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Extracting and Aligning Timelines

Mark A. Finlayson, Andres Cremisini, and Mustafa Ocal

Abstract. Understanding the timeline of a story is a necessary first step for
extracting storylines. This is difficult, because timelines are not explicitly
given in documents, and parts of a story may be found across multiple
documents, either repeated or in fragments. We outline prior work and the
state of the art in both timeline extraction and alignment of timelines across
documents. With regard to timeline extraction, there has been significant
work over the past 40 years on representing temporal information in text,
but most of it has focused on temporal graphs and not timelines. In the
past 15 years researchers have begun to consider the problem of extracting
timelines from these graphs, but the approaches have been incomplete and
inexact. We review these approaches and describe recent work of our own
that solves timeline extraction exactly. With regard to timeline alignment,
most efforts have been focused only on the specific task of cross-document
event coreference (CDEC). Current approaches to CDEC fall into two camps:
event–only clustering and joint event–entity clustering, with joint clustering
using neural methods achieving state-of-the-art performance. All CDEC
approaches rely on document clustering to generate a tractable search space.
We note both shortcomings and advantages of these various approaches and,
importantly, we describe how CDEC falls short of full timeline alignment
extraction. We outline next steps to advance the field toward full timeline
alignment across documents that can serve as a foundation for extraction of
higher-level, more abstract storylines.

4.1 Introduction

Storylines rarely spring from a text fully formed, neatly and precisely laid out
and clear for all to see. Rather, storylines come to us piecemeal, in dribs and
drabs, often with multiple storylines intertwined. This is especially evident
in news about current events, where a story may unfold across days, weeks,
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or even years, where specific texts (e.g., news articles written by journalists)
often present in detail only the most recent part of the story or focus on
one particular episode, with only quick reviews of prior events included for
context. There are numerous processing steps that are necessary to reveal the
actual storylines, including general syntactic preprocessing, entity detection,
and event and temporal relation extraction (Seretan and Wehrli, 2009; Dinarelli
and Rosset, 2011; Mirza, 2014). In this chapter we focus on two critical steps
along the path to revealing storylines, namely, the extraction of timelines from
texts and the alignment of those timelines with each other.

A timeline is a total ordering of the events and times in a text, possibly
anchoring some time points to clock or calendar time and providing metric
durations for some intervals. It is important to note that a timeline is not
the same as a storyline. A storyline is a sequence of interrelated events that
tells a specific story of interest, often with a plot or other narrative structure.
A specific text might contain part or whole of any number of storylines
(including none at all), and those storylines could appear in a wide variety
of orders, fragments, or combinations. Indeed, the identity of a storyline is
dependent to some degree on the reader, where the storyline might change
depending on their goals or interests. In contrast, a timeline is a structure that
organizes the events and times mentioned in a text into a global ordering. It
is one step beyond the temporal graph, which captures the explicit temporal
relationships mentioned or directly implied in the text.

In the timeline extraction and alignment work described in this chapter,
we assume that we begin with three basic inputs that themselves have been
extracted from a set of texts. First, we assume that we have the events and
times mentioned in the texts; this step can be achieved using dedicated tools
trained on specific annotated corpora such as TimeBank (Llorens et al., 2010).
Second, we assume that we have the temporal relationships for each text, which
again is a matter of TimeML parsing (Verhagen et al., 2007; UzZaman et al.,
2013). Third, we assume that we have the entities and their roles with respect to
events. Entity extraction is a well covered topic, and role assignment is covered
by a semantic role labeler (SRL) or abstract meaning representation parsing
(Johansson and Nugues, 2008; Foland and Martin, 2016).

Starting from these inputs, in the first half of this chapter (Section 4.2)
we focus on timeline extraction, namely, taking a temporal graph that reflects
directly expressed local orders and converting it into a set of timelines that
expresses a global ordering. We first define the problem and then discuss
the significant prior work in this area, which, unfortunately, is limited and
does not completely solve the problem. We then describe our TimeLine
EXtraction (TLEX) method, the most recent work on this problem, which
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solves the timeline extraction problem exactly, modulo the quality of the
starting temporal graph.

With timelines in hand, we turn in the second half of the chapter to
timeline alignment (Section 4.3). Timelines extracted from each individual text
will need to be aligned globally and we concentrate here on the most well-
addressed portion of the problem, that of cross-document event coreference
(CDEC). We review the prior work and state of the art, identifying two main
types of approaches: event-only clustering and joint event–entity clustering.
We identify the pros and cons and point toward next steps.

We conclude the chapter by showing how these two different streams of
work can be brought together (Section 4.4) and summarize the contributions
(Section 4.5).

4.2 Extracting Timelines

A timeline gives a total ordering of events and times and is useful for a
number of natural language understanding tasks. Unfortunately, timelines are
rarely explicit in text and usually cannot be directly read off from the text
itself. Instead, texts explicitly reveal only partial orderings of events and
times. Such information can be used to construct a temporal graph by using a
temporal representation language such as a temporal algebra or TimeML, as
described below, through either automatic analyzers (e.g., Verhagen, 2005),
manual annotation (e.g., Pustejovsky, Hanks et al., 2003), or some combination
of the two.

There has been some prior work on extracting timelines from TimeML
graphs, but these solutions are incomplete: they do not deal with all possible
relations and result in output that can contain ordering errors, a natural result of
using supervised machine learning. In contrast, we have showed in our TLEX
approach that if we leverage prior work on temporal constraint problem solving
and formulate timeline extraction as a constraint satisfaction problem, we can
achieve a theoretically exact solution. Furthermore, in contrast to prior work,
TLEX handles all possible temporal relations.

4.2.1 Prior Work in Timeline Extraction

Temporal Algebras
Allen (1983) proposed a calculus that defines 13 possible relations between
time intervals, called Allen’s interval algebra. Every interval has a starting time
point (I−) and an ending time point (I+), and the start point comes strictly
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before the end point (I− < I+). Intervals can be related by disjunctive sets
of 13 primitive temporal relations (e.g., BEFORE, AFTER, MEETS). Allen’s
algebra is especially useful for describing the temporal relationships expressed
in text, and we can construct temporal graphs by representing events and times
mentioned in the texts as intervals, with relationships expressed using Allen’s
framework.

Allen’s algebra is a qualitative temporal framework. In a great deal of
later work, Allen’s conception of temporal algebras was extended to quanti-
tative cases, such as simple temporal problems (STPs), temporal constraint
satisfaction problems (TCSPs), disjunctive temporal problems (DTPs), and
temporal networks with alternatives (TNAs; for a comprehensive review of the
field of temporal reasoning, see Barták et al., 2014). These types of temporal
frameworks allow precise reasoning about the temporal distance between time
points as represented in the temporal graphs. Theorists have proved quite a
number of formal results regarding both types of frameworks (Barták et al.,
2014, section 2). While quite useful for planning and scheduling problems,
quantitative frameworks are less useful for natural language text (especially
narratives and news), which usually does not contain a great deal of precise
metric temporal information.

Whether quantitative or qualitative, it is possible to solve a temporal graph,
which means assigning specific time values (or at least integer order values) to
every time point in the graph, which is the same as extracting a timeline.

Temporal Annotation in Language
The gap between formal representations such as Allen’s algebra and actual
real-world text is bridged by temporal annotation schemes. With regard to time
expressions themselves, which include expressions of when something hap-
pened, how often something occurs, or how long something takes, researchers
have developed a sequence of TIMEX annotation schemes (Ferro et al., 2001;
Setzer, 2001; Pustejovsky, Castao et al., 2003). This allow the annotation of
expressions such as at 3 p.m. (when), every 2 days (how often), or for 1
hour (how long). Because events are also involved in temporal relations, these
approaches were extended into schemes for capturing both times and events.
For example, the Translingual Information Detection, Extraction, and Summa-
rization scheme (TIDES; Ferro et al., 2001) integrates TIMEX2 expressions
as well as a scheme for annotating events. TIDES includes annotations for
temporal expressions, events, and temporal relations. TIDES uses only six
temporal relation types to represent the relationship between events; therefore,
it gives only a limited view of temporal information from texts.
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Deficiencies in TIDES led to the development of TimeML (Pustejovsky,
Castao et al., 2003), another markup language for annotating temporal
information, originally targeted at news articles. TimeML added facilities for
representing not just Allen’s temporal relations but added event coreference
relations (identity), as well as aspectual relations and subordinating relations.
Aspectual relations represent the relationship between an event and its
parts and fall into five types: INITIATES, REINITIATES, TERMINATES,
CULMINATES, and CONTINUES. Subordinating relations introduce
event–event relationships of conditional, hypothetical, belief, assertion, or
counterfactual nature. A TimeML annotation results in a TimeML graph
where the nodes represent events, temporal intervals, and time points and edges
represent temporal, aspectual, or subordinating TimeML links between nodes.

Limitations in TimeML led researchers to develop improved event annota-
tion schemes. O’Gorman et al. (2016) proposed the richer event description
(RED), which, like TimeML, annotates events, times, and temporal rela-
tionships but goes further by annotating associated entities and subevent
relationships.1 These additions provide a more integrated sense of how the
events in documents relate to each other and allow the development of systems
that learn rich relationships.

For different types of events and times, Reimers et al. (2016) proposed the
event time annotation scheme, which adds a category of punctual events that
lack start and end time points. This scheme also distinguishes singleday events
and multiday events. Furthermore, unlike TimeML, the annotation scheme
allows events that do not have explicit time expression to have a possible
date range in a format of “before YYYY-MM-DD and after YYYY-MM-DD.”
Later, due to low inner annotator agreement on TimeML temporal relations,
Ning et al. (2018) proposed the multiaxis annotation scheme where temporal
relations are based on the start time point of events.

Although these recent annotation schemes attempted to overcome limita-
tions of TimeML, we focus here on TimeML, because they are all supersets of
TimeML, and lack significant data for evaluation.

Prior Approaches to Timeline Extraction
Kreutzmann and Wolter (2014) showed how to use AND-OR linear program-
ming (LP) to solve qualitative (i.e., nonmetric) graphs, a set of which includes
graphs represented in Allen’s algebra. Similarly, Gantner et al. (2008) built
the Generic Qualitative Reasoner to solve binary qualitative constraint graphs,
which takes a calculus description and one or more constraint graphs as input

1 See also Chapter 7.
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and solves them using path consistency and backtracking. Although these
provide approaches for solving qualitative temporal graphs, their methods
cannot be applied directly to TimeML graphs because of subordinating
relationships.

In contrast to these constraint-based approaches, other natural language
processing researchers have applied machine learning to extract timelines.
Following on earlier work by Mani et al. (2006), Do et al. (2012) devel-
oped a model to predict associations and temporal relations between pairs
of temporal intervals. Combining integer linear programming (ILP) and a
collection of local pairwise classifiers, they performed global inference to
predict both event–time relations and event–event relations at the same time.
Before applying the classifiers, they grouped same events by using event
coreference and they showed that event coreference can increase timeline
construction performance significantly. Their model attempts to predict both
absolute time occurrence for each event in a news article, as well as temporal
relations between neighboring events. Because they only look at neighbors,
the timeline they extract is necessarily a reflection only of local ordering
information. Furthermore, they trained on only three of Allen’s temporal
relations (BEFORE, AFTER, and OVERLAPS). Their system achieved an
accuracy of 73%.

Kolomiyets et al. (2012) proposed a timeline extraction approach using
temporal dependency structures over intervals (temporal dependency trees –
TDTs – which are trees rather than graphs), again using only a subset of Allen’s
temporal relations. The main advantage of TDTs is that they can be straight-
forwardly computed using adapted dependency parsers. This approach took a
sequence of event words as input and produced a TDT structure. Although
they achieved 70% accuracy in event ordering, the approach only used six
temporal relations – BEFORE, AFTER, INCLUDES, IS INCLUDED, IDEN-
TITY, OVERLAP. Additionally, we have shown that the TDT representation
loses significant temporal information relative to temporal graphs (Ocal and
Finlayson, 2020).

Finally, instead of using single learner, Chambers et al. (2014) proposed
CAscading EVent Ordering architecture (CAEVO) for event ordering. CAEVO
is a sieve-based architecture that blends multiple learners into a precision-
ranked cascade of sieves. CAEVO contains 12 sieves. Each sieve proposes
its labels, and CAEVO decides which label to add to the temporal graph
using transitive closure. However, that method was demonstrated only with five
relations – BEFORE, AFTER, INCLUDES, IS INCLUDED, and SIMULTA-
NEOUS – and thus excludes large portions of TimeML and results in roughly
only F1 of 0.501.
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In addition to the fact that all of these systems had imperfect performance,
in all cases the methods only consider intervals, rather than start and endpoints,
and so lose much detailed temporal information.

4.2.2 TLEX: Extracting Exact Timelines

Although the machine learning–based methods mentioned above are useful in
terms of generating partial orderings, they suffer from three major problems:
they do not handle all possible temporal relations (including subordinating
relations), they work only on intervals rather than time points, and their
statistical approaches introduce noise into the final result.

In contrast to the above approaches, we designed TLEX, a method for
extracting a set of exact timelines using all of the information available in a
TimeML graph. TLEX achieves perfect accuracy modulo the correctness of
an underlying TimeML graph. Like prior work in solving temporal constraint
problems, TLEX checks the TimeML graph for consistency but goes further
by automatically identifying inconsistent subgraphs, which allows them to be
manually corrected. TLEX outputs one timeline for each temporally connected
subgraph, including subordinated timelines, which represent possible, counter-
factual, or conditional situations. These subordinated timelines are connected
to the main timeline in a trunk-and-branch structure. We provide a formal
argument for TLEX’s correctness, as well as an experimental evaluation of
TLEX using 385 manually annotated texts comprising 129,860 words across
four corpora.

We illustrate TLEX’s method using the following example. In this example,
each event is underlined and given a numerical subscript for reference.

David’s door is knocked1, and he answered2 it. As soon as he opened3 the door,
David’s neighbor started complaining4 about the noise. He was quickly bored5,
but realized6 that if he said7 something, his neighbor would be mad8. So he
continued9 to listen10.

TLEX takes the full TimeML graph as input, which is shown in Figure 4.1.
TLEX first partitions the TimeML temporal graph into subgraphs internally
connected only with temporal and aspectual links; each of these subgraphs will
correspond to an individual timeline (either a main timeline or a subordinated
timeline) and is connected to other subgraphs only via subordinating links.
Figure 4.1 shows this partitioning with dashed lines.

TLEX next transforms each TimeML temporal subgraph to a temporal
constraint graph. As we explained above, a temporal constraint graph is a
graph where nodes are time points and edges are primitive temporal constraints
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Figure 4.1 Visualization of the TimeML graph from the example. Numbers
correspond to the events in the text, and arrows correspond to the temporal,
aspectual, or subordinating links. The two temporally and aspectually connected
subgraphs are separated by dashed lines, and links on the main timeline are
bolded.
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Figure 4.2 The two constraint graphs corresponding to the temporally and
aspectually connected subgraphs shown in Figure 4.1. These are produced by
replacing each node I with I− and I+ and replacing each temporal or aspectual
link with the equivalent set of primitive temporal relationships.

such as < and =. We assume that every node in the TimeML graph can be
represented as an interval I with a starting time point (I−) and an ending time
point (I+), related by the constraint I− < I+. Every temporal and aspectual
links can then be rewritten as simple conjunctions of temporal primitive
constraints. For example, we can rewrite A BEFORE B as A+ < B− or A
CULMINATES B as (B− < A−) ∧ (A+ = B+). The temporal constraint
graph for the example is shown in Figure 4.2.

TLEX next solves the temporal constraint graph, using off-the-shelf con-
straint solvers, to assign integers to interval start and endpoints. When we order
the integers that are assigned for nodes, we will obtain the order of events
and times, namely, the timeline. The timeline for the example is shown in
Figure 4.3.

Barták et al. (2014) showed that if there is a solution that satisfies the tempo-
ral graph, then the graph must be consistent. If the constraint solver determines
that there is no solution, then the TimeML graph must be inconsistent. When
TLEX finds an inconsistent graph, it finds all relations that contribute to
specific inconsistencies. TLEX merges any inconsistent subgraphs that share
relations, and these subgraphs can then be given to annotators to fix those
inconsistencies based on the texts.
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Figure 4.3 Visualization of the timeline extracted from Figure 4.2. The two
subgraphs are arranged into main and subordinated timelines connected by a grey
branch.

4.3 Aligning Timelines

Once we have timelines extracted from texts, the next problem is to align
those timelines to provide a global, corpus-wide ordering. Though anchors to
clock and calendar times facilitate such alignment, this information is normally
sparse, especially in news and narrative. Aligning timelines thus requires
inference of when different timelines refer to the same events. This task is
called CDEC. Even perfect CDEC will not result in a full global alignment,
however, because some events will not be mentioned in all timelines. Thus,
timeline alignment also requires identification of overlapping but otherwise
distinct events and time periods – or, at least, identification of indeterminacy
of the available information.

Unfortunately, the field has not attacked the full timeline alignment prob-
lem. Rather, it has focused primarily on CDEC, and that is the work we will
review here. The goal of CDEC is to assign every event mentioned in a corpus
to exactly one set of event mentions, where all of the mentions refer to the
same event. All existing approaches to CDEC have two steps: first, document
clustering, followed by event clustering within each document cluster.

CDEC is not restricted exclusively to events that appear in different
documents but rather applies to all events within a corpus, including those
that appear within the same document. Aligning events within a document
is a subtask of CDEC and is called within-document event coreference
(WDEC). Although conceptually similar to CDEC, there are some differentiat-
ing practical considerations that merit discussion. Most CDEC systems include
document information in their feature set when deciding coreference between
events, which is not available for WDEC. Additionally, because a document
clustering step is not necessary, WDEC reduces solely to event clustering.
Importantly, determining pairwise event co-reference within document can
actually be a more challenging task than cross-document coreferencing. For
example, our reimplementation of the system of Cybulska and Vossen (2015)
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shows that whereas the pairwise event coreference classifier achieves an F1 of
0.78 on cross-document event pairs, the same classifier achieves only 0.57 on
within-document pairs.

4.3.1 Prior Work and State of the Art in CDEC

ECB and ECB+ Corpus
Most CDEC work has been evaluated on the EventCorefBank (ECB) and
EventCorefBank+ (ECB+) corpora, with most using ECB+ because it is
larger. ECB was the first corpus developed specifically for CDEC (Bejan and
Harabagiu, 2010). It comprises 482 documents selected from GoogleNews,
clustered into 43 topics, with each topic containing documents that discuss
a specific event, such as the 2009 Indonesian earthquake or the 2008 riots
in Greece over a teenager’s death. The corpus is annotated using a “bag of
events” and entities approach, where coreferring events are all placed into
the same group along with their related entities but relationships between
specific entities and events are not recorded. A limitation of this annotation
scheme is that it makes it impossible to differentiate events based on their
arguments.

ECB+ extends ECB with 500 articles (for a total of 982) that refer to similar
but unrelated events across the same 43 topics (Cybulska and Vossen, 2014).
For example, the topic with the 2009 Indonesian earthquake was expanded
with texts referring to the 2013 Indonesian earthquake. These extra texts were
marked with a different subtopic.

Initial Approaches
As noted, all extant CDEC systems begin with document clustering followed
by event clustering. Most CDEC systems approach document clustering with
off-the-shelf algorithms, and in the experimental setups used with the ECB+
corpus these algorithms tend to work quite well, though we discuss some
subtleties in Section 4.3.2.

Early CDEC resolution systems used different approaches that were not
carried into more recent work. Bejan and Harabagiu (2010) used a Bayesian
approach that extends a Dirichlet process using a mixture model called the
Chinese Restaurant Process to find the configuration of event clusters with
greatest probability given the data. The authors use gold-standard document
clusters but do not make use of gold-standard event annotations, using an
event extractor developed in earlier work instead and augmenting the predicted
events using a semantic parser. They tested their model on the ECB data set and
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achieved an overall performance of 0.52 CoNLL F1. This is the only system
that reports cross-validation results.

Chen and Ji (2009), in contrast, developed an approach that formulates
WDEC as a spectral graph clustering problem. Although this system was tested
on the ACE data set, which only includes WDEC annotations (not CDEC), its
performance of 0.836 F -measure is potentially of interest to CDEC work.

Event-Only Clustering
Later approaches to CDEC subdivide into event-only clustering and joint
event–entity clustering. Cybulska and Vossen (2015) described a conceptually
straightforward, yet strong-performing event-only approach using three deci-
sion tree classifiers, one to predict whether two documents contain at least one
coreferring event pair, one to generate WDEC clusters, and one for merging
cross-document WDEC clusters (Cybulska and Vossen, 2015; Vossen and
Cybulska, 2018). All of the classifiers were trained with features derived from
pairs of “event templates,” which comprise all event information within a unit
of discourse organized into labeled slots (e.g. action, human participant). The
attractiveness of this approach lies in its conceptual uniformity and simplicity,
essentially repeating the same process at different levels of granularity.

Kenyon-Dean et al. (2018) described a different event-only clustering
approach that attempts to generate event embeddings for clustering within
the hidden layer of a neural network. The paper does not specify whether
document clustering was performed before CDEC or whether they used gold-
standard labels. The authors trained a neural network with a single hidden
layer to predict the event cluster of an event given its feature representation
(e.g., word2vec embeddings). Because their interest was clustering and not
classification, however, they constrained the training loss function in such a
way as to produce more clusterable event embeddings in the model’s hidden
layer. As a final step, they used the event embeddings of test set events as input
to an agglomerative clustering algorithm.

Joint Event–Entity Clustering
In contrast to event-only clustering, joint event–entity clustering attempts to
resolve event and entity coreference concurrently, using information from
either step to inform the decisions made by the other. Lu and Ng (2017)
described a system that jointly learns (1) event trigger detection, (2) event
anaphoricity, and (3) event coreference. They only performed WDEC and
evaluated their model on the KBP 2016 English and Chinese data sets for event
coreference. Their formulation makes explicit use of discourse information
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within the document to construct a conditional random field (CRF) that
performs the classification. Given the vast conceptual differences between
KBP 2016 and ECB+, it is difficult to compare results across the two data
sets. However, Lu and Ng (2017) reported state-of-the-art performance on KBP
2016 at the time.

Lee et al. (2012) described a system that also performs document clustering
before computing event and entity clustering. Instead of ingesting gold-
standard event and entity labels, they used a publicly available system that
performs nominal, pronominal, and verbal mention extraction. After extracting
all candidate event or entity mentions, they made use of a publicly available
within-document resolution system that applies a series of high precision
deterministic rules to decide entity coreference. Using this initial clustering,
they trained a linear regressor that predicts the quality of merging two clusters
(where quality is defined as the number of correct pairwise links divided
by the number of total pairwise links), merging clusters in decreasing order
of predicted quality. They did not distinguish between events and entities at
clustering time but rather performed cluster merges using features derived
from the relationships between the mentions in two candidate clusters, relying
heavily on an SRL. They used the ECB data set, adding a series of event and
entity coreference annotations.

Barhom et al. (2019) described a joint entity–event clustering model that
is the current state of the art on ECB+. This system performs document
clustering using K-means and then uses gold-standard event trigger and entity
annotations to generate vector embeddings for events and entities, including
both character, word, and context embeddings (ELMo is used for the context
embeddings; Peters et al., 2018). Together with these vectors the system uses
a dependency vector, which is the concatenation of a set of vectors designed
to capture interdependency between event and entity mentions. For entities,
this set includes an embedding for the event head the entity modifies as
well as the embeddings for the event heads of all coreferring events. For
events, the set includes entity embeddings for each of four event roles (ARG0,
ARG1, TMP, LOC) that combine the embedding for the modifying entity
mention and the embeddings of all other entity mentions that corefer with the
modifying entity. The system computes event and entity clusters iteratively,
recomputing the dependency vectors as clusters are merged. They employed
an agglomerative clustering algorithm furnished with two trained pairwise
prediction functions that output the likelihood that two pairs of events or
entities corefer.
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4.3.2 Shortcomings of Current CDEC Approaches

Given that all existing CDEC systems use document clustering models to
restrict the search space for event clustering, it is important to investigate the
role played by errors in document clustering. Importantly, all ECB+ CDEC
papers report near-perfect or perfect performance on document clustering on
the same test set, topics 36–45 (Cybulska and Vossen, 2015; Kenyon-Dean
et al., 2018; Barhom et al., 2019). For example, we confirmed the results
reported in Barhom et al. (2019) on topics 36–45 by reimplementing their
document clustering method. Yet when we use the same algorithm to perform
fivefold cross-validation on document topic clusters of roughly the same size
(1–9, 10–18, etc.) on different sections of the corpus, the approach showed
performance of anywhere between 2 and 11 percentage points lower across
a range of metrics, including homogeneity, completeness, V-measure, and
the adjusted Rand index. It is highly likely that this variation in document
clustering performance impacts final CDEC performance, because document
clustering defines the search space for event clustering.

Only one CDEC paper reports cross-validated performance results, though
on the earlier and smaller ECB corpus and using the gold-standard document
clustering labels instead of a document clustering model (Bejan and Harabagiu,
2010). No ECB+ papers report on cross-validated CDEC performance.

4.3.3 Next Steps for CDEC

Table 4.1 compares performance from a selection of papers from the CDEC
literature discussed above. We see a general upward trend in performance over
time, with lower performance on ECB than on ECB+; this is of note because
ECB+ was intended to be more difficult (Cybulska and Vossen, 2014). The
significant performance gains made by Barhom et al. (2019) suggest that a
joint event–entity clustering approach is a promising research direction. In
fact, taking the joint approach to its logical conclusion suggests removing
the document clustering step altogether and solving the entire task in one
shot. Whether or not such an approach would be tractable on large corpora
is an open question. Despite this, the performance achieved by Cybulska
and Vossen (2015) is noteworthy, given that they described a conceptually
less complex approach than that of Barhom et al. (2019). The performance
discrepancies on pairwise event resolution classification within and a cross
documents reported above suggest that furnishing the framework introduced
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Table 4.1. Performance comparison of selected papers

Test set Document Co-
(ECB or clustering Summary of NLL

Paper ECB+) method approach F1

Bejan and
Harabagiu, 2010

Fivefold
cross-validation

Gold labels Bayesian 0.52

Lee et al., 2012 13-43 Expectation
maximization–based

Joint
event–entity

0.56

Kenyon-Dean
et al., 2018

36-45 (+) ? Event
embedding

0.69

Cybulska and
Vossen, 2015

36-45 (+) Decision tree Event features 0.73

Barhom et al.,
2019

36-45 (+) K-means Joint
event–entity

0.80

Co-NLL = Conference on Natural Language Learning.

by Cybulska and Vossen (2015) with a more sophisticated clustering technique
might prove worthwhile. This was one motivation behind the work of Kenyon-
Dean et al. (2018), who developed event embeddings specifically tuned for
clustering, although they did not report performance improvement on the
results of Cybulska and Vossen (2015). Possibly, the more straightforward
feature vectors extracted by Cybulska and Vossen (2015) would prove easier
to cluster.

In general, a more comprehensive study of how error propagates through the
different subsystems, along with now-standard cross-validation experiments,
would seem to be highly informative for future work. This could be at least
partly achieved by researchers reporting the results of the subcomponents of
their systems (e.g., document clustering, pairwise event classifiers).

4.4 Bringing It All Together

The motivation of combining timeline extraction and CDEC is the extraction of
corpus-wide stories. Extracting timelines orders events and times from a single
document, and CDEC identifies clusters of different descriptions of the same
event but provides no information about the temporal ordering of the event
clusters. Currently, almost all timeline extraction approaches focus on single
documents, with most ingesting gold-standard WDEC annotations. Extracting
a corpus-wide, cross-document event timeline requires merging these two tasks
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and tackling other as-yet-unaddressed problems. In particular, how do we align
event sequences that are not shared between different timelines? CDEC at best
provides individual points of alignment, leaving the alignment of interstitial
intervals undetermined.

There has been at least one piece of work targeting this combined task:
TimeLine, proposed by Minard et al. (2015), performs both CDEC and
temporal relation extraction across an entire corpus. It builds a timeline for
each text by anchoring the time expressions in that text and ordering events in
the text. However, Minard et al.’s approach ignores the majority of TimeML
relations and it only achieves 0.076 F1 score, so clearly it is far from optimal.

Even if were are able to extract a corpus-wide timeline or timelines, this
raises other deeper questions about what storylines are present in a corpus
with multiple authors, sources, or perspectives. In particular, it is hardly
inconceivable that a corpus may express multiple, even incompatible, stories.
This is not a rare edge case: in our own studies we have found that even simple
texts like folktales more often than not have multiple timelines. In the case of
much more complex large-scale news corpora, where information evolves over
time from potentially competing or unreliable sources, what does it mean, then,
to extract a single storyline? Our representational schemes must admit and
express these possibilities. Evaluating such corpus-wide-level storylines poses
additional challenges. Obviously, comparison with human judgments is the
gold standard, through either full manual annotation or sampling evaluations.
But given that different stories might depend on individual perspectives or
beliefs (one need only think of the current difficulties of dis- or misinformation
in our current media ecosystem), the reliability of even human-provided
storylines by which to judge automatic results is problematic.

4.5 Conclusion

We review the literature on both timeline extraction and timeline alignment
and discussed the current state-of-the-art. Although there has been quite a bit
of formal work on temporal representation and solving temporal constraint
problems, the most recent approaches to timeline extraction have adopted a
supervised machine learning paradigm which has fallen short. Our own state-
of-the-art TLEX approach has demonstrated an exact solution to the problem,
modulo the correctness of underlying temporal graph. For timeline alignment,
we have focused specifically on the task of CDEC. We discuss the two main
types of clustering approaches – event-only and joint event–entity – with
latter systems achieving state-of-the-art performance. We outline several paths
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forward, noting that document clustering is a key step that has been hitherto
not carefully examined. Despite recent improvements, CDEC is not yet fully
solved, and even perfect performance on CDEC will not beget the medium-
term goal of corpus-wide timeline alignment. Therefore, we are still some steps
away from the ultimate goal of global, corpus-wide storyline extraction.
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