requires annotators to work remotely, with a variety of different computing
platformswith onlyweb browser access in common, bratmay be the right tool. On the
other hand, the TANGO tool [34] was specifically designed for TimeML and features
optimized key bindings and UIs that present task-relevant information. TANGO also
integrates automatic checks for potential annotation conflicts (where two individual
annotations are not compatible). If the computing platform and project logistics allow
it, it may be preferable to use TANGO for its specialization and additional features.

Another example would be access to external resources that help the annotator
make efficient and accurate annotation decisions. A tool likeMAE [33] can be used to
apply arbitrary tags to arbitrary spans of text. Such a tool can be used, for example, for
Word Sense Disambiguation [1], where an annotator associates a sense from a sense
inventory—e.g., WordNet [15]—with each open-class word. The user could have
the WordNet dictionary open in a browser window, with MAE to the side, and copy
and paste appropriate sense keys for the right words. In contrast, a specially designed
tool like LX-SenseAnnotator [25] might be preferred, as it integrates the WordNet
database directly, and automatically identifies open-class words and provides only
valid tags for the annotator to choose.

With these two examples in mind to remind us that a full ordering of tools does
not exist, we can identify two main criteria for choosing one tool over another. The
first, and rather obvious, capability is that the tools, especially the AUI, must support
the chosen annotation schemes. The second most important capability is being able
to work on the languages or character sets that the project aims to annotate. If you are
annotating text in, say, Cyrillic, and the annotation tool cannot display that script,
then you will not be able do your annotation. While most modern tools natively
support Unicode, this is still not necessarily the case, especially for tools developed
with only English in mind. However, even with character set support, there can be
other language specific issues with tools. For example, some tools perform their own
tokenization on the input texts, and if their tokenizer was developed for English, it
will not work very well for other languages, say, Russian, and not at all for languages
that do not use spaces to separate words, such as Japanese.

Beyond these primary capabilities, there are a host of secondary capabilities,
although often no less critical to the success of the project. These are covered in
detail below in Sect. 4. In the best case, then, you can find some combination of
tools that can be brought together to provide all the needed capabilities in a single
annotation process.

3.2 Creating the Right Tools

Sometimes the right tool to solve a particular task does not exist. Or, more often, a
tool is mostly adequate, but is missing some key functionality or falls short in some



176 M.A. Finlayson and T. Erjavec

other way. In these cases, researchers must either create a new tool from scratch or
modify an existing tool to suit their needs.

The first option, and the one that usually occurs first to many researchers, is to
build their own tool from scratch. Generally this route should be avoided. While
the positive aspect is that you have complete control over the tool, there are many
negatives. First, you will end up reinventing the wheel many times over, often less
well than existing, vetted tools. Second, implementation decisions early on in the
design process can hamstring the whole implementation and cause major headaches
down the line. Third, it is a lot of work to create and maintain a tool: there will
inevitably be bugs, and when these are found you must diagnose them, fix them, and
distribute patches. Finally, if you release the tool for others to use, you will no doubt
be subject to request for help from people using or trying to modify your tool.

In general it is better to find a tool that does most of what is needed and requires
only minor modifications to add the missing functionalities. Examples of the sorts
of capabilities that may need modification may be import or export to a particular
file format, or visualizing or accessing some sort of external data. But beyond these
rather broad capabilities, there might be something very simple that you need that
the available tools don’t provide. In these cases, it becomes important to consider
two additional features of potential tools: extensibility and support.

Extensibility: Extensibility means the ability to add features to a tool that were not
included in the original release. The conceptually simplest way to achieve modifica-
tions to a tool is to modify the source directly and recompile it, but of course the tool
must be available in open source for this to be possible.When the tool is deposited on
open repositories, such as GitHub, the extensions can furthermore be made available
to the wider community.

A second type of extensibility is the use of a plugin architecture. For tools designed
in this way you do not need to modify the original source code, but only parametrize
to tool to make it aware of the additional code. A good example of this is GATE [11].

In any event, modifying source code or creating plugins usually implies program-
ming. This means that you must pay attention to the programming language the tool
is written in and whether you have access to the expertise need to write the required
code.

Support: Support refers to the resources available to help you understand how to
modify the tool. Modifying the source code or creating a plugin necessarily requires
you to understand in more detail the inner workings of the tool. Reverse engineering
how a tool works by reading source code is time consuming, tedious, prone to error,
and often leads to buggy code. Questions to ask yourself are: Does the tool have
source code documentation? Are there manuals or guides that lead you through
modifying the tool? Is there example code available that can serve as a template for
the right approach? Is there a community of developers to which you can appeal for
help if (or most likely, when) you get stuck? Better yet, can you contact the original
developers to ask them questions? The less support there is, the harder it will be to
carry out your modifications.



Overview of Annotation Creation: Processes and Tools 177

3.3 Common Problems with Tools

Before moving on to the large number of capabilities that one might look for in
annotation tools, it is worthwhile to consider a set of general problems that many
tools present that can reduce their utility. A tool might in theory have a capability you
need, but it might be so difficult to use or so buggy as tomake it practically impossible
to leverage that capability. Here we cover six of the most common complaints about
annotation tools.

Inadequate Importing, Exporting or Conversions: A tool does not read or write
to the formats you use, or doesn’t understand the standards or schemes you want to
use for your project. While there are many ways of transducing from one format to
another (chapter “The Evolution of Text Annotation Frameworks”), the formatmight
be conceptually incompatible, which can be a serious detriment to a tool’s utility.

Lack of Documentation or Support: Similar to lack of documentation for modi-
fying tools, this problem refers to the tool lacking adequate documentation for those
installing, administrating, and using the tool. The tool may provide a host of func-
tions, but if you can’t understand what the buttons do or the meaning of the menu
items, then the tool will be much less useful. Having a well written user manual, an
established user community to consult, or being able to ask questions of the original
developers are major positives in a tool’s favor.

Difficult to Learn: Even with proper documentation a tool can still be difficult to
learn. Perhaps it uses unfamiliar or awkward user interface conventions. Or perhaps
it organizes the workflow or functionality in a way which is unintuitive or doesn’t
match up well with the structure of your annotation project. This is a handicap.

PoorUser Interface: A related problem to a difficult learning curve is a user interface
(UI) that is just plain hard to use. Annotation is a repetitive task, and if an oft-repeated
portion requires lots of work in the UI, then this can seriously impact the speed and
quality of annotations. A similar problem can appear with Web-based platforms for
annotation. If substantial data must pass between the browser and server for each
key-stroke or mouse click, this can present latency problems, especially with slow
internet connections.

Difficult Installation: Some tools require in-depth knowledge of the operating sys-
tem or need a complex stack of technologies in order to install them successfully.
In such cases a detailed installation guide and adequate support, either from the
developers or from local system administrators, is a invaluable for making the tool
operational on a local machine.

Unstable, Slow, or Buggy: Finally, a tool that crashes a lot, takes a long time to do
common tasks, or reports lots of errors is frustrating to use. As with documentation
and support, production tools that have a large user base are much less likely to
belong to this category than are experimental prototypes by a single author, which
might run on their machine or for their project, but can cause problems in other
environments.

http://dx.doi.org/10.1007/978-94-024-0881-2_6


178 M.A. Finlayson and T. Erjavec

4 Tool Features

Now that we have noted the primary capabilities of tools to support the annotation
process, wemove on to a broader array of features that support the various stages and
subtasks of annotation projects. Not every annotation project will need all of these
features, and their importance will vary depending on the project’s goals. Therefore
in this section we will divide features not by importance (which is variable), but
by how easy it is to find tools that have the feature in question. This will hopefully
assist you in prioritizing your effort in searching for the right tool for the job, versus
spending time creating or new tool or modifying an existing one.

4.1 Common Features

Features in this section are found in many different tools. They are also common
across a range of annotation projects. The features here are listed in no particular
order, and examples of a few tools that have the feature in question are provided.
These lists of tools are by no means complete or exhaustive, and should not be taken
as an endorsement of or recommendation to use that particular tool; they are merely
well-known tools that have the feature.

Importing/ExportingMultiple File Formats: As all annotations are read from and
written to files, the format of the files is clearly a consideration. The subfield or
target audience may expect a particular file format (their analysis tools being written
to accept that format), or the annotation project may build on other annotations or
corpora which are provided in a specific format. In these cases one must be able
to read annotations and data from the provided formats and write to the expected
format. If the tool cannot do that, the project manager must transduce to and from the
formats used by the tool (chapter “The Evolution of Text Annotation Frameworks”).
When designing your annotation workflow, consider carefully the various files you
will be using, and whether your chosen tool canmanipulate themwithout extra work.

Examples of tools that read and write multiple formats include: Praat, which is
used for phonemic analysis, and reads numerous audio formats including wav, aiff,
nist, and mp3, among others [5]; and GATE, which accepts and outputs a number of
different types of text annotation formats includingXML,UIMACAS, CoNLL/IOB,
and many others [11]. Other tools that are notable for their choice of file formats
include also ELAN [4], ExMARaLDA [30], and WebAnno (to an extent) [31].

Standoff versus InlineAnnotation: Aside from specific file formats, amore general
consideration is whether the tool supports standoff or inline annotation. In standoff
annotation, the original artifact is not modified, rather, annotations are stored in sepa-
rate documents and associated with the artifact by means of pointers into the artifact.
For example, annotations of a text file might be associated with a particular span
of characters indicated by start and end character counts. Annotations of an audio
file might be associated with a time span delimited by start and end times. Inline
annotation, in contrast, inserts annotations directly into the artifact being annotated.

http://dx.doi.org/10.1007/978-94-024-0881-2_6


Overview of Annotation Creation: Processes and Tools 179

Later tools that read the artifact must then be sensitive to these annotations so that
they may be used or ignored as appropriate. Examples of this include the com-
mon format of “token/pos-tag” (e.g., “The/DT dog/NN ran/VB./.” or the CoNLL
format [7].

In any case, standoff annotation is usually considered a best practice, and so using
a tool which provides this capability is usually preferred. There would be cases,
though, in which the ability to produce inline annotations could be useful, such as
when you are using later text processing tools that require inline annotations as input.

Tools that do standoff annotation include most modern tools like MAE, brat, and
WebAnno [31–33]. Older tools like Alembic and Callisto [12,13] usually produce
inline annotations. GATE can read and write annotations in a selection of both stand-
off and inline formats. Like file formats, it is possible to use external transducers to
translate between standoff and inline, however, this is in general complicated as
inserting standoff annotations can break well-formedness of the document, by intro-
ducing so-called crossing hierarchies, where inserted standoff annotations do not
nest properly with the original annotations; this is not allowed in, e.g., XML.

Multi-layerAnnotation: In the pastmany annotation projects involved adding only a
single type of annotation to artifacts. AsNLPprogressed andmore annotated data and
annotation schemes became available, more and more projects added multiple types
of annotations to artifacts. The first case is called single-layer annotation, and the
second case is called multi-layer annotation. This capability also impacts the choice
of standoff versus inline, as multilayer annotations are usually best expressed as
standoff annotations, also because of the problem of crossing hierarchies mentioned
above.

Another consideration here is whether the tool allows multiple layers to use
the same annotation scheme. For example, does the tool allow two different, non-
interacting layers of part of speech tags? There are times when this capability can be
useful, such as when inspecting common semantics between two different schemes,
doing annotation adjudication, or performing comparisons of different analyzers that
produce the same type of tag.

Examples of tools that provide multi-layer annotation capabilities include MAE
[33], GATE [11], and the Story Workbench [16].

Multimodal Annotation: Multimodal annotation refers to the ability to annotate
artifacts that contain multiple modalities of data, such as text and speech, or audio
and video. Sometimes multimodal is used to refer to artifacts that just contain a
modality other than text (which is especially easy to visualize). To annotate multi-
modal artifacts, one needs much more complex visualizations. A nice example is in
Praat, where it is often necessary to visualize the spectrogram, tone level, and tran-
scription of an audio file, all time aligned. In the case of true multimodal artifacts,
one must have visualizers for each modality plus often some way of visualizing the
alignment between modes.

Common tools that were purposely built to support multimodal annotation include
Praat for phonemic annotation [5], ANVIL for video annotation [19], and CLAN for
transcription [21].



180 M.A. Finlayson and T. Erjavec

Annotation-Customized UI: As has been noted, a user-friendly UI for one’s tools
is an important feature. More specifically with regard to the AUI (the tool that is
actually used by the annotators to do the annotation), a feature of great value is a UI
that has been customized for annotating the chosen scheme. There is a significant
difference between a UI that can, in theory, allow a particular scheme to be annotated
and a UI that is specifically optimized to allow efficient annotation of the scheme
with a minimum of error. Optimization can be as simple as bringing key menu items
to the fore, highlighting particular buttons of use at a particular stage, or providing
keyboard shortcuts for the most often used operations.

Two examples of tools that are optimized with respect their particular annotation
schemes are brat and TANGO. Brat [32] is specifically optimized to annotate and
visualize sparse, local relations in text, such as events or dependency structures. It
provides a simple, intuitive mouse-click-driven interface that allows an annotator to
quickly create and label relations between text spans according to a specified relation
schema. It also provides a good example of how an interface optimized for one task
can quickly become a burden even for closely related tasks. For example, while
brat excels at sparse local relations, it falls short for annotation schemes that beget
extremely dense relations, or relations that span text beyond one or more lines. In
these cases the brat user interface quickly becomes cluttered and confusing.

TANGO [34] is another example of a tool optimized for a particular annotation
task, in this case, annotating TimeML relations. Additional examples are Palinka,
which can be used for co-reference annotation [26], or Jubilee,whichwas specifically
designed to efficiently annotate the PropBank standard for Semantic Roles [10].

AgreementCalculations:Calculating agreement between sets of annotations applied
to the same artifact by different annotators is a fundamental operation involved in
vetting annotated corpora and ensuring their quality. Most peer-reviewed reports on
corpus contents are required to includemeasures of inter-annotator agreement (IAA).
While numerous external tools (such as MATLAB, R, or generic programming lan-
guage environments) can be used to do IAA calculations, it is quite useful when the
AUI or other annotation-related tools provide this service. Examples of tools that
provide IAA measurement include WebAnno [31], GATE [3,11].

Adjudication Interface: Related to IAA calculation is a tool that allows an adjudi-
cator to quickly and easily merge annotations from different annotators to produce
a gold standard. This can be a tricky task, with quite a bit of difficulty in visualizing
the differences between two annotations. As with the AUI itself, the efficiency of
the adjudication interface has a dramatic impact on the productivity of the adjudica-
tor. For example, the simplest approach to adjudication is just to open two separate
AUI instances which show the two different versions, informally designating one
file as the master copy and another as the secondary. But this approach is awkward,
requiring the adjudicator to switch their attention from one window to the other at
quite a distance apart on the screen, identifying subtle differences between annota-
tions without any visual highlighting or other aids. Furthermore the adjudicator must
manually copy over information from the secondary to the master, which provides
many opportunities to introduce errors.



Overview of Annotation Creation: Processes and Tools 181

A good example of a tool specifically tailored to adjudication is MAI (multiple
document adjudication interface) [33]. MAI uses different user interface colors to
indicate different types of inter-annotator disagreements, and allows the adjudicator
to correct tags individually or add new tags to the gold standard; the tool demonstrates
how a specifically tailored adjudication interface can significantly streamline the
process of producing a gold standard. WebAnno also provides this capability [31].

Capturing Metadata
An often overlooked task in annotation projects is capturing metadata about the
annotation process itself. Depending on how fine-grained the metadata is that is
required by the annotation project, this may require some sophisticated integration
with the AUI. At a bare minimum, one usually wants to know which annotator
annotated which document, and which documents were already annotated. But an
annotation project manager may be interested in more detail, for example, such
as how long an annotator worked on a particular document or the provenance of an
individual annotation: howwas it originally generated, in what order was it modified,
by whom, and how? This information can be used to analyze the annotation process
for later improvements, or measure annotator productivity and efficiency.

A tool that integrates a sophisticated metadata capture system is the Story Work-
bench [16], which captures both annotation provenance and annotation timing data
at the level of the individual annotation.

Corpus Analytics and Pattern Analysis: A common task when starting a linguistic
annotation project is to characterize the corpus to be annotated. For text, it is not
uncommon, for example, to count various document or token types, or characterize
the vocabulary. KeyWord in Context (KWIC) analyses can also be useful, especially
when inspecting the semantics of individualwords. EMU,used for annotating speech,
is an example of a tool that provides this sort of functionality [6], relying on its
close integration with the R programming environment to allow the calculation of
sophisticated statistics of corpus contents. Beyond this tool very few AUIs integrate
this functionality directly. There are, however, stand-alone tools that provide it which
may be brought to bear on the problem, for example, the Sketch Engine [18]. Of
course, use of an external tool like this implies the problem of importing corpus data
to the tool for analysis.

Creating Arbitrary Flat Tag Schemes: An extremely common, even prototypi-
cal, linguistic annotation scheme structure involves defining a set of tags that are
to be applied to spans of text (chapter “Designing Annotation Schemes: From
Model to Representation”). This type of annotation project is so common that tools
that provide the ability to define an arbitrary tag scheme and apply it to data can be
immediately useful to a wide range and variety of annotation projects. Considera-
tions here involve what constraints the tool places on how the scheme is defined: are
there restrictions on the types of tags? What UI elements are used to choose tags?
Can the scheme designer restrict what spans of text may be annotated on the basis of
other information (tokens, sentences, paragraphs, can’t cross sentence boundaries)?

Tools that provide the ability to define and then annotate with an arbitrary scheme
are fairly common, as this feature has been found in AUIs since the early days

http://dx.doi.org/10.1007/978-94-024-0881-2_3
http://dx.doi.org/10.1007/978-94-024-0881-2_3


182 M.A. Finlayson and T. Erjavec

of Callisto and Alembic [12,13]. Modern standout examples include Ellogon [27],
MAE [33], WebAnno [31], and GATE [11].

Web-BasedAnnotation: In today’s increasinglyweb-interconnectedworld, the abil-
ity to perform and collect annotations via a browser-based interface on a centralized
platform is becoming a commonly desired feature. Embedding an AUI in a browser-
based application orwebpage has several advantages: it does not require the annotator
to install anything (except a browser, which most already have), it allows recruitment
of annotators far and wide, and it allows annotators to work remotely. Example tools
that have a centralized server with web interfaces that are quite functional include
brat [32], WebAnno [31], and EXMARaLADA [30].

Access to External Resources: As noted previously, the ability to access external
resources such as electronic dictionaries, thesauri, or knowledge bases (ontologies)
can be a key capability for many annotation projects. The annotators might need to
reference the resource to make annotation decisions (for example, searching for a
particular word or concept). Themore closely such functionality is integratedwith an
AUI, the easier it usually is for the annotator to take advantage of the resource. Other
projects require the direct application of items from the resource to the artifacts. A
good example is Word Sense Disambiguation, which requires the annotator to pick
a sense present in the electronic dictionary (such as WordNet or the LDOCE) and
associate it with the word.

Examples of tools that bring in external resources for reference include Jubilee
for VerbBank [10], LX-SenseAnnotator forWSD [25], or the StoryWorkbench [16],
which provides access to WordNet, the PropBank frame library, and VerbNet.

4.2 Uncommon Features

In contrast to the features and capabilities in the previous section, there are a number
of features that annotation projects often need, but are not commonly found in AUIs
or other annotation support tools.

Creating Arbitrary Annotation Schemes: In the list of common features above
we included creating flat tag schemes. As noted in a previous chapter, anno-
tation schemes come in different types, including single labels, sets of “flat”
attribute-value pairs, full-fledged recursive feature structures, relations between seg-
ments, or some combinations of these (chapter “Designing Annotation Schemes:
From Model to Representation”). Although there is plenty of support for defining
and annotating single label tagsets, and Brat [32] allows definition of arbitrary rela-
tion schemes, there is little or no support for defining the other more complicated
types of annotation schemes such as recursive feature structures or combination
schemes. Thus if one’s annotation scheme involves any of these more complicated
structures, one is almost forced to modify an existing tool or create a new tools. This
is a major limitation of annotation tools, especially as the field moves toward more
complicated linguistic phenomena.

http://dx.doi.org/10.1007/978-94-024-0881-2_3
http://dx.doi.org/10.1007/978-94-024-0881-2_3


Overview of Annotation Creation: Processes and Tools 183

One example of a tool which does include this functionality is SALTO, which
allows dynamic definition or extension of an annotation scheme by adding new
frames, frame elements, and flags [8].

Sophisticated Visualization: A useful feature, but one not often found in AUIs
focused on text alone, is that of sophisticated visualization of annotations. Some
annotations schemes can be quite complicated, involving large tag sets, numerous
types of linguistic objects, and multiple features arranged into complicated hierar-
chies. Visualization can thus be of great service in understanding the current state
of the annotation of the document, perceiving errors, and determining what needs to
be done. Moreover, annotation, as has been noted several times already, can often
be tedious and somewhat mind-numbing for the annotator. This has the effect of
making it easy for annotators to miss key pieces of information; thus, an AUI that
visualizes annotations in an intuitive, clear, and expressive manner helps to increase
the efficiency of annotators and the quality of their annotations.

Multimodal tools (such as Praat, ANVIL, and CLAN) tend, by the very nature
of their targeted linguistic artifacts, to have sophisticated visualization facilities.
Tools for the text annotation, on the other hand, often lack comparable visualization
capabilities that truly take advantage of the full power of a modern graphical user
interface. Notable exceptions include brat [32], which excels at visualizing sparse
local relations, and ANNIS which does not provide annotation capabilities per se but
rather specializes in search an visualization of annotations [35].

Checking File Correctness Against Specs: It is often of great utility to be able to
verify that an annotated artifact conforms to some specification of the format of the
annotations. For example, that the tagset used is the one claimed, with no extra or
misformatted tags. This is akin to verifying that an XML document is valid, so, not
only syntactically well-formed (e.g., all opening tags have a corresponding closing
tag, tags properly nested as a tree), but that it also follows the required grammar of
the tags as specified by an XML schema. One example is CLAN, which provides
the ability to check if a particular annotation file conforms to the CHAT annotation
file format. And, moreover, any tool that can import a particular format performs an
implicit well-formedness check, in that if the import of a particular file succeeds you
can be sure that the file conforms at least to that particular tool’s implementation
of the format specification. But the more explicit and general form of this feature is
desirable: being able to affirm (without the tool crashing or producing some other
error behavior) that a file is formatted correctly relative to some formal specification,
and contains neither formatting errors nor extraneous unformatted material.

Workflow Support (user, role, file, and task management): A fairly important
but often overlooked set of capabilities, especially from the point of the view of an
annotation manager, is the ability to manage the overall workflow of an annotation
project. Byworkflow in this case wemean the process of planning the unfolding of an
annotation project in terms of individual tasks, annotators, and files. What files will
be annotated at what time, and by whom? Are there constraints that must be satisfied
(i.e., one annotator must annotate first, or one file must be annotated before another)?
If task assignment is unconstrained, and annotators are allowed to pick and choose



184 M.A. Finlayson and T. Erjavec

what files they do when, how will you assure that they only annotate a file once,
or do not annotate files they are not supposed to, or do not miss a file? Moreover,
how exactly will files be distributed to annotators and the annotators notified of their
assignments? By email? Shared file system? Other network file distribution facility?

Examples of tools that support such features, including fine-grained control over
user access rights and file and task assignments, include the LDC tools suite, SALTO
and WebAnno. The LDC tools (which are, to our knowledge, not generally avail-
able), allow flexible assignment of annotation tasks to geographically spread-out
annotators; the development of that suite was driven by the large-scale and time-
sensitive nature of many of LDC annotation projects. SALTO gives the ability to
assign files for annotation to one or more annotators within a special administrative
mode [8]. The WebAnno editor allows defining a pool of annotators and files for a
project, distributing the files among the annotators and monitoring progress [31]. A
few other tools also provide related capabilities (e.g., [9]), but generally workflow
management is under-attended to.

Customizable Annotation Pipeline: Annotation today is becoming more and more
of a sequenced affair. That is, instead of starting with a plain, unannotated linguistic
object, annotation projectswill often rely on applying a number of automatic layers of
annotation before beginning their own annotation. For text, good common examples
of types of processing applied to text before more high-level annotation takes place
include tokenization, sentence segmentation, part-of-speech tagging, lemmatization,
and syntactic parsing. In these cases, it very helpful if the tools used to create the
files for annotation allow the assembly or arbitrary automatic annotation pipelines.
If these processing capabilities, however, are not integrated with an AUI, such as
with WebLicht [17], then an extra step of transferring files from the pre-processing
pipeline to the AUI must be undertaken.

A bare bones example of a fully customizable processing pipeline is something
likeUIMA [2], which allows assembling arbitrary sequences of automatic annotators
using a number of different programming languages. This situation is not necessarily
ideal, however, as the learning curve for UIMA is a bit difficult and requires some
sophisticated programming skills. Good examples of tools that provide a reason-
able UI to create pipelines but still allow sophisticated pre-processing of text files
include GATE [11] andWebLicht [17]. On the other hand, more andmore annotation
platforms do integrate the ability to automatically pre-annotate files, at least for low-
level annotations.Most of them have the annotation program built-in, whichmeans it
works only for particular types of annotation and particular languages. Some others,
in particular WebAnno incorporate a generic machine learning program, that allows
the administrators to define the type of annotation to be performed, import training
data, and train the learner on this data. New data can then be automatically annotated
with the trained model.

Interleaving Manual and Automatic Annotation: Related to the issue of assem-
bling annotation pipelines and online learning is interleaving manual and automatic
annotation. Sometimes is useful to have a tighter feedback loop between manual and
automatic stages of the annotation process: do some pre-processing annotation, have



Overview of Annotation Creation: Processes and Tools 185

annotators correct or add to those annotations, and then do more automatic annota-
tion. When returning to the automatic stage, the automatic analyzers take advantage
of the cleaner and corrected manual annotations so as to do a better job themselves.

An example of a tool that interleaves these two modes in a smooth way is the
Story Workbench [16]. When an annotator modifies a file, usually by correcting or
adding an annotation, the StoryWorkbench calculates the changed portion of the text
and re-runs the automatic analyzers that are set up to run on that file. The difficulty
with that implementation, however, is that, unlike UIMA or GATE, the processing
sequence is not especially flexible.

Online Learning: At the far end of the spectrum of integration of automatic and
manual annotation is online learning. This was a feature found in the very earliest
AUIs such as the Alembic workbench [12]. In this approach the system is constantly
observing the annotator’s actions, and retraining a model that drives an automatic
annotator. After each retraining the system retags everything that has not yet been
touched by the annotator.

An example of a later tool that implements this useful feature is CorA [24],
which can use manual annotations, possibly in combination with pre-existing anno-
tated corpora, to train its normalizer and tagger. The tool can also be extended with
PHP classes to add further online learning modules, e.g., lemmatization or sentence
boundary detection.

Crowdsourcing: Of increasing interest lately is the opportunity to conduct annota-
tion through crowdsourcing; using online work distribution platforms like Amazon’s
Mechanical Turk or Crowdflower. The appeal in these cases is easing the recruitment
of annotators and quickly scaling up annotation projects at low cost. The difficulties
include integrating the chosen crowdsourcing platform into the project’s workflow
(e.g., transferring data in and out, tracking progress), and providing annotators with
the appropriate training and AUI to perform the annotation. While this capability is
in high demand right now, there are few integrated solutions available. Two examples
are the GATE [11] and WebAnno crowdsourcing plugins, ([31], Sect. 3.1.6), both of
which interface with the Crowdflower platform.

Querying: Like any complicated set of data, the ability to search for specific pieces
of information parameterized along dimensions of relevance to the data is a general
ability of great use to many other tasks. This is more than just being able to search
for specific spans of text of the presence of individual tags. One might want to
formulate structured queries, such as “find all annotations which have a tag at this
point in their structure”, or “find all annotations across the whole corpus which have
feature X and occur just before another annotation with feature Y.” Although basic
search abilities are quite common, these more complex search abilities keyed to the
annotation schemes themselves are somewhat rare. Emu [6] integrates a good facility
for searching in this manner, with the ability to search provided by the Annotation
Graph API [22].



186 M.A. Finlayson and T. Erjavec

4.3 Missing Features

Finally, there are a number of features that very seldom have good tool support with
AUIs or other tools designed for annotation. Annotation projectmanagersmust either
do without a fully functional support for these features or “roll their own” solution,
making use of ad hoc collections of tools and procedures.

Ability to Correct the Original Artifact: With linguistic artifacts it is not uncom-
mon to uncover errors. These may be of a typographical nature (such as a misspelled
word or incorrect punctuation), or more like transduction errors, such as in the case
of transcription which should reflect an underlying audio file. In these cases, it is
extremely useful to be able to correct the original artifact. It is best, naturally, to
discover and correct these errors before annotation begins. In practice, however,
annotators will usually find overlooked errors. There are two issues of concern. The
first is whether annotators should be allowed to make corrections themselves, and if
so, how the project manager will keep track of the correction and how they will be
propagated to other annotators working on the same file. The second issue, in the
case of stand-off annotation, is that one must ensure that this modification does not
make the indices of existing annotations invalid. Generally, support for correcting the
original artifact is lacking. However, there are isolated tools, such as CorA, that do
provide this support, as well as for the related task of correcting tokenization errors,
tokens often being taken as the basic units over which annotation is indexed. CorA
was specifically designed to annotate historical texts, where transcription errors are
quite common, and allows correcting, deleting and inserting tokens in the primary
data, and supports token level annotations for normalized andmodernizedword form,
their lemma, part-of-speech and morphological features [24].

AnnotationErrorDetection andCorrection: Error detection is related to querying.
In the course of an annotation project being able to automatically detect and correct
errors is useful, especially in the early and late stages. In the “MAMA” stage of
the annotation project one is repeatedly examining small batches of annotations for
errors, finding patterns, and then returning to either rewrite the annotation guidelines,
retrain the annotators, or rework the annotationmodel. At the end of the project, when
the data is fully annotated, one goes through the same procedure, but this time is
usually looking for specific inconsistencies identified in the course of annotation,
and quickly applying a large number of corrections. Some interesting work in this
area has been done under the auspices of the DEECA project [14], but much of this
work has not yet found its way into existing annotation tools.

Annotation Scheme Editor: Another oft-needed feature is the ability to edit anno-
tation schemes and specifications via a dedicated user interface, rather than editing
them directly in the file. While a number of tools mentioned above allow project
managers to use their own customized annotation scheme, the tools have minimal
to no support for actually creating the custom scheme. Usually it is assumed that
the scheme will be created in a text editor, or, at best, an XML editor. Much like
how integrated development environments with specialized editors ease computer
programming, so too would specialized editors for annotation schemes. Such editors



Overview of Annotation Creation: Processes and Tools 187

would support defining new schemes, extending existing schemes, and checking
schemes for correctness and compatibility with known schemas. A tool that does
offer this support is WebAnno [31], which allows the creation of new annotation
layers, which can be either per-token annotations, with or without a predefined set of
values, span annotations, and arc annotations for, e.g., co-reference or dependency
annotations.

UI Builder: Related to the ability to create annotation schemes, another extremely
useful feature would be the ability to customize a user interface for annotating a
particular scheme. Here we think of classic GUI builders available for the window
toolkits for various programming languages. The ability to optimize a user interface
by defining window component locations and sizes, menu structures, and keyboard
shortcuts would go a long way toward allowing project managers to adapt existing
AUIs to new annotation projects.

Managing specifications, guidelines, and corpus versions: This capability refers
to the ability to manage and work with, simultaneously, many versions of the same
annotation object. Over the course of an annotation project, things like the anno-
tation scheme specification and annotation guide go through several versions. As
a new version of the specification is applied the portion of the corpus with the old
specification, it is likely that both the new and the old versions will co-exist simulta-
neously. AUIs would do well to support this, showing clearly which version is in use
at any given time, allowing annotators to see the differences between two versions
of a scheme or guideline.

Managing andMeasuring Annotator Training: Every annotation project requires
training annotators. Sometimes this happens in a fully face-to-face manner; in the
case of crowdsourcing projects all training might be done remotely; sometimes it is a
mix of the two. Furthermore, sometimes training is extensive (weeks,with continuous
testing and re-training), sometimes it is a matter of a few sentences of instruction. As
training becomes more complicated, remote, and lengthy the more useful a facility
to manage annotator training becomes. Such a capability would at a minimum allow
assignment of training texts and measurement of annotator agreement against a gold
standard (sometimes available in tools); in the ideal case such a system would be
able to provide targeted feedback to an annotator about common mistakes, pointing
them to key examples or portions of the annotation guide or possibly weeding out
untrustworthy annotators.

Support for Packaging into Archives, Distributing to Repositories, and Man-
aging Licenses: Another under provided feature is some uniform ability to package
annotated corpora, publish them to a permanent repository, and keep track of the
licensing schemes for the data. Most annotation projects today make very simple use
of external file formats like .zip or .tgz to package and distribute data. At best, projects
will place their corpora in permanent archives like LDC or, in Europe, the CLARIN
repositories. To understand how this process might be improved upon, it is instruc-
tive to look at the case of Maven, which is a relatively recent development in the
world of automatic build tools for Java. Maven provides a centralized repository for



188 M.A. Finlayson and T. Erjavec

Java code libraries, with standardized names and packaging conventions for things
like source code, code documentation, licenses, test code, binaries, and so forth. The
Maven build tools take a standardized package description that shows the tool where
all these different pieces may be found, and the tool can communicate directly with
the central repository and publish artifacts to it, whereupon they are immediately
available to all other users of Maven. An analogous system for annotated corpora
could potentially be quite useful.

Exporting to Publication-Quality Formats: Finally, because much annotation
work finds its final transmission and description in published works such as journal
articles, conference papers, and books, a facility for transforming annotated data into
publication quality figures would be quite useful. This is especially the case when
the script of the linguistic object is complex and difficult to produce, or when the
annotations are complex or hierarchical.

5 Conclusion

In this chapter we have reviewed the general process of annotation, identifying the
general stages and subtasks to be found in each. We outlined several common prob-
lems, and then listed numerous features that are useful for carrying out an annotation
project.

For each case we gave examples of individual tools that provide the features
discussed. It is important to remember that these lists of example tools are neither
complete nor exhaustive; and themention of a particular tool should not be construed
as a recommendation of that tool over other tools that may share the feature. As
discussed, choosing a tool or set of tools (especially the AUI) is governed by project-
specific considerations that dramatically change the desirability of various tools.

Further, we have reviewed many features. But it is important to remember that
most annotation projects will not need all these features; indeed, most projects will
only have a critical need for a handful. Don’t be tyrannized by choice: identify
the absolutely most important features and let those guide you. In most cases, this
will be enough to determine your tool choice. The many additional considerations
mentioned here can be appealed to in those rare cases when there are multiple tools
that can actually do the job.

Finally, having read through this article, a reader might find himself discouraged
from pursing annotation altogether: perhaps it is too complicated and difficult to do
correctly. It is not our intent to give this impression at all. Indeed, small annota-
tion projects can often be pulled together with a minimum of time and effort. With



Overview of Annotation Creation: Processes and Tools 189

some thought, and early consideration of the issues discussed in this handbook, the
researcher new to annotation can avoid themost common pitfalls and produce quality
data on the first try.

References

1. Agirre, E., Edmonds, P. (eds.): Word Sense Disambiguation. Text, Speech, and Language Tech-
nology. Springer, Dordrecht (2007)

2. Apache.: UIMA Documentation, Version 2.7.0. https://uima.apache.org/d/uimaj-2.7.0/index.
html (2014)

3. Apostolova, E., Neilan, S., An, G., Tomuro, N., Lytinen, S.: Djangology: a light-weight web-
based tool for distributed collaborative text annotation. In: Proceedings of the 7th Language
Resources and Evaluation Conference (LREC 2010), pp. 3499–3505 (2010)

4. Auer, E., Russel, A., Sloetjes, H., Wittenburg, P., Schreer, O., Masnieri, S., Schneider, D.,
Tschöpel, S.: ELANas flexible annotation framework for sound and image processing detectors.
In: Proceedings of the 7th Language Resources and Evaluation Conference (LREC 2010), pp.
890–893. Malta (2010)

5. Boersma, P.: The use of Praat in corpus research. In: Durand, J., Gut, U., Kristoffersen, G. (eds.)
The Oxford Handbook of Corpus Phonology. Oxford University Press, Oxford (2014). doi:10.
1093/oxfordhb/9780199571932.013.016

6. Bombien, L., Cassidy, S., Harrington, J., John, T., Palethorpe, S.: Recent developments in the
Emu speech database system. In: Proceedings of theAustralian Speech Science and Technology
Conference. Auckland, New Zealand (2006)

7. Buchholz, S., Marsi, E., Krymolowski, Y., Dubey, A.: CoNLL-X Shared Task: Multi-lingual
Dependency Parsing. http://ilk.uvt.nl/conll/ (2015). Accessed 11 June 2015

8. Burchardt, A., Erk, K., Frank, A., Kowalski, A., Pado, S.: SALTO – a versatile multi-level
annotation tool. In: Proceedings of the 5th International Conference on Language Resources
and Evaluation LREC2006, pp. 517–520 (2006). doi:10.1.1.127.8088

9. Chen, W.-T., Styler, W.: Anafora: a web-based general purpose annotation tool. In: Proceed-
ings of the 2013 NAACL HLT Demonstration Session, pp. 14–19. Atlanta, Association for
Computational Linguistics, Georgia. http://www.aclweb.org/anthology/N13-3004 (2013)

10. Choi, J.D., Bonial, C., Palmer, M.: Jubilee: Propbank Instance Editor Guidelines (Version 2.1).
University of Colorado at Boulder, Boulder (2009)

11. Cunningham, H., Maynard, D., Bontcheva, K.: Text Processing with GATE (Version 6). Uni-
versity of Sheffield, London (2011)

12. Day, D., Aberdeen, J., Hirschman, L., Kozierok, R., Robinson, P., Vilain, M.: Mixed-initiative
development of language processing systems. In: Proceedings of the 5th Conference onApplied
Natural Language Processing, pp. 348–355. Association for Computational Linguistics, Wash-
ington, DC (1997). doi:10.3115/974557.974608

13. Day, D., McHenry, C., Kozierok, R., Riek, L.: Callisto: a configurable annotation workbench.
In: Proceedings of the 4th International Conference on Language Resources and Evaluation
(LREC 2004), pp. 2073–2076. Lisbon, Portugal (2004)

14. Dickinson, M., Lee, C.M.: Detecting errors in semantic annotation. In: Proceedings of the
6th International Language Resources and Evaluation (LREC’08), pp. 605–610. Marrakech,
Morocco. http://www.lrec-conf.org/proceedings/lrec2008/ (2008)

15. Fellbaum, C.: Wordnet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

https://uima.apache.org/d/uimaj-2.7.0/index.html
https://uima.apache.org/d/uimaj-2.7.0/index.html
http://dx.doi.org/10.1093/oxfordhb/9780199571932.013.016
http://dx.doi.org/10.1093/oxfordhb/9780199571932.013.016
http://ilk.uvt.nl/conll/
http://www.aclweb.org/anthology/N13-3004
http://dx.doi.org/10.3115/974557.974608
http://www.lrec-conf.org/proceedings/lrec2008/


190 M.A. Finlayson and T. Erjavec

16. Finlayson, M.A.: The Story Workbench: an extensible semi-automatic text annotation tool. In:
Tomai, E., Elson, D., Rowe, J. (eds.) Proceedings of the 4th Workshop on Intelligent Narrative
Technologies (INT4), vol. 4, pp. 21–24. AAAI Press, Menlo Park, Stanford. http://aaai.org/
ocs/index.php/AIIDE/AIIDE11WS/paper/view/4091/4455 (2011)

17. Hinrichs, E.W., Hinrichs, M., Zastrow, T.: WebLicht: web-based LRT services for German.
In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics
(ACL 2010): System Demonstrations, pp. 25–29. Uppsala, Sweden. http://www.aclweb.org/
anthology/P10-4005 (2010)

18. Kilgarriff, A.: The Sketch Engine: ten years on. Lexicography, pp. 1–30 (2014)
19. Kipp, M.: ANVIL: The video annotation research tool. In: Durand, J., Gut, U., Kristofferson,

G. (eds.) Handbook of Corpus Phonology. Oxford University Press, Oxford (2014)
20. Kulkarni, N., Finlayson, M.A.: jMWE: A Java Toolkit for detecting multi-word expressions.

In: Kordoni, V., Ramisch, C., Villavicencio, A. (eds.) Proceedings of the 8th Workshop on
Multiword Expressions: From Parsing and Generation to the Real World (MWE 2011), pp.
122–124. Association for Computational Linguistics (ACL), Portland. http://www.aclweb.org/
anthology/W11-0818 (2011)

21. MacWhinney, B.: The CHILDES Project: Tools for Analyzing Talk (Electronic Edition Part
2: The CLAN Programs). Carnegie Mellon University, Pittsburg. http://childes.psy.cmu.edu/
manuals/CLAN.pdf (2015)

22. Maeda, K., Bird, S.,Ma,X., Lee, H.: Creating annotation toolswith the annotation graph toolkit.
In: Proceedings of the Third International Conference on Language Resources and Evaluation.
Paris, France (2002)

23. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford
CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics (ACL 2014): System Demonstrations, pp. 55–60.
http://www.aclweb.org/anthology/P/P14/P14-5010 (2014)

24. Marcel, B., Florian, P., Stefanie Dipper, J.K.: CorA: A web-based annotation tool for historical
and other non-standard language data. In: Proceedings of the 8th Workshop on Language
Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH), pp. 86–90.
Gothenburg, Sweden (2014)

25. Neale, S., Silva, J., Branco, A.: A flexible interface tool for manual word sense annotation. In:
Bunt, H. (ed.) Proceedings of the 11th Joint ACL-ISO Workshop on Interoperable Semantic
Annotation (ISA-11). London, UK. http://www.aclweb.org/anthology/W/W15/W15-0208.pdf
(2015)

26. Orasan, C.: PALinkA: A highly customisable tool for discourse annotation. In: Proceedings of
the 4th SIGdial Workshop on Discourse and Dialog (2001)

27. Petasis, G., Karkaletsis, V.: Ellogon: A new text engineering platform. In: Proceedings of the
3rd International Conference on Language Resources and Evaluation (LREC 2002), pp. 72–78.
Las Palmas, Canary Islands. http://arxiv.org/abs/cs/0205017 (2002)

28. Pradhan, S., Marcus,M., Palmer,M., Ramshaw, L.,Weischedel, R., Xue, N. (eds.): Proceedings
of the 15th Conference on Computational Natural Language Learning (CoNLL-2011): Shared
Task. Association for Computational Linguistics, Portland, Oregon. http://www.aclweb.org/
anthology/W11-19 (2011)

29. Pustejovsky, J., Stubbs, A.: Natural Language Annotation for Machine Learning: A guide to
corpus-building for applications. O’Reilly, Sebastopol (2013)

30. Schmidt, T., Wörner, K.: EXMARaLDA – Creating, analysing and sharing spoken language
corpora for pragmatic research. Pragmatics 19, 565–582 (2009)

31. Seid Muhie, Y., Gurevych, I., de Castilho, R.E. Biemann, C.: WebAnno: a flexible, web-based
and visually supported system for distributed annotations. In: Proceedings of the 51st Annual
Meetingof theAssociation forComputationalLinguistics (ACL2013): SystemDemonstrations,
pp. 1–6. Sofia, Bulgaria (2013)

http://aaai.org/ocs/index.php/AIIDE/AIIDE11WS/paper/view/4091/4455
http://aaai.org/ocs/index.php/AIIDE/AIIDE11WS/paper/view/4091/4455
http://www.aclweb.org/anthology/P10-4005
http://www.aclweb.org/anthology/P10-4005
http://www.aclweb.org/anthology/W11-0818
http://www.aclweb.org/anthology/W11-0818
http://childes.psy.cmu.edu/manuals/CLAN.pdf
http://childes.psy.cmu.edu/manuals/CLAN.pdf
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/W/W15/W15-0208.pdf
http://arxiv.org/abs/cs/0205017
http://www.aclweb.org/anthology/W11-19
http://www.aclweb.org/anthology/W11-19


Overview of Annotation Creation: Processes and Tools 191

32. Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.: brat: a web-based
tool for NLP-assisted text annotation. In: Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics (EACL 2012): Demonstrations, pp.
102–107. Avignon, France. http://www.aclweb.org/anthology/E12-2021 (2012)

33. Stubbs, A.: MAE and MAI: lightweight annotation and adjudication tools. In: Proceedings of
the 5thLinguisticAnnotationWorkshop (LAWV), pp. 129–133.Association forComputational
Linguistics., Portland, Oregon, USA http://www.aclweb.org/anthology/W11-0416 (2011)

34. Verhagen, M., Knippen, R., Mani, I., Pustejovsky, J.: Annotation of temporal relations with
Tango. In: Proceedings of the 5th Languange Resources and Evaluation Confernece (LREC
2006), pp. 2249–2252.EuropeanLanguageResourcesAssociation (ELRA),Genoa, Italy (2006)

35. Zeldes, A., Ritz, J., Lüdeling, A., Chiarcos, C.: ANNIS: a search tool for multi-layer anno-
tated corpora. In: Proceedings of Corpus Linguistics 2009. Liverpool. http://ucrel.lancs.ac.uk/
publications/cl2009/ (2009)

http://www.aclweb.org/anthology/E12-2021
http://www.aclweb.org/anthology/W11-0416
http://ucrel.lancs.ac.uk/publications/cl2009/
http://ucrel.lancs.ac.uk/publications/cl2009/



