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ABSTRACT OF THE DISSERTATION
AUTOMATIC LEARNING OF DOCUMENT SECTION STRUCTURE FOR
ONTOLOGY-BASED SEMANTIC SEARCH
by
Deya Banisakher
Florida International University, 2020
Miami, Florida
Professor Mark Finlayson, Major Professor

Modeling natural human behaviour in understanding written language is crucial for de-
veloping true artificial intelligence. For people, words convey certain semantic concepts.
While documents represent an abstract concept—they are collections of text organized
in some logical structure, that is, sentences, paragraphs, sections, and so on. Similar to
words, these document structures, are used to convey a logical flow of semantic con-
cepts. Machines however, only view words as spans of characters and documents as mere
collections of free-text, missing any underlying meanings behind words and the logical
structure of those documents.

Automatic semantic concept detection is the process by which the underlying mean-
ings of words are identified and retrieved. My thesis aims at bridging the semantic gap
between automatic concept detection and logical document structure understanding. In
my dissertation, | demonstrate an analysis and development of a framework for using
logical document structure knowledge (that is, section structure) in detecting semantic
concepts within documents in various domains. In that, I developed my research around
six different document classes from four domains: medical, legal,scientific, and news
reporting.The document classes are as follows: psychiatric report evaluations, hospital

discharge summaries, and radiology reports in the medical domain; Patent documents in

vi



the legal domain; environmental journal articles in the scientific domain; Finally, business
and politics news articles.

I demonstrate section structure identification and discovery models over five differ-
ent document classes from three domains: psychiatric evaluations, radiology reports, and
discharge summaries in the clinical domain; patent documents in the intellectual prop-
erty (IP) domain, and environmental scientific articles from the scientific domain. I also
demonstrate various approaches for supervised ontology-based semantic concept detec-
tion. Finally, I discuss the use of section structure in scientific articles for semantic
concept detection and demonstrate its efficacy and efficiency in achieving a significant

performance.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Modeling natural human behaviour in understanding language in all its forms is criti-
cal for the development of true artificial intelligence. Written text is the most effective
communication medium humans use daily [Kellogg, 1999]. With the explosion of digi-
tal communication, worldwide inter-connectivity, and the abundance of storage capacity,
written documents are ever-growing in every domain. Free-text documents in the med-
ical and the scientific domains are examples of this exponential growth of data [Fang
et al., 2016]. Psychiatric reports and scientific research articles, for example, are being
produced and digitized at record rates as more people are treated for mental illness by
medical professionals and more problems are being solved by scientists. As disjoint as
they may seem, these examples of documents share common characteristics as they are
highly structured and contain free-form narrative that typically communicates a single
idea presented through various sub-ideas and substructures (e.g. sections of a scientific
article).

My work is motivated by the need to model natural human behaviour in understand-
ing written documents. Specifically, my work aims to model two characteristics of this
behaviour: first, understanding the logical structure of documents, and second, under-
standing the underlying meaning behind the written word, that is semantic understanding.
Documents, regardless of the domain, are written in a structured format: words make up
sentences, then paragraphs, sections and subsections, which in turn make up chapters and
so on. These substructures are often headed with labels starting from a document title to

section headings [Power et al., 2003].



In reading research, strategic reading has been studied as part of understanding human
behaviour [Paris et al., 2016]. Readers are not passive sponges, soaking up information
as it is fed to them line by line. In fact, the most effective readers are aware of their
objectives, monitor the relevance of each part of a document to those objectives, and
select the most relevant parts to attend to [Waller, 2011]. Additionally, cognitive psy-
chologists have established that the human understanding of verbal information draws
heavily on pre-existing knowledge or frameworks, sometimes referred to as schemata.
These are conceptual structures, sets of expectations, or mental scripts that we can use to
make inferences that may not be explicit in the text itself. Scripts are sets of knowledge
about what we expect certain situations to be like and what might normally happen in
them, based on experiences we have gathered over time. This falls under the concept of
schemata [Kintsch, 1974, McNamara et al., 1991, McVee et al., 2005]. For documents,
this can be thought of as the logical organization of sections and other substructures.

Document structure understanding as a subfield of natural language understanding
(NLU) is interested in developing models that capture the substructures aforementioned
within documents in various domains. Although there has been efforts toward developing
general models that encompass multiple domains [Power et al., 2003, Nordstrom, 2008],
these models struggle when faced with different and unseen domains and therefore this
problem is far from being solved. Although desired, it is difficult to have have models that
understand document structure across wildly different domains - this is a task that even
humans have trouble with [Allahyari et al., 2017]. Take a legal document (e.g. an patent
document), a medical document (e.g. a psychiatric report), a scientific article and a book.
Sure enough the article and the book share similar characteristics, but they are in no way
similar to the former examples except, again, in the fact that they are merely structured in

some typical way.



Thus we must direct our attention to developing domain-specific document under-
standing models. However, even within a single domain, documents can be written dif-
ferently (and sometimes wildly differently). For example, scientific articles can be headed
in a generic way (i.e. abstract, introduction, methods, etc . . .), and psychiatric evaluation
reports have no strict format as to how sections should be headed or ordered. In gen-
eral, document structure understanding consists of two subproblems: first, a section label
understanding or text-segmentation problem, and second, a section type understanding
problem (i.e. what sections share a common type or goal given the domain in question).
Solutions to these problems can be helped by semantic concept understanding and extrac-
tion from text and vice versa. That is, following intuition, to learn and understand the
type of a block of text, one must first analyze and understand the meaning behind it.

Semantic concept detection is the process by which an implicit meaning of text is
made explicit [Drumond and Girardi, 2008, Dou et al., 2015]. That is, understanding
the underlying meaning of text. For example if a computer science scientific article is
referring to a neural network, a model capable of semantic concept detection will infer
that it is also referring to machine leamning, artificial intelligence, and other related con-
cepts. Semantics has always been at the heart of natural language processing (NLP).
There have been many strides at developing such models using various methods. One
of such methods is the use of ontologies—a formal description (typically, tree-shaped)
of concepts and their interrelationships [Navigli and Velardi, 2004]. When dealing with
domain-specific documents, domain-specific ontologies are especially useful when com-
pared to their domain-independent counterparts as they are more compact and descriptive

of their respective domains [Dou et al., 2015].



1.2 Problem Statement and Research Components

My research problem, in large, concerns the analysis and development of a framework
for using logical document structure knowledge (that is, section structure) in detecting
semantic concepts within documents in various domains. This entails four abstract con-
ceptual components which have driven my research. Following, I list and discuss these
components

Component 1. Corpora collection and annotation. The first step in any framework de-
velopment or empirical design is data collection and processing. Additionally, a common
task in natural language processing for preparing a given corpus for further processing
is annotation. For this, I developed and evaluated the models I discuss in this disser-
tation using documents from six different datasets spanning four domains: medical, le-
gal,scientific, and news reporting. The document classes are as follows: psychiatric report
evaluations, hospital discharge summaries, and radiology reports in the medical domain;
Patent documents in the legal domain; environmental journal articles in the scientific do-
main; Finally, business and politics news articles. Each of these corpora underwent an
annotation study concerning the section structure of their respective documents. Addi-
tionally, the scientific articles corpus was also annotated with environmental semantic
concepts using a domain-specific ontology.

Component 2. Modeling the logical document structure. In my research, the logical
document structure refers to the sections in which a document is logically organized.
As I have discussed earlier, documents are listed in sections that follow a logical order
(e.g. this dissertation document) that express various conceptual sub-ideas which in turn
make up the central idea of the document itself. Thus modeling the section structure of
documents can give us insights into and lead to better understanding of the conceptual

ideas communicated in those documents. I used the annotated data for each corpus from



the first component to develop automatic section type identification models that were
successful in dissecting those documents into a standard set of sections.

The first task in section structure extraction is the identification of sections, their po-
sitions and boundaries in various documents. I performed three studies for section struc-
ture identification. The first (§3.1, [Banisakher et al., 2018a]), uses an Hierarchical Hid-
den Markov Model (HHMM) that was developed using the psychiatric evaluation reports
(Corpus 2.1). The second (§3.2), extends the HHMM approach by using Conditional
Random Fields (CRFs) which I developed using three corpora: psychiatric evaluation re-
ports, radiology reports, and discharge summaries (Corpora 2.1-2.3). In the third (§3.3), I
present an extended application of the CRF approach to improving the detection of para-
graph functions in news article paragraphs (Corpus 2.6).

Additionally, I developed an approach to automatically discovering section type knowl-
edge for a document class in a data-driven fashion using a modified Bayesian model
merging algorithm. [ tested my approach on five different document classes from three
domains: psychiatric evaluations, radiology reports, and discharge summaries (Corpora
2.1-2.3) in the clinical domain; patent documents (Corpus 2.4) in the intellectual property
(IP) domain, and environmental scientific articles (Corpus 2.5) from the scientific domain.

Component 3. Detecting semantic concepts through the use of domain-specific on-
tologies. Semantic concept detection refers to the identification of semantic entities (i.e.
concepts) that represent an underlying meaning of lexical entities (i.e. words and sen-
tences). Ontologies serve as thesauri for such tasks, as they provide a structured format
that defines conceptual entities through hierarchical relationships. Thus, using these entity
structures can be greatly beneficial—and in many cases necessary—to identify domain-
specific concepts. For this, I developed automatic ontology-based supervised concept
learning approaches for the biogeochemical scientific literature that use a domain-specific

ontology and the annotated data from the first component.



Component 4. Incorporating section structure in the detection of semantic concepts.
Following intuition, one can gauge the conceptual knowledge communicated through var-
ious sections within documents given: (1) knowledge of the domain concepts the docu-
ment falls under, and (2) knowledge of the logical structure of the documents within that
domain. For automated computational processes, the first can be achieved through the
use of ontologies per domain, while the second can be solved through learning statistical
features of the documents within a specific domain or corpus. Thus, here I combined
components 2 and 3 and applied a set of experiments to test and analyze the models over

the scientific domain.

1.3 Dissertation Contributions

There are three key contributions of the research I present here:

1. As outlined above, I developed models for (1) the identification of section structure
given a standardized ontology of sections and (2) the discovery of section types
which allows to automatically detect such standard ontologies for large collections
of documents in a given document class. The second was the first attempt at unsu-
pervised section type discovery of documents in various domains. I demonstrated
the efficacy of these approaches using the six corpora outlined earlier through the
extraction of unique sets of features that aid those models in distinguishing the var-

ious sections.

2. Additionally, I developed models for learning to identify domain-specific ontology
concepts in the academic literature, specifically for the biogeochemical domain.
More importantly, I demonstrated the efficacy and efficiency of incorporating the
document structure of scientific articles in the detection of semantic concepts. In

that vein, I automatically extracted the section structure of scientific articles and



encoded it as a feature in an ontology-based supervised model for learning semantic
concepts. Additionally, I extracted a set of unique features that are able to capture
the relationships between semantic concepts found a domain-specific ontology and

the free-text language contained within scientific articles.

3. Finally, for the development of the models that I detail in this dissertation, I de-
veloped gold-standard corpora for section structure identification where documents
from five different datasets (spanning four domains) were annotated using a unified
section structure ontology. These corpora are as follows: psychiatric report evalua-
tions, hospital discharge summaries, and radiology reports in the medical domain;
Patent documents in the legal domain; and environmental journal articles in the

scientific domain.

1.4 Outline

The remainder of this dissertation is organized as follows: First, in chapter 2, I discuss the
six corpora [ used to develop the automatic approaches and models for section identifica-
tion and concept learning. In that, I introduce the corpora in detail, the relevant statistics
and ontologies, as well as their respective annotation studies and annotation results. Sec-
ond, in chapter 3 I present three studies for section structure identification. The first
(§3.1), uses a Hierarchical Hidden Markov Model (HHMM) that was developed using
the psychiatric evaluation reports (Corpus 2.1). The second (§3.2), extends the HHMM
approach by using Conditional Random Fields (CRFs) which I developed using three
corpora: psychiatric evaluation reports, radiology reports, and discharge summaries (Cor-
pora 2.1-2.3). Finally, in the third (§3.3), I present an extended application of the CRF
approach to improving the detection of paragraph functions in news article paragraphs

(Corpus 2.6). Then, in chapter 4, I describe an approach to automatically discovering



section type knowledge for a document class in a data-driven fashion using a modified
Bayesian model merging algorithm. [ tested my approach on five different document
classes from three domains: psychiatric evaluations, radiology reports, and discharge
summaries (Corpora 2.1-2.3) in the clinical domain; patent documents (Corpus 2.4) in
the intellectual property (IP) domain, and environmental scientific articles (Corpus 2.5)
from the scientific domain. Next, in chapter 3, I first present a survey of academic litera-
ture search (§5.1) where I describe various approaches in semantic search in detail, I then
present an ontology-based supervised concept leamning approach for the biogeochemical
scientific literature that uses random decision forrest as a supervised classifier leaming
scientific semantic concepts from a domain-specific ontology (§5.2), I then follow with
an extended approach to ontology-based supervised concept learning for the biogeochem-
ical scientific literature that uses the section structure of scientific articles (§5.3). I end
with a conclusion that revisits the results and contributions of each research component
(chapter 6), Finally, I include the discussion or related work relavent to each component

in each respective section.



CHAPTER 2
CORPORA AND ANNOTATION

I developed and evaluated the models I discuss in this thesis using documents from six dif-
ferent datasets spanning four domains: medical, legal,scientific, and news reporting.The
document classes are as follows: psychiatric report evaluations, hospital discharge sum-
maries, and radiology reports in the medical domain; Patent documents in the legal do-
main; environmental journal articles in the scientific domain; Finally, business and poli-
tics news articles.

In this chapter, I discuss each of these document classes, and the specific corpora [
used or collected. I also discuss the corpora ontologies and report detailed statistics both
in this chapter and in the following relevant chapters for legibility and ease of reference.
Finally, I discuss the annotation process, agreement metrics, and annotation results for

each corpus.

2.1 Corpus 1: Psychiatric Evaluation Reports

A mental health assessment is the process through which a psychiatrist or a psychologist
obtains and organizes necessary information about mental health patients. This process
usually involves a series of psychological and medical tests (clinical and non-clinical),
examinations, and interviews [Reeves and Rosner, 2016]. These procedures serve the
purpose of making a diagnosis that then guides a treatment or a treatment plan [Associa-
tion, 2018].

The output of a mental health assessment is a mental health report. Psychiatric reports
are simpler subtype of this document type, and mainly consist of long-form unstructured
text. They are the end product of psychiatric assessments in which psychiatrists sum-

marize the information they gathered, as well as integrate the patient history, their eval-



IDENTIFYING DATA: The patient is & 36-year-old Caucasian mabe.

CHIEF COMPLAINT: The patient relates that he originally came o this facility because of fallure to accomgplish task, difficulty
saying what he warted to say, and being easily distracted.

HISTORY OF PRESENT ILLNESS: The patient has bean recaiving services at this fecility previously, under the care of ABC, M.D.,
and laber XYZ, M.D. Historically, he has found it very essy to be distracted in the “cublcle” office setting where he sometimes works.
He first remembers having difficulty with concentration in college, but his mother has pointed out to him that &t Sorme point In his
early education, one bascher commented that be may have problermns with atbention-defictt hyperactivity disorder. Symptoms have
Included difficulty sustaining attention (espedally in reading), not Seeming bo lisben one spoke into directly, failure to finksh task,
difficulty with organization, avoiding task requiring sustained mental effort, losing things, being distracted by extraneous stimuli,
being forgetful. In the past, probably in high school, the patient recalled being mone frigidity than now. He tensed to feel ardous.
Sleap has been highly varable. He will go for perhaps months at & tme with middie Insamnia and early morming ewakening (3:00
a.m.}), and then mey sleep well for & month. Appetite has been good. He has recently gained about 15 pounds, but nobes that he
lost about 30 pownds during the time he was taking Adderall. He tends to feel depressed. His energy level is “betber now,” but this
was very problematic in the past. He has problems with motivation. In the past, he had passing thoughts of Sulcide, but this s no

longer & problen.

PSYCHIATRIC HISTORY: The patient has never been hospitalized for psychistric purposes. His only treatment has been at this
facility. He tried Adderall for & tirme, and it helped, but he became hypertenshve. Lunests i effective for his insomnia sSues. Effexor
has helped to sorme degres. He has been prescribed Provigll, as much as 200 mg g.a.m., but has been cutting it down to 100 mg
g.&.m. with Some sucoess. He sometimes takes the other half of the tablet in the afternoon.

SUBSTANCE ABUSE HISTORY:

Caffeine: Two or thres cups of coffee per day, and soda 8t lunch tirme.

Tobaccn: Denbed.

Alcohal: One glass of wine per week. The CAGE screening guestions are enswered in the negative.

Illicit drugs: Mone at present. In high school, be tried marijuana & couple of times, and cocaine once. We discussed some of the
migjor risk of thess substances.

ABUSE HISTORY/TRAUMA/UNUSUAL CHILDHOOD EVENTS:
The patient does not really feel he was abused as & child, but there were some significant problems when his father returned from
hig secsnd army tour in Vietnam, He had not met his father until 2 yesrs of age. He states that his father verbally abused his
rnether. He can recall that st about age 3, his Father left him en the roed, In crder to shut him up. His mether eventually put dewn
her foat, and teld his father te quit drinking o they would separate, and his father chose to give up alcohol, This resulted In much
Better family relations.

FAMILY PSYCHIATRIC HISTORY /FAMILY HISTORY:
The patient's father hes suffered from posttraumatic stress disorder, &£ well 22 alcoholism. The patient’s mother has had Similar
symptoms, pessibly ADHD, and there i dtpruahn on the mother side r.flhtﬂrﬁly Thire appuranﬂy are a mbu-uframly

[he: o e y "

had dlabebu MIII‘JJ!..TH! n‘nﬂtn\ll gramhﬁcﬂm- dbd of colon cancer.

SOCIAL HISTORY:
The patient was bern i Grand Junction, Colorade. He came to Alaska in 1577; his Father left his last term of service in the srmy in
Gerrnany at thet tre, Bnd they came to Alaska to help & grandperent bulld a eabin; they ended up staying. The patient has been
rnarried for O years, He hes two deughters, ages 8 and 6.

DIAGNOSES:
AXIS T 29632 Major depression, recurrent, moderate.

314.00 Attention-defictt hypersctivity dissrder, Inattentive type.

AXIS I V71,00 No disgnosis,

AXIS II1 History of gastroesephagesl reflux dissase status post Nissen Fundeplication, variable hypertension of uncertain etialogy,
retinal darmage from the wrestling injury, ehrenic back pain.

AXIS IV Decupational problemns, sther payehesscial and envireamental problems.

AXIS V Current GAF: 54. Highest in the past year: 54,

PLAN/RECOMMENDATION:
We have checked the patient’s blocd pressure today, and & [ 140/94. However, he ks experiencing a considerable amount of back
pain at this time, which lkely contributes to this. We discussed sarme of the trestment sptions, and the patient will return within the
riext few days to have his bloed pressure checked again. IF it rernaing high, he has been instructed to see his primary care provider
far further treatmert. If blosd pressure resslves with better pain contral, we will strengly consider increasing Effexar -3R. We
discussed In some detall the risks and benefits of Lunesta, Provigll, and Effexer-XR, and the patient signed & formal consent form,

Return to dinic in three weeks.

Figure 2.1: Excerpt from a psychiatric report showing section headings and content.
Some sections are omitted for clarity. Additionally, an example of an implicit section
is shown in the underlined text which represents a FAMILY MEDICAL HISTORY sec-
tion that has no explicit heading or was included under a different heading (i.e., FAMILY
PSYCHIATRIC HISTORY in this case).
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uation, patient diagnosis, and suggested treatments or future steps [Groth-Marmat, 2009,
Goldfinger and Pomerantz, 2013]. There are several types of psychiatric reports that vary
depending on the type and purpose of assessment: Psychiatric evaluation reports, crisis
evaluation reports, daily SOAP reports (Subjective, Objective, Assessment, Plan), mental
status exam reports, and mini mental status exam reports, to name a few [Association,
2006]). Here I focus on psychiatric evaluation reports. Figure 2.1 shows a snippet ex-
ample of a typical psychiatric evaluation report, while other reports also follow a similar
structure. Although there is no one strict format, there are general guidelines that psy-
chiatrists follow when writing psychiatric evaluation reports. Drawing from the general
psychiatric evaluation domains, these reports start with the patient’s identifying informa-
tion, followed by the patient’s chief complaints, presenting illness and its history, personal
and family’s medical history, mental status examination, and ending with the psychiatric
medical diagnosis and treatment plan. This information is typically structured into an or-
dered list of headed sections [ Association, 2006]. Table 2.1 contains a detailed list of the
main sections of a psychiatric evaluation report in general order of appearance. Not all
listed sections appear in all psychiatric evaluation reports, and they also do not necessarily
appear in the same order, although there is usually a general pattern to the order.

To the best of my knowledge there was no corpus of psychiatric reports annotated
with section labels, so [ created my own. I collected 150 publicly available psychiatric
evaluation report samples by crawling the web through custom search engines (Google

Custom Search Engine for Medical Transcriptions' and GoogleMT?) and other sources >.

thttps://cse.google.com/cse/publicurl 7cx=010964806533120826279:
kyuedntbZfy

thttps://www.googlemt.com/#gsc.tab=0

shttp://www.medicaltranscriptionsamples.com/
http://mtsamples. com/

https://medword. com/psychiatry5.html
http://www.medicaltranscriptionsamplereports. com/
http://onwe.biocinnovate.co/psychological-assessment-example/
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https://www.googlemt.com/#gsc.tab=0
http://www.medicaltranscriptionsamples.com/
http://mtsamples.com/
https://medword.com/psychiatry5.html
http://www.medicaltranscriptionsamplereports.com/
http://onwe.bioinnovate.co/psychological-assessment-example/

The reports [ selected were complete and adhere to the general guidelines for psychiatric
report writing discussed previously. Some of the reports were anonymized samples of

real reports, while others were mock reports written for educational purposes.

# Sectlon # Words # Sent. Sent. Length 9% Present %% Implicit &
GENERAL PATIENT INFO
1 IDENTIFYING DATA 12 2 6 100 0 097
2 CHIEF COMPLAINT 27 3 9 100 0 096
MEDICAL HISTORY
3 HIST. OF PRSNT. ILLNSS. 232 29 8 05 10 092
4 PSYCHIATRIC HISTORY 85 g 11 52 36 091
5 SUBSTANCE ABUSE HIST. 08 10 10 88 44 090
6 REVIEW OF SYMPTOMS 150 19 8 06 51 0.89
7 SURGERIES 28 3 7 33 0 096
8 ALLERGIES 4 2 2 08 0 096
9 CURRENT MEDICATIONS 40 9 4 100 0 097
FAMILY HISTORY
10 BIRTH AND DEVELOF. HIST. 39 5 10 31 51 0.1
11 ABUSE HIST/TRAUMA 110 9 12 79 34 079
12 FAMILY PSYCHIATRIC HIST. 44 5 9 73 80 075
13 FAMILY MEDICAL HISTORY 48 7 7 o2 38 079
14 SOCIAL HISTORY 20 7 11 76 45 084
15 PREGNANCY 29 3 8 47 64 0.81
16 SPIRITUAL BELIEFS 12 2 5 24 0 092
17 EDUCATION 32 3 g 68 0 093
18 EMPLOYMENT 3l 3 9 79 0 091
19 LEGAL 10 1 5 20 0 095
MENTAL STATUS
20 MENTAL STATUS EXAM 155 18 9 95 11 078
21 STRENGTHS AND SUPPORTS g 1 g 71 43 08l
TREATMENT
22 FORMULATION 35 4 g 62 0 096
23 DIAGNOSES 63 12 5 100 0 097
24 PROGNOSIS g 2 3 74 0 054
25 TREATMENT PLAN 121 12 10 100 0 096
Max 232 29 12 100 &80 097
Average 61 T T 75 20 090
Min 4 1 2 20 0 075

Table 2.1: Section ontology and relevant statistics for Corpus 1: Psychiatric Evaluation
Reports. All columns represent averages. The last three rows are the max, average, and
min of averages.
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# Section #Words #Sent. Sent. Length % Present % Implicit K

CLINICAL INFORMATION
1 CLINICAL HISTORY &0 8 10 100 0 095
EXAM DETAILS
2 EXAM 16 2 8 100 0 096
3 COMPARISON 16 2 8 86 10 0.85
4 CONTRAST 14 2 7 14 53 0.81
5 PROCEDURE 12 2 6 100 60 080
FINDINGS
6 FINDINGS 192 24 8 100 0 092
IMPRESSION
7 IMPRESSION 133 19 7 100 0 091
8 ATTENDING STATEMENT - - - 0 - -
Max 192 24 10 100 60 0.96
Average 66 8 8 75 18 0.89
Min 12 2 6 0 0 080

Table 2.2: Section ontology and relevant statistics for Corpus 2: Radiology Reports. All
columns represent averages. The last three rows are the max, average, and min of aver-
ages.

2.2 Corpus 2: Radiology Reports

A radiology report is a summary of a radiology scan such as an X-Ray or an MRI, where
a radiologist communicates findings and an analysis of the output of the scans [of Radi-
ology, 2019]. Similar to the previous two clinical report types, radiologists are typically
trained to follow a general report guideline. Similar to psychiatric evaluations, this is not
a strict format, as reports vary in their section structure and content based on the proce-
dure performed, the patient’s specific case, and the radiologist’s and medical institution
writing styles. Figure 2.2 shows a snippet of a radiology report.

I randomly extracted 423 radiology reports from the MIMIC-III database that were
complete and adhered to the general radiology writing guidelines outlined by [of Radiol-
ogy, 2019]. These reports covered a variety of procedures and scan types, including X-
Rays, MRIs, and ultrasound. I used the ontology of section headers presented in [Tepper

et al., 2012]. Table 2.1 shows this ontology along with detailed list of the main sections
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of a radiology reports in usual order of appearance as well as relevant corpus statistics
including: the average number of words per section, average number of sentences, and
average sentence length. Additionally, I present the percentage of present sections per
section type as well as the percentages of these sections appearing implicitly within the

COTpUS.

EXAM: Noncontrast CT scan of the lumbar spine
REASON FOR EXAM: Left lower extremity muscle spasm.
COMPARISONS: None.

FINDINGS: Transaxial thin slice CT images of the lumbar spine were obtained with sagittal
and coronal reconstructions on emergency basis, as requested.

Mo abnormal paraspinal masses are identified.
There are sclerotic changes with anterior effusion of the sacroiliac joints bilaterally.

There is marked intervertebral disk space namowing at the L5-51 level with intervertebral
disk vacuum phenomenon and advanced endplate degenerative changes. Posterior disk
osteophyte complex is present, most marked in the left paracentral to lateral region
extending into the lateral recess on the left. This most likely will affect the 51 nerve root on
the left. There are posterior hypertrophic changes extending into the neural foramina
bilaterally inferiorly. There is mild neural foraminal stenosis present. Small amount of
extruded disk vacuum phenomencon is present on the left in the region of the exiting nerve
root. There is facet sclerosis bilaterally. Mild lateral recess stenosis just on the right, there is
prominent anterior spondylosis.

At the L4-5 level, mild bilateral facet arthrosis is present. There is broad based posterior
annular disk bulging or protrusion, which mildly effaces the anterior aspect of the thecal sac
and extends into the inferior aspect of the neural foramina bilaterally. No moderate or high-
grade central canal or neural foraminal stenosis is identified.

At the L3-4 level anterior spondylosis is present. There are endplate degenerative changes
with mild posterior annular disk bulging, but no evidence of moderate or high-grade central
canal or neural foraminal stenosis.

At the L2-32 level, there is mild bilateral ligamentum flavum hypertrophy. Mild posterior
annular disk bulging is present without evidence of moderate or high-grade central canal or
neural foraminal stenosis.

At the T12-11 and L1-2 levels, there is no evidence of hemiated disk protrusion, central
canal, or neural foraminal stenosis.

There is arteriosclerotic vascular calcification of the abdominal aorta and iliac arteries
without evidence of aneurysm or dilatation. No bony destructive changes or acute fractures
are identified.

IMPRESSION:

1. Advanced degenerative disk disease at the L5-51 level.

2. Probable chronic asymmetric herniated disk protrusion with peripheral calcification at the
L5-51 level, laterally in the left paracentral region extending into the lateral recess causing
lateral recess stenosis.

3. Mild bilateral neural foraminal stenosis at the L5-51 level.

4. Posterior disk bulging at the L2-3, L3-4, and L4-5 levels without evidence of moderate or
high-grade central canal stenosis.

5. Facet arthrosis to the lower lumbar spine.

6. Arteriosclerotic vascular disease.

Figure 2.2: Excerpt from a radiology report showing section headings and content. Some
sections are omitted for clarity.
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HISTORY OF PRESENT ILLNESS: Mr. ABC I3 & 60-year-old white male veteran with multiple
comorbidities, whe has a history of bladder cancer diagnesed approximately two years ago by the VA
Hospital. He enderwent a resection there. He was to be admitted to the Day Hespital for cystectamy.
He was seen in Urelogy Clinic and Radiclegy Clinke on MM/DD/YYYY,

HOSPITAL COURSE: Mr. ABC presented to the Day Hospital In anticipation for Urclogy surgery. On
evaluation, EXG, echocardiogram was abnermal, & Cardislogy consult wes cbiained. A cardiac
adenosine stress MRI was then procesded, same was positive for inducible lschemia, mild-to-mederate
Inferolateral subendocardial infarction with peri-infarct ischernia. In addition, inducible ischemia sesn
In the inferior lateral septum. Mr. ABC underwent 2 left heart catheterization, which revealed two
vessel coronary artery disease. The RCA, proximal was 05% stencsed and the distal B0% stencsed.
The mid LAD was 85% stenosed and the distal LAD was 5% stenosed, There was four Multi-Link
Vision bare metal stents placed to decrease all four lesions to 0%. Following Intervention, Mr. ABC was
admitted to 7 Ardrmore Tower under Cardiclogy Service under the direction of Dr. XYZ. Mr. ABC had a
noncomplicated post-intervention haspltal course. He was stable for discharge home on MM/DD/YYYY
with instructions to take Plavix daily for one rmenth and Urelogy ks aware of the same.

DISCHARGE EXAM:
VITAL SIGNS: Temperature 074, heart rate 68, respirations 18, blood pressure 133/70.

HEART: Regular rate and rhythm,

LUNGS: Clear to auscultation.

AEDOMEN: Obese, soft, nontender, Lower abdomen tender when touched due to bladder cancer.
RIGHT GROIN: Dry and intect, no brult, no ecchymasis, no hematoma. Distal pulses are intact,

PROCEDURES:
1. On MM/DD/YYYY, cardiac MRI adencsing stress.

2. On MM/DDYYYYY, left heart catheterization, coronary anglogram, left ventriculogram, corenary
angloplasty with four Multi-Link Vision bare metal stents, two placed to the LAD in two placed to the
RCA.

DISCHARGE INSTRUCTIONS: Mr. ABC I3 discharged home. He should Follow a low-fat, low-salt,
lowi-cholesterel, and heart healthy diabetic diet. He should follow post-coronary artery Intervention
restrictions. He should not (IRt greater than 10 pounds for seven days. He should not drive for two
days. He should not immerse in water for twe weeks. Groln site care reviewed with patient priar b
being discharged home. He should check groin for bleeding, edema, and signs of infection. Mr., ABC |3
to see his primary care physician within ene to bwo weeks, reburn te Dr. XYZ's dinle In four bo six
wesks, appointment card to be malled him. He Is to follow up with Urslagy in thelr cinic on
MM/DD/YYYY ak 10 e'clock and then to scheduled CT scan at that tme.

DISCHARGE DIAGNOSES:
1. Coronary artery disease status post percutaneous coronary artery Intervention to the right coronary
artery and to the LAD.

Bladder cancer.

Diabsetes.

Dryslipidemila.

Hypertension.

Carotid artery stenosls, status post Fight carctid endarterectemy in 2004,

Multiple resections of the bladder tumer,

Distant history of appendectonmy.

Distant history of ankle surgery,

WM N

Figure 2.3: Excerpt from a hospital discharge summary showing section headings and
content. Some sections are omitted for clarity.

2.3 Corpus 3: Hostpital Discharge Summaries

A discharge summary is the final documentation of a terminated hospital stay. Physicians
supervising hospitalized patients usually do not follow patients outside the hospital. This
creates a discontinuity of care that is addressed through a discharge summary. Discharge
summaries are the means for this communication between inpatient and outpatient physi-

cians. These reports are intended to summarize the course of hospital treatment by listing
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the various events during hospitalization, thus preparing the outpatient physician to re-
sume care of the patient [Horwitz et al., 2013]. Like the two previous corpora, discharge
summaries are governed by general writing guidelines that suggest the information that
should be included. In practice, different hospital networks and even different medical
professionals within the same hospital often write these reports differently, tailoring them
to specific patient cases. Figure 2.3 shows a snippet of a discharge summary document.
Similar to radiology reports, [ randomly extracted 150 discharge summaries from the
Medical Information Mart for Intensive Care III (MIMIC-III) database [Johnson et al.,
2016]. I selected discharge summaries that were complete and that adhere to the general
guidelines of medical note writing. As is the case with all MIMIC-III data, the summaries
are anonymized. I used the ontology of section headers presented in [Tepper et al., 2012].
Table 2.3 shows this ontology along with a detailed list of the main sections of a discharge
summary reports in usual order of appearance as well as relevant corpus statistics includ-
ing: the average number of words per section, average number of sentences, and average
sentence length. Additionally, I present the percentage of present sections per section

type as well as the percentages of these sections appearing implicitly within the corpus.

2.4 Corpus 4: Patent Documents

Patent documents are the result of a successful patent application. Many of a patent’s
sections are mandatory, e.g., the claims section [WIPO, 2007]. Similarly, the descrip-
tion section in these documents is further composed of subsections, some of which are
mandatory, while others are optional and depend on the authors’ preferences as well as
the patent’s technical topics. In their work on patent section segmentation, [Briigmann
et al., 2015] outlined the structure of the description section in a patent document into five

mandatory and two optional segments.
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# Section # Words # Sent.  Sent Length % Present % Implicit K
GENERAL PATIENT INFO

1 ADMIT DATE 3 1 3 100 0 097
DISCHARGE DATE 3 1 3 100 0 097
3 SERVICE 4 2 2 100 0 096
PROVIDER INFO
4 ATTENDING 2 1 2 52 0 096
5 ADMIT PHYSICIAN 2 1 2 100 0 095
& DISCHARGE PHYSICIAN 2 1 2 100 0 095
CONDITION BEFORE ADMISSION
T ADMISSION DIAGNOSES 96 12 & 100 0 092
& HISTORY 135 15 9 16 58 085
9 MEDICATIONS 55 11 5 100 0 096
10 REASON FOR ADMISSION 162 18 9 100 0 095
CONDITION AT DISCHARGE
11 CONDITION 4 2 100 0 096
12 DISPOSITION 2 1 2 34 10 092
13 DISCHARGE DIAGNOSES 144 18 & 89 37 089
14 OTHER DIAGNOSES - - - 0 -
15 PHYSICAL EXAM ON DISCH. 45 9 5 40 38 090
MEDICAL HISTORY
16 ALLERGIES 12 3 4 100 0 096
17 FAMILY HISTORY 81 9 9 43 20 089
18 GYNECOLOGICAL HISTORY - - - 0 -
19 PAST MEDICAL HISTORY 144 16 9 100 41 0.82
20 PAST SURGICAL HISTORY 32 4 & 100 58 083
21 SOCIAL HISTORY 84 T 12 37 66 0.88
HOSPITAL COURSE
22 CONSULTATION 88 11 & 6 0 096
23 HOSPITAL COURSE 168 14 12 85 0.95
24 PHYSICAL 66 11 & 28 13 0.89
25 PROCEDURES 15 5 3 65 10 091
26 STUDIES - - - 0
DISCHARGE INSTRUCTIONS
e FOLLOW UP - - - 0 -
28 DIAGNOSTIC STUDIES REC'D - - - 0 -
29 DISCHARGE INSTRUCTIONS 408 4 12 100 0 096
30 DISCHARGE MEDICATIONS 12 12 & 100 0 097
Max 408 4 12 100 66 097
Average 3 9 & 62 13 054
Min 2 1 2 0 0 0482

Table 2.3: Section ontology and relevant statistics for Corpus 3: Hospital Discharge Sum-
maries. All columns represent averages. The last three rows are the max, average, and
min of averages.

In my work, I focus on the description section of patent documents and refer to those

as patent documents in my discussion throughout this paper. I randomly collected 464
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EeS

Section # Words # Sent. Sent. Length % Present K

1 TECHNICAL FIELD 85 3 8 100 0.95
2 BACKGROUND ART 267 57 11 100 0.96
3 SUMMARY OF THE INVENTION 1,286 89 10 100 0.94
4 DESCRIPTION OF DRAWINGS 975 19 8 100 092
5 PREFERRED EMBODIMENTS 4,106 208 7 100 0.95
6 INDUSTRIAL APPLICABILITY 2,731 96 2 31 0.87
7 EXAMPLES 1,258 B2 4 14 0.89
Max 4,106 208 2 14 087

Average 1,530 79 7 78 092

Min 85 3 11 100 0.96

Table 2.4: Section ontology and relevant statistics for Corpus 4: U.S. Patent Documents.
All columns represent averages. The last three rows are the max, average, and min of
averages.

U.S. patent documents using the PATENTSCOPE database [WIPO, 2019] provided by
the World Intellectual Property Organization (WIPO). The documents spanned the period
between 1954 and 2010. We then extracted the description sections from the original
patent documents to construct our corpus. Finally, we used the ontology of section types
presented in [Briigmann et al., 2015]. Table 2.4 lists the main section types in their usual

order of appearance and how often they occur in our corpus and their relevant statistics.

2.5 Corpus 5: Environmental Scientific Articles

The environmental scientific corpus was the result of an interdisciplinary collaborative
project between computer scientists (including myself and other colleagues at the School
of Computing and Information Sciences) and environmental scientists at Florida Inter-
national University’s Earth and Environment department. The project was supported by
the CREST Center for Aquatic Chemistry and Environment at FIU, and was aimed at de-
veloping a domain-specific ontology-based semantic search engine for the environmental
scientific literature. To the best of our knowledge there was no corpus of scientific arti-

cles annotated with ENVO concepts, so we created our own. We collected a total of 19
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Unigue

Query Tille Citaflen Tokens Sentences Concepls =
Methy]l-Mercumy Mercury in the Aqguatic Environment ... . [Wirich et al, 2001] 5,081 162 26 nfa
CconEntrations in Sulfide Controls on Mercumy Speciation ... . [Benpit et al., 1999] 4,133 168 13 nfa
Everglades water and Sulfate Stimulation of Mercumy Methy lation.. .. [Gilmouret al, 1992] 3,642 160 18 nfa
= diment Effect of Salinity on Mercury Activity . .. [Compeau and Bartha, 1987] 3421 150 22 nfa
Anaerohic Microflor of Everglades Sediments ... [Drake ot al., 1996] 4,651 179 s et
Sulfate reduction Constants for mercumy binding .. . [Bemoit et al., 3001] 4,620 173 17 &2
occurting in Everglade s Mercury methylation in periphyton.. .. [Cleckneret al., 195949] 3,830 159 18 075
pore wakers and sdiments  Methy lmencury Concentrations ... . [Gilmouret al, 1998] 4,795 183 26 03]
Bacerial Methylmercury Degradation .. . [Marvin-DiPasquale and Onemiand, 1998] 3,696 199 I 44
Croundwater's significance to changing . .. [Harvey and McCormick, 2009] 9,650 300 73 a3
Sulfir reduction affecting ~ Variation in Soil Phosphorus ... . [Chambers and Pederson, 2006] 3,032 103 k) 7l
South Flarids Everglades  Sulfur in the South Florida ecosystem ... . [Orem et al, 2011] 3485 149 k1) e
soils Sulfur in peat-forming systems . .. [Caszgrande et al., 1977] 3,998 165 5 7l
Effects of sulfae amendments . ... [[DHerterg etal, 2011] 4,463 160 42 &2
Coastal groundwater discharge — an additional . .. [Prics et al., 2006] 4,445 158 3z DES
The Influence of Hydrologic Restaration .. . [Sullivan et al., 2014] 5,860 23 28 nEl

Everglade E

“ﬂﬁ w;:?m_ " Cround Water Recharge and Discharge . .. [Marvey st al., 2004] 6,257 73 3 0ER
Estimates of groundwater dischange .. . ZapatsRios and Price, 2012] 6,480 o7 48 nE3
Cruantifying time-varying ground-water ... . [Choi and Harvey, 2000] 4,747 185 46 LEl
Mo 9,650 o7 73 0ER
Average 4741 186 3 e
Min 3,032 103 13 30
Standard Deviallon 1,604 43 15 15

Table 2.5: Articles used in Corpus 5: Environmental Scientific Articles. Listed are the
number of tokens in each article, the number of sentences overall, the number of unique
concepts, and the annotator agreement expressed as Cohen’s k.

articles (90,074 total words) using four search queries that were created by three domain
experts (two PhD students and a professor of Hydrology). Our domain experts ran the
queries through Google Scholar and examined from the several hundred results returned,
identifying the top four or five most relevant articles for each query. Importantly, several
of the articles were not ranked near the top of Google's results, and were rather found
many pages deep.

We then manually annotated articles at the sentence level in two separate annotation
studies: The first pertained ontological semantic concepts (i.e. scientific concepts found
in the articles), and the second involved the section structure of the articles similar to
the previous corpora. Regarding the semantic concept annotation, and in an pilot study
of ours [Eisenberg et al., 2017], we determined that the most useful ontology for our
purposes was the Environment Ontology (ENVO), a community-led, open ontology for
various life science disciplines [Buttigieg et al., 2013]. According to its creators, ENVO

is an attempt at establishing a standard annotation scheme for several co-dependent or
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related disciplines, including, but not limited to, ecology, hydrology, environmental bi-
ology, and the geospatial sciences. ENVO contains concepts corresponding to a wide
range of natural environments and environmental conditions. It is encoded in the Open
Biomedical Ontologies (OBO) syntax, which is a subset of the Web Ontology Language
(OWL). ENVO can be populated, managed, and maintained using the OBO-Edit ontol-
ogy development tool. We annotated the articles at the sentence level using concepts
from ENVO (the following sections discuss the annotation study in detail).Table 2.5 lists
the queries, the corresponding articles returned from the search results, as well as article-
specific statistics. The articles have an average of 4,741 tokens, 186 sentences, 261 unique
ENVO concepts.

ENVO, like many ontologies, is hierarchical in design. Three of its top-level, most
developed branches are environmental system, environmental feature, and environmen-
tal material. 1It’s hierarchical structure allows for it to include not only entities, but
also higher-level relationships between various concepts, including many standard on-
tological relationships such as is—a, part-of, contained-in, connects, and
has—condition. ENVO also contains scientific and domain-specific relationships
suchasderives—from, input—-of, cutput—-of, has—habitat, and biomech
anically-related-to. Furthermore, the ontology boasts a well-connected graph of
synonymy relationships, encoded using different granularities including broad, exact,
and narrow.

Additionally, Table 2.6 shows the ontology chosen for scientific article section struc-
ture along with a detailed list of the main sections in usual order of appearance as well
as relevant corpus statistics including: the average number of words per section, average
number of sentences, and average sentence length. I also present the percentage of present
sections per section type as well as the percentages of these sections appearing implicitly

within the corpus. the ontology of sections and the as well as the relevant statistics.
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# Section # Words # Sent. Sent. Length % Present % Implicit K

INTRODUCTION
1 BACKGROUND 800 35 23 100 0 0096
2 PROBLEM 400 19 21 100 61 0.88
3 METHOD 1.413 53 27 100 0 0.95
4 RESULT 1,925 84 23 100 0 0096
RELATED WORK
5 CONNECTION 356 21 17 100 100 0.85
6 DIFFERENCE 281 14 20 100 100 0.79
7 FUTURE WORK 350 20 18 40 36 0.83
8 CONCLUSION 205 10 21 100 0 0096
Max 1,925 84 27 100 100 0.96
Average 716 32 21 093 37 0.90
Min 205 10 17 40 0 079

Table 2.6: Section ontology and relevant statics for Corpus 6: Environmental Scientific
Articles. All columns represent averages. The last three rows are the max, average, and
min of averages.

2.6 Corpus 6: News Articles

MNews Report
Summary Story
[Headline] [Lead] Situation Comments
Episode Background Conclusions
[Main Events| [Consequences| Context History [Expectations| |[Evaluations|

P

[Circumstances| [Previous Events|

Figure 2.4: The hierarchical discourse structure of news proposed by van Dijk [van Dijk,
1988]. Boxes indicate labels that were directly annotated on the documents; other labels
can be inferred. From Yarlott et al. [2018], Figure 1.

For the news domain, I used a gold-standard corpus previously developed by Yarlott
et al. [2018] of van Dijk’s [1988] labels (Figure 2.4) applied to a subset of the Automated
Content Extraction (ACE) Phase 2 corpus [NIST, 2002]. The ACE Phase 2 corpus is a
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major standard corpora of news articles that boasts three advantages: it is widely-used, has
relevance to other tasks, and was readily available to researchers. This dataset comprises
50 documents containing 28,236 words divided in 644 paragraphs.Table 2.7 shows the
corpus-wide statistics for the number of words and paragraphs, where each paragraph is

given a single type in accordance to van Dijk’s theory.

Words  Paragraphs

Total 28236 o644
Average 5647 129
Std. Dev. 322.1 49

Table 2.7: Corpus-wide statistics for the annotated data for Corpus 6: News Articles.
Adapted from Yarlott et al. [2018], Table 1.

2.7 Annotation Processes

There was a total of seven annotation studies conducted for this research: Six studies in-
volved the annotation of documents for their section structure (one for each corpus), five
of which I developed and served as an annotator and (or) adjudicator, while I only served
as an annotator for the news articles corpus study. Additionally, I co-developed and man-
aged an extensive seventh study that involved the annotation of scientific articles for their
semantic ontological concepts. The remainder of this section discusses the annotation

process for each of these corpora in detail.

2.7.1 Corpora 1-4

[ prepared the psychiatric evatluation corpus in two stages. First, | standardized the labels’
names, selecting a single uniform name for each section type and mapping corresponding

section labels found in the corpus to those names. For example, some reports contained
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the section SCHOOL while others listed it as EDUCATION. Here I selected EDUCATION
as the uniform section label across all reports.

Second, I created a hierarchy for the section names which reflected implicit embedded
sections types that I found in the corpus. There were only three section types that included
implicit subsections in this corpus, namely, MEDICAL HISTORY, FAMILY HISTORY, and
MENTAL STATUS. For example, some reports containing the section MENTAL STATUS
might in turn include information in that section about both MENTAL STATUS EXAM and
STRENGTHS AND SUPPORTS. In this case | identified these implicit subsection bound-
aries (that is, the boundaries were not identified with a section header) and labeled those
subsections with both the parent and child label. Table 2.1 lists the the parent sections
that sometimes included other sections implicitly (emphasized in bold), the unified list of
section types found in the collected reports (numbered sections), word and sentence level
statistics, and percentage of reports containing those sections in the corpus. For both of
these stages I used all 150 reports.

As for the next three corpora, | used section ontologies developed in previous studies
as discussed in the previous sections. Annotation was done (over the course of a month,
approximately, for each corpus) in a double-blind manner by three annotators: myself,
a computer science undergraduate student with an uncompleted medical degree, and a
medical doctor who also acted as an adjudicator for the medical corpora (Corpora 1-3),
while I acted as the adjudicator for the patent documents corpus (Corpus 4). The annota-
tors that took part in this project were given minimal training outside of their individual
experience with annotation studies. They were provided with the psychiatric report writ-
ing guide [Association, 2006], the American College of Radiology standards handbook
[of Radiology et al., 2018], as well as other templates and guidelines for discharge sum-
mary writing, to use as a reference in each corpus annotation. Additionally, an annotation

guide that included the ontology of labels for the documents in each corpus was provided.
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The annotators were instructed to annotate continuous blocks of text that correspond to
each label in the ontology with no repetition of labels. That is, a label can not occur more

than once in a report and a label block can not be segmented.

2.7.2 Corpus 5: Environmental Scientific Articles

As discussed previously, there were two annotation studies for the scientific articles cor-
pus. The first pertained ontological semantic concepts (i.e. scientific concepts found in
the articles), and the second involved the section structure of the articles similar to the

previous corpora.

Semantic Concept Annotation

The purpose of manually annotating semantic concepts from the ontology was twofold:
first, to show that the ontological concepts appear in the target texts and, second, to show
that it is possible to automatically leam domain-specific concepts from a relevant on-
tology. Because developing concept detectors is a non-trivial task, in prior work my
co-authors and I tested the utility of the ontology, as well as verified that it is feasible to
automatically rank articles using detected ontological concepts [Eisenberg et al., 2017].
We then expanded that effort by creating a larger gold-standard corpus and demonstrating
that we can identify the concepts in the articles automatically.

As discussed above, we collected a corpus of 19 articles from the biogeochemical and
hydrological domains, aligned with three search queries. Our team of domain trained
annotators then annotated the queries and the articles for concepts from ENVO. For each
article, annotations were collected at the sentence level. Our annotation team was com-
posed of one PhD student in hydrology and four Earth and Environment undergraduate
students at FIU.
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More than 2() vears ago, Andren & Harriss (1973) measured relatively high % MeHg (MeHg
as a percent of total Hg) in Everglades sediments, noting that samples from the Everglades
were comparable to Hp-contaminated Mobile Bay sediments. [Gilmour et al., 1998, p. 328]

Text Span Concept 1D
Everglades sediments  sediment 2007
Everglades peat swamp 189

Mobile Bay sediments sediment 2007

Figure 2.5: Example sentence from article [Gilmour et al., 1998, p.328]. Underlined
portions of the text indicate spans that were associated with an ENVO concept; the table
shows the associated ENVO concept ID.

Annotators used Protégé [Musen, 2015] to search and explore ENVO when deciding
what concepts should marked for each sentence of each article. Annotators recorded
their annotations in a spreadsheet, where each row represented a sentence, followed by
columns representing the span of text containing the concept and the ID of the identified
concept.

Figure 2.5 gives an example sentence from one of the test articles, along with the text
spans which were associated with an ENVO concept.

The process of annotation involved several rounds of training, annotating, and revision
of the annotation guidelines. Even for a relatively simple sentence as shown in Figure 2.5,
numerous annotation decisions were needed. Below, I walk through this process phrase
by phrase:

More than 20 years—This phrase does not need to be annotated, as it is a temporal
expression referring to time period of the events mentioned later in the sentence.

... Andren & Harris (1973 )—This phrase also does not need to be annotated, because
it is a reference to a relevant article, and referring to the scientific literature isn’t a concept
in ENVO.

... measured relatively high %—This does not need to be annotated, as ENVO does

not contain concepts related to specific chemical concentration levels.
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... MeHg—This is the chemical formula for methylmercury, an environmental con-
taminant. The concepts of contaminant and contamination are not in ENVO. However,
because this concept is relevant to the domain of interest, I did record these text spans
and their related ideas so as to begin to build a set of concepts to expand ENVO in future
work.

... (MeHg as a percent of total Hg)—A gain, we identified the spans MeHg and Hg as
the missing concept contaminant.

... in Everglades sediments—This phrase is tricky, because Everglades and sediment
appear as individual concepts in ENVO, but when they appear in succession they form a
multiword expression. Everglades sediment does not appear directly in ENVO. However,
as it is presumably a subclass (or multiple subclasses) of sediments generally, we queried
ENVO for the entity sediment (ENVO ID 2007), and examined its children for potential
matches. Sediment has multiple children, namely, specific subtypes such as lake sediment
or contaminated sediment. However, because there is no concept corresponding to the
specific collection of different types of sediments that comprise the Everglades, we tagged
this with the more general entity sediment.

... noting that samples from the Everglades—For this span, we first looked through
ENVO to find a concept for Everglades. The closest concept is peat swamp (ENVO ID
189), which has no children, and so we tag this span using this concept.

... were comparable to Hg-contaminated Mobile Bay sediments.—For this span, we
again tagged Hg as the missing concept contaminant. In the same way as above for Ev-
erglades sediment, the phrase Mobile bay sediments was tagged with the general concept
sediment.

The first four articles were the result of a previous pilot annotation study [Eisenberg
et al., 2017]. The first three co-authors in that study and a domain expert served as the

annotators for those articles, and were annotated as follows: we annotated the first 50
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sentences of one of the articles [Ullrich et al., 2001] cooperatively to develop the annota-
tion guidelines, while each annotator annotated the remaining 130 sentences individually
so as to allow us to calculate inter-rater reliability. After these first articles was finished,
we then assigned each of the annotators one of the four remaining articles for annotation
[Gilmour et al., 1998, Benoit et al., 1999, Gilmour et al., 1992, Compeau and Bartha,
1987]. The remaining ten articles were doubly annotated by a new team of trained anno-

tators and domain experts following the developed annotation guidelines.

Section Structure Annotation

As for the annotation of section structure, I led a seperate smaller annoation study with
the help of another CS PhD student. We annotated the 19 articles according to the AZ
scheme that describes the rhetorical progression of scientific text. The scheme was origi-
nally introduced by Teufel and Moens [2002], who applied it to computational linguistics
articles. I used the version that Mizuta et al. [2006] adapted for biology articles, with
minor modifications concerning zone names as it was done by Guo et al. [2013] in their
study on identifying information zones in scientific articles. The annotation of these arti-
cles was done over the span of two weeks in a double-blinded manner, were we annotated
contigiguous blocks of text (at the sentence level) for their respective containing sections
from the ontology shown in Table 2.6. The sections CONNECTION and DIFFERENCE
were used for contiguous spans of text (sentences) that discussed related work. The other

sections are self explanatory.

2.7.3 Corpus 6: News Articles

As stated before, the news articles corpus and annotation study was produced by [ Yarlott

et al., 2018], where I served as one of three annotators. I include the discussion of the
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corpus, annotation process and results directly from [ Yarlott et al., 2018] for legibility and
ease of reference.

Annotation was performed over the course of a month, as time allowed. The adjudi-
cator performed annotation of all ten sets of documents, while the other two annotators
performed annotation of six sets each. Figure 2.6 illustrates this division of work. An-
notation of each set took approximately 45 minutes to an hour, resulting in roughly ten
hours of annotation work for the adjudicator and six hours for the other two annotators.
The annotations were performed using Microsoft Word’s built-in comment feature, to
eliminate the need for any tool-based annotator training. When confronted with multiple
labels that seemed to fit, annotators were instructed to choose the label that seemed the

most applicable.

Adjudicator
Annotator 1
Annotator 2

Figure 2.6: Division of work for annotation study of the news articles corpus. From
Figure 3 in [Yarlott et al., 2018].

The adjudication procedure took a further hour for each set of documents, resulting
in another ten hours of work for the adjudicator and another two hours for the other
two annotators, who were only required to participate in adjudication of the first two
sets of documents. The purpose of this group adjudication meeting was to resolve any
outstanding questions or confusions regarding the annotation procedure. The annotation
resulted in triple annotation for the first ten documents, and double annotation for the
remaining forty documents. The multiple annotations were merged into a gold standard
for every document. Additionally, although annotators were instructed to annotate the
headline for each document, these labels are not included as part of the gold standard

because within the ACE Phase 2 dataset, the headlines themselves are clearly annotated.
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Annotation was done in a double-blind manner by three annotators, one of whom also
acted as the adjudicator. All three annotators are Ph.D. students in computer science with
a focus on natural language processing, with experience in both annotating and running
annotation studies.

The annotators that took part in this project were given minimal training outside of
their individual experience with annotation studies. Annotators were provided with a
guide describing van Dijk’s theory. A single adjudication meeting was held after anno-
tation for the first two sets of documents was completed. The primary purpose of this
adjudication meeting was to resolve any questions the annotators had, discover any un-
certainty in the annotation guide, and revise the annotation guide to address these ques-
tions. The annotation guide contains descriptions of each discourse label in addition to an

example of a fully-annotated news article, shown in Figure 2.7.

2.8 Agreement Metrics

To measure the reliability of the annotation data, I calculated the Cohen Kappa measure
for inter-annotator agreement. A value for Cohen’s Kappa [Landis and Koch, 1977] is
calculated for each section. The ideal value of Cohen’s Kappa is 1, which denotes perfect
agreement. The range for Cohen’s Kappa is between -1 and 1. Any value of Kappa below
0 is considered to have no agreement, between () and 0.2 “slight” agreement, between
0.2 and 0.4 “fair” agreement, between (.4 and 0.6 "moderate” agreement, between 0.6
and 0.8 “substantial” agreement, and 0.8 and 1 is almost “perfect” agreement [Landis and
Koch, 1977]. To calculate Cohen’s Kappa, I populate a confusion matrix (Table 2.8) for

each section (label).
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SECTION: Section A; Page 20 Column 3; Mational Desk

LEMGTH: 393

DATE December 10, 1558

HEADUNE: Cregon's Gay Warkers Given Benafits for D ic Partners | — d DAL |
hmﬁmmhdh&nmumbmﬂhmmmﬂ

the State Constitution gave EOvernment employses the right to health

and life insurance benefits for their ic partrers. | — d [WF 2 e ]

s s, to my knowiecige, the first time & court has ssid it uRconstitutionst
oot b0 mive bepefits to the domestic partners of may and lashisn employess,”
sid Matt Cobes, cirector of the Lestian and Say Rights Project ot the American
Civill Liberties Union. "And there is no state in the country that provides
domestic partner benefits to all go npioyees " | — dl [Wr'3} VERBAL REACTIONS ]

[t Dregon does airesdy provide benefits to the domestic partners of its
empicyees: while the case was on appesl, the state voluntarily began offering
such benefits to its direct emiployess. The amployer of the thres leshisn
plaintifts in the mse, Orezon Health Soences University, has also voluntarily
be=run Offering such alkthoughi it is no longer part of the state, buta

separate public oo
[wihiie the ruling todery imeobved only thet university, Mr. Coles seid, the

decision would anoly ta every employee of 8 povernim entity in Oregon,
T the benefits to of teachers, police officers and others who

R —— | —= d DY SE o - ]

[rabert B. Rockiin, the assistant attormey pereral who srmesd the case, said he
wees ot 5o sure. | — & dl [W'E): VERBAL REACTIONS ]

hmtmmhmmmhmmwmmuiﬂpﬂ
of the nuling would be,” Mr. Rocklin said. "The court dismissed the state:
defendants because OH.SUL. i no longer a state enfity. it's not completely
clenr o e whether it wiould appdy to 8l government empioyees in the state.” | — d [W¥T]: VERBAL ALACTIONS ]

Mmmwummlwmmmummmam
trial ruling in the: case, finding that the denial of benefits to the three:
pilaintit?s, sll nursing professonsls in long-tarm relstionships who hed applied
for medical and dental insurance for their partners in 1991, violated & section
of the Starbe Constitution similar to the Equal Protection deuse of the 14th
Amendment of the United States Constitution. | & d WYl WAIN TVINTS |

Pﬂkksﬂammmn,nm!us’ni-m:pﬂuimin
Fittsbaurgh,” Mr. Coles said. "But when | look at this dedision, | think what a
Gifference & decade makes | — dl (WS} VIRBAL REACTIONS ]

Figure 2.7: Example annotation included in the annotation guide. Some parts of the
annotation have been omitted for brevity. From Figure 2 in [ Yarlott et al., 2018]

Annotator 1
true positives | false positives
true negatives | false negatives

Annotator 2

Table 2.8: Confusion matrix for Cohen’s Kappa calculation.

2.9 Annotation Results

In this section I discuss the annotation results for each of the corpora and their respective

annotation studies discussed earlier in order.
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2.9.1 Coprporal-4

The annotation results for each sof the first four corpora are shown in the last column in
each of their respective above tables (Tables 2.1, 2.1, 2.3, and 2.4). The annotation studies
resulted in the highest agreement for discharge summaries with a Cohen’s & of 0.94 for
discharge summaries, followed by patent documents with a 0.92, 0.90 for the psychiatric
evaluation reports, and (.89 for the radiology reports, all of which are considered “per-
fect”™ agreement. Discharge summaries and patent documents contained more sections
with clearly distinct language as opposed to the psychiatric evaluation and radiology re-
ports which contained a lot of sections that shared similar language and concepts such as
the personal and family medical and psychological history sections.

The tables above also show the inter-annotator agreement for each section in each
corpus. Sections that never appear implicitly were high in agreement, while the annotators
disagreed more on sections that often appeared implicitly. Section with high prevalence

and are implicit saw the least agreement.

2.9.2 Corpus 5: Environmental Scientific Articles

For the semantic concept annotation study, and as discussed above, the first four arti-
cles (Table 2.5) were the result of a previous pilot annotation study [Eisenberg et al.,
2017]. The first three co-authors (including myself) and a domain expert served as the
annotators for those articles. This produced a Cohen’s x of 0.57, which is “moderate to
substantial” agreement [Artstein and Poesio, 2008]. The remaining 15 articles were an-
notated by larger group of domain experts as discussed previously. The resulting micro-
averaged inter-annotator measure agreement over all annotator groups using Cohen’s k
is .61 which is “substantial” agreement [Artstein and Poesio, 2008]. I also report per-

document £ measures. | report a k with zeroes columns and rows removed. This refers to
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Comparison #Docs P R Fi m Pe K

Alvs. A2 10 076 079 077 0.63 018 0355
Adj. vs. Al 30 081 085 083 071 019 064
Adj.vs. A2 30 080 0383 0382 069 018 062

Alvs. Gold 30 093 092 092 036 0.19 083
A2vs. Gold 30 092 090 091 033 019 080
Adj. vs. Gold 50 093 087 090 031 018 077

Table 2.9: Microaveraged agreement measures between the annotators (A1, A2), adju-
dicator (Adj.), and the merged gold standard (Gold)}—including precision (P), recall (R),
balanced F-measure (F}), relative observed agreement among raters (pg), probability of
chance agreement (p,), and Cohen’s kappa (x, derived from p; and p.). From Table 2 in
[Yarlott et al., 2018]

the following situation: when analyzing the confusion matrix for a given concept, if there
was a row or column that only contained the number 0, I removed it from the calculation
of the average k. I justify this because situations where there is a row or column consist-
ing of only zeroes means that the annotators consistently marked a certain concept as two
different things. An example of this is an annotator consistently marking a set of spans as
the concept watercourse, and the other annotator consistently marking the same span as
watershed, which are two similar concepts. They were marking the same span as different
concepts, and each annotator always made the same decisions, but the problem was with
what they called the concept. They were consistent, which is qualitatively represented
by the fact that there is a column or row in the confusion matrix of all 0’s. Due to the
consistency of the mislabeling, I can justify removing their £’s from the calculation of the
average K.

As for the section structure annotation study, the resulting average Cohen x was 0.90
which is considered "perfect” agreement. The last column in Table 2.6 shows the result-
ing agreement per section. Similar to the previous four corpora sections (e.g. BACK-
GROUND, RESULTS) that never appear implicitly were high in agreement, while the an-

notators disagreed more on sections that often appeared implicitly (e.g. CONNECTION,
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FUTURE WORK). Section with high prevalence and are implicit saw the least agreement
(e.g. DIFFERENCE).

2.9.3 Corpus 6: News Articles

This section is repeated from Yarlott et al.’s article 2018 for ease of reference. The an-
notation study had two goals: first, to produce a benchmark dataset of document-level
discourse annotations to evaluate the impact of document-level discourse on information
extraction. Second, to evaluate whether or not humans can reliably apply van Dijk’s the-
ory to actual documents. That is, the annotators have a high degree of agreement with
respect to each other. To measure agreement, [ use the standard F; score [van Rijsber-
gen, 1979], treating one of the annotators as the correct labels, as well as Cohen’s kappa

coefficient for inter-rater agreement [Cohen, 1968].

Label Count
Lead 42
Main 60
Consequences 19
Circumstances 103
Previous Events 64
History 27

Verbal Reactions 252
Expectations 21
Evaluations 56

Total 644

Table 2.10: Distribution of the labels within Corpus 5: News Articles. The majority of
paragraphs fall under the categories of verbal reactions or circumstances.

The results of the annotation study are shown in Table 2.9. Inter-annotator agreement
between annotators Al and A2 was measured over ten documents; inter-annotator agree-

ment between the annotators and the adjudicator, as well as the annotators and the gold
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standard, was measured over 30 documents. The comparison between the adjudicator and
the gold standard was measured over the entire collection of 50 documents.

Finally, Table 2.10 provides the distribution of van Dijk’s labels (sans headlines, of
which there are 50: one for each document, were annotated within the ACE Phase 2

corpus). Verbal reactions and circumstances dominate the labels.
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CHAPTER 3
AUTOMATIC SECTION STRUCTURE IDENTIFICATION

The first task in section structure extraction is the identification of sections, their po-
sitions and boundaries in various documents. As I described in detail in chapter 2, some
document classes have a strict section structure, most however, do not . In this chap-
ter, I present three studies for section structure identification. The first (§3.1), uses an
Hierarchical Hidden Markov Model (HHMM) that was developed using the psychiatric
evaluation reports (Corpus 2.1). The second (§3.2), extends the HHMM approach by
using Conditional Random Fields (CRFs) which I developed using three corpora: psychi-
atric evaluation reports, radiology reports, and discharge summaries (Corpora 2.1-2.3).
Finally, in the third (§3.3), I present an extended application of the CRF approach to

improving the detection of paragraph functions in news article paragraphs (Corpus 2.6).
3.1 Using Hierarchical Hidden Markov Models to Automatically Iden-
tify Sections in Psychiatric Reports

Psychiatric evaluation reports represent a rich and still mostly-untapped source of infor-
mation for developing systems for automatic diagnosis and treatment of mental health
problems. As discussed previously in §2.1, these reports contain free-text structured
within sections using a convention of headings. In this section, I present a model for
automatically detecting the position and type of different psychiatric evaluation report

sections.

3.1.1 Motivation

With the exponential growth of free text in electronic health records (EHRs)}—which in-

cludes mental health documents—it is ever more important to develop natural language
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processing (NLP) models that automatically understand and parse such text. When in-
corporated in other systems, these models may aid (1) clinical decision support, (2) the
extraction of key population information and trends, and (3) precision medicine efforts
where personalized information and trends are extracted and used in the treatment pro-
cess [Demner-Fushman et al., 2009, Hripcsak et al., 2003].

The majority of clinical NLP work has focused on semantic parsing of clinical notes
found in EHRs. There are several challenges in automatic understanding of unstructured
text in EHRs, encompassing many levels of linguistic processing: identifying document
layouts, their discourse organization, mapping lexical information to semantic concepts
found in biomedical ontologies, as well as understanding inter-concept co-reference and
temporal relations [Li et al., 2010]. These challenges are also present for mental health
NLP applications.

I present an approach to automatically model the discourse structure of psychiatric re-
ports as well as segment these reports into various sections. This model learns the section
types, positions, and sequence and can automatically segment unlabeled text in a psychi-
atric report into the corresponding sections. I hypothesize that knowledge of the ordering
of the sections can improve the performance of a section classifier and a text segmenter.
To test this hypothesis, I trained a Hierarchical Hidden Markov Model (HHMM) that
categorizes sections in psychiatric reports into one of 25 pre-defined section labels.

The remainder of this section is organized as follows: I first reintroduce psychiatric
reports and their various types and conventions (§3.1.2) as done in chapter 2 for ease
of reference. Next, I discuss the task definition in detail (§3.1.3). I then describe my
approach including the corpus used, and the two main components of my model (§3.1.4).
Additionally, I present and discuss the baselines and experiments performed as well as
the results obtained from those experiments (§3.1.4). I finally conclude this section with a

review of related work on document section identification and text segmentation (§3.1.6).
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3.1.2 Psychiatric Evaluation Reports

As discussed in chapter 2, psychiatric reports mainly consist of long-form unstructured
text. They are the end product of psychiatric assessments in which psychiatrists sum-
marize the information they gathered, as well as integrate the patient history, their eval-
uation, patient diagnosis, and suggested treatments or future steps [Groth-Marmat, 2009,
Goldfinger and Pomerantz, 2013]. There are several types of psychiatric reports that vary
depending on the type and purpose of assessment: Psychiatric evaluation reports, crisis
evaluation reports, daily SOAP reports (Subjective, Objective, Assessment, Plan), mental
status exam reports, and mini mental status exam reports, to name a few [Association,
2006].

Although there is no one strict format for these reports, there are general guidelines
that psychiatrists follow when writing psychiatric evaluation reports. Drawing from the
general psychiatric evaluation domains, these reports start with the patient’s identifying
information, followed by the patient’s chief complaints, presenting illness and its history,
personal and family’s medical history, mental status examination, and ending with the
psychiatric medical diagnosis and treatment plan. This information is typically structured
into an ordered list of headed sections [Association, 2006]. As listed previously in chap-
ter 2, Table 3.1.2 contains a detailed list of the main sections of a psychiatric evaluation
report in general order of appearance. I repeat the information from Table 2.1 for ease of
reference. Not all listed sections appear in all psychiatric evaluation reports, and they also
do not necessarily appear in the same order, although there is usually a general pattern to
the order.

37



# Section # Words # Sent. Sent. Length % Present % Implicit

GENERAL PATIENT INFO
1 IDENTIFYING DATA 12 2 6 100 0
2 CHIEF COMPLAINT 27 3 9 100 0
MEDICAL HISTORY
3 HIST. OF PRSNT. ILLNSS. 232 29 8 95 10
4 PSYCHIATRIC HISTORY B35 8 11 82 36
5 SUBSTANCE ABUSE HIST. 98 10 10 88 44
6 REVIEW OF SYMPTOMS 150 19 8 96 51
7 SURGERIES 28 3 7 33 0
8 ALLERGIES 4 2 2 o8 0
9 CURRENT MEDICATIONS 40 9 4 100 0
FAMILY HISTORY
10 BIRTH AND DEVELOP. HIST. 59 5 10 31 51
11 ABUSE HIST/TRAUMA 110 9 12 79 34
12 FAMILY PSYCHIATRIC HIST. 44 5 9 73 80
13 FAMILY MEDICAL HISTORY 48 7 7 092 38
14 SOCIAL HISTORY 80 7 11 76 45
15 PREGNANCY 29 3 8 47 64
16 SPIRITUAL BELIEFS 12 2 5 24 0
17 EDUCATION 32 3 8 68 0
18 EMPLOYMENT 31 3 9 79 0
19 LEGAL 10 1 5 20 0
METAL STATUS
20 MENTAL STATUS EXAM 155 18 9 95 11
21 STRENGTHS AND SUPPORTS 8 1 8 71 43
TREATMENT
22 FORMULATION 35 4 8 62 0
23 DIAGNOSES 63 12 5 100 0
24 PROGNOSIS 8 2 3 74 0
25 Treatment Plan 121 12 10 100 0
Total 75

Table 3.1: Section ontology for psychiatric evaluation reports and corpus statistics.

3.1.3 Task Definition

My goal was to build models that learn the section structure of an evaluation psychiatric
report. As discussed earlier, a psychiatric evaluation report consists of several sections,
often ordered in a usual way. Therefore the task I tackle here is to segment and clas-
sify blocks of unstructured text (at the sentence level) drawn from psychiatric evaluation

reports into their appropriate section types. 1 assume that the reports follow the general
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Family History: Her mother was depressed and was treated. Her mother is currently age 55
... There is no family history of bipolar disorder, anxiety . .. Medical history in the family is
significant for her son, age 4, who is having seizures ... and several paternal great aunts had
breast cancer.

Figure 3.1: Excerpt from a psychiatric report showing an example of implicitly includ-
ing two different sections within another (namely, FAMILY PSYCHIATRIC HISTORY in
the first underlined portion, and FAMILY MEDICAL HISTORY in the second underlined
portion within FAMILY HISTORY ).

guidelines of psychiatric evaluation report writing discussed in (§3.1.2). There are four
main challenges in section classification of clinical notes and mental health reports. First,
labels that psychiatrists use to designate sections are ambiguous and various [Li et al.,
2010], for example, a section titled IDENTIFICATION OF PATIENT by one psychia-
trist might be named REFERRAL DATA or IDENTIFYING INFORMATION by another.
Second, psychiatrists often omit some sections entirely or include them implicitly within
other sections or under other labels, for example, the section CHILDHOOD EVENTS
can be included in a larger section such as FAMILY HISTORY while STRENGTHS AND
SUPPORTS can be listed within Mental Status. Figures 2.1 and 3.1 show snippets of
psychiatric reports that demonstrate implicit sections. Third, the sections’ order can be
different between different psychiatric reports. Fourth, some section labels are omitted or
skipped, especially if the information that would be placed in that section is not relevant
to the patient being evaluated.

Additionally, with the section labels removed from the reports, the segmentation task
was to find the section boundaries using sentences as the processing unit. This task is
similar to topic shift detection in meeting minute, newscasts, and doctor-patient counsel-
ing conversations (both, written and spoken). Psychiatric reports are highly structured,
with specific types of information (e.g., prescribed medications) found in particular sec-

tions (e.g.,TREATMEN PLAN), and with various general conventions for what informa-
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tion should appear in which sections, and in what order. However, the segmentation task
is not trivial as it faces the same aforementioned challenges. Additionally, one must find
highly distinctive features to distinguish individual sentences (and thus, boundaries) in
various sections as some of these sections can contain similar linguistic and structural
features and may even contain similar topic keywords (e.g. language in FAMILY PSY-
CHIATRIC HISTORY and SOCIAL HISTORY.

I identify the subtasks of this problem as (1) learning and building a model for the
sections’ order and presence in a report, (2) learning and building models that describe
the distinctive features of the various section types, and (3) applying a combination of

these two mode] to simultaneously identifying section boundaries and label section types.

3.1.4 Approach

Given the sequential nature of the reports’ sections, I treat this ordering task as a sequence
labeling task. That is, given a psychiatric report with n sections S5 = (5;,...,5,), de-
termine the optimal sequence of section labels O* = (07,...,0?) among all possible
section sequences. Hidden Markov Models (HMMs) have been used successfully for se-
quence labeling in a wide variety of applications, including specifically natural language
processing and medical informatics. In my problem formulation and approach, 1 follow
and combine work presented by Sherman and Liu [2008] and Li et al. [2010]. Both of
these approaches used HMM-based models coupled with section or topic-specific n-gram
models to segment text. Sherman and Liu [2008] focused on segmenting sentences within
meeting minutes into a set of predefined topics, while Li et al. [2010] focused on identify-
ing sections within clinical note documents. I take a supervised learning approach where

I learn the HMM parameters using a labeled corpus. My implementation was generally
guided by the work described in Barzilay and Lee [2004] and [Rabiner, 1989].



To overcome the challenges outlined in (§3.1.3), I first created a unified hierarchy
of standardize section labels types, based on observations in a 150 report corpus that [
assembled. Second, while Li et al. [2010] focused on the section level when building
their n-gram language models, I focus on the sentence level, similar to Sherman and Liu
Sherman and Liu [2008]. Additionally, to model the inclusion of some sections within
others as discussed in (§3.1.3) I built a two-level Hierarchical HMM (HHMM) [Bui et al.,
2004] in which some states contain HMM models for their implicit subsections. This is in
contrast to the approach presented by Liet al. [2010], who used a flat HMM, disregarding
any hierarchy within the clinical notes’ sections. The HHMM model was first proposed
by Fine et al. [1998] as a strict tree structure where each state in the HHMM is an HHMM
itself. This approach was extended and tailored by researchers for various tasks such as
the approach proposed by Bui et al. [2004] who relaxed the original model to fit general
HMM structures and implementations.

In summary, to tackle the first subtask from (§3.1.3) I built a two-level HHMM that
models the positions and order of the reports’ sections. To tackle the second subtask, I
built language models (namely, n-gram models) per section type that describe distinctive
lexical information for each of those sections. I then couple the HHMM with the n-gram
models where the HHMM and HMM states represent the known section labels, while
the states’ observations are the n-grams contained within each of the individual sections.
Finally, to tackle the the third subtask, that is identifying section boundaries, I follow a
decoding scheme using the Viterbi algorithm (discussed briefly in §3.1.4).

In the remainder of this section I describe the corpus preperation. Next, I present the
two components of the HHMM model, that is, the states (modeling the section order) and
the observations (modeling the section language). Finally I briefly discuss the process by

which I use the model to identify section boundaries.
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Corpus

As outlined in chapter 2, [ prepared the corpus in two stages. First, I standardized the
labels’ names, selecting a single uniform name for each section type and mapping corre-
sponding section labels found in the corpus to those names. For example, some reports
contained the section SCHOOL while others listed it as EDUCATION. Here [ selected
EDUCATION as the uniform section label across all reports.

Second, I created a hierarchy for the section names which reflected implicit embedded
sections types that I found in the corpus. There were only three section types that included
implicit subsections in the corpus, namely, M EDICAL HISTORY, FAMILY HISTORY, and
MENTAL STATUS. For example, some reports containing the section MENTAL STATUS
might in turn include information in that section about both MENTAL STATUS EXAM and
STRENGTHS AND SUPPORTS. In this case | identified these implicit subsection bound-
aries (that is, the boundaries were not identified with a section header) and labeled those
subsections with both the parent and child label. Table 3.1.2 lists the the parent sections
that sometimes included other sections implicitly (emphasized in bold), the unified list of
section types found in the collected reports (numbered sections), word and sentence level
statistics, and percentage of reports containing those sections in the corpus. For both of
these stages I used all 150 reports.

Following standard procedure for supervised machine learning, I split the corpus un-
der a cross-validation paradigm into two sets for training and testing, where 80% of the
reports were used in training and 20% for testing. This amounted to 120 and 30 reports

for training and testing respectively.

Modeling the Section Orders

As discussed before, I built an HHMM where each state corresponds to a distinct section

label. I introduce the terms state and parent state when discussing the HHMM. A state
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is simply an HMM state corresponding to a distinct section. A parent state is an HHMM
state corresponding to a collection of ordered sections. To account for sections listed
implicitly, I created a two-level HHMM where parent states contained states representing
the ordered subsections found in the parent state section. Thus the model contained
25 states and three parent states corresponding to information in Table 3.1.2. The first
HHMM layer contained both states and parent states, while the second layer contained a
total of 12 states corresponding to the potential implicit subsections for the three parent
states. In this HHMM, each parent state is simply an HMM itself. Thus my discussion
of HMM parameter calculation applies to both states and parent states.

The model learned transition probabilities from the labeled corpus. The state transi-
tion probabilities capture constraints on section orderings. I estimated the probabilities
between each state s using Equation 3.1. Additionally, to account for sparsity (that is,
unseen section orders) [ smoothed the probabilities by the total number of section labels

t 5 following Laplace smoothing.

count(s;, s;) + 1

Plsjls:) = count(s;) +ts

(3.1)

The second level HMM models contained within the parent states follow the same
scheme in probability estimation, but differ in the smoothing parameter (t5). Here, the
total number of section labels t5 depends on the number of subsections in each of the
parent states. For example, the parent state MEDICAL HISTORY contains a total of
four subsections or states, and thus its HMM model is smoothed by ts = 4. Finally, all
of the model’s states are linked with empty transitions in addition to self-looping ones to
account for missing sections as well as a section continuation, respectively (i.e. indicating

a section shift or a continuation).
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Modeling Section Language

To tackle the second subtask identified in (§3.1.3), I built n-gram language models [Jain
et al., 2015] that captured distinctive lexical information contained within the individual
sections. This, in turn, helped classify unknown blocks of text (that is, text unseen pre-
viously by the trained models) within a report into their respective sections. I opted to
use bigrams as opposed to higher n-gram models as the training corpus because was ex-
tremely sparse, and higher n-gram models had poor performance. This is consistent with
significant research showing that in most applications bigrams work well and better than
others [Reynar, 1998].

I built independent bigram models for each section type in the reports, using only text
from that section type. Additionally, for each of the three section types represented by
the parent states (discussed above), I built bigram models using text found in all of the
contained subsections. A common problem that arises with n-gram models is sparsity
of phrases or words. This is especially the case when training on a small corpus. Given
the relatively small corpus, my models were quite sparse at first, however, [ used Laplace
Smoothing as a solution.

Similar to transition probabilities, the HHMM learned observation probabilities from
the labeled corpus. I trained a bigram model for each state s of the HHMM. Equation
3.2 shows the computation for the likelihood of a sentence sequence wf (i.e., a long
sequence of words) to be generated by a state s. Equation 3.3 shows the computation for
estimating the specific state bigram probability along with Laplace smoothing counts for

the corresponding section S (Vg represents the vocabulary size for that section state).

k-1
P(wh|s) = [ | Pa(wisa|ws) (32)
0



counts(w ) +1
counts(w;) + |Vs|

Po(wiyq|w;) = (3.3)

I used a rule-based approach to detect uniformly structured sections containing only
standard medical terms such as medications and additional key terms. The sections
mapped with hard-coded rules are the CURRENT MEDICATIONS and the standard DSM-
IV multiaxal assessment contained within the DIAGNOSIS section, one of which is il-
lustrated in Figure 3.2 below. I recognize that this standard has been dropped with the
introduction of DSM-5 in 2013, however, the dataset I used follows the older standard as
most psychiatric reports in existence do since the new standard is relatively new.

Axis|  296.32  Major depressive disorder, recurrent, moderate
305.00  Alcohol use disorder, mild

Axisll V71.09 Mo diagnosis

Axis Hypertansion

Axis IV Problems with primary support group

AxisV  GAF = 48 (Current)

Figure 3.2: Example of DSM-IV multiaxal diagnosis assessment.

For the MEDICATIONS section, I used publicly available datasets containing lists
of medications [eMedicineHealth, 2018], and the U.S. National Library of Medicine’s
RxNorm dataset [Liu et al., 2005]. String-matching was additionally used to locate the
DIAGNOSIS sections as my algorithm would search for the key headers “Axis 1, II, III,
IV, V™.

Therefore I generated 26 bigram models, one for each section type (except for the two

rule-based types), plus three parent section types.

Decoding

[ integrated the bigram models with the HHMM and then used this bigram-HHMM model
in a decoding framework to infer the most likely section boundaries and section types for

documents with their section labels removed. I used the Viterbi algorithm and applied
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the following equation to obtain the most likely labeling of sections O*, where n is the

section index, and k,, is the word index for section n:

O* = arg max P(s)P(wg~|s) = arg max P(s,)P(wf"|s,)x
E] aq8g...8q

n (3.4)
H P(s;|s;_1) P(w}"|s;)

i=0
3.1.5 Results and Discussion

As discussed above, I randomly split the corpus into training and testing sets in a cross-
validation setup, using five folds, resulting in 120 reports for training and 30 for testing in
each fold. The models were trained to leamn a total of 25 distinct sections. Here I present
the evaluation methods and results, describing our baseline approaches, as well as the

performance of both the baselines and our method averaged across the test sets.

Evaluation Methods

There are two problems that this system solves: 1) the section labeling problem
—applying the correct section type to each section—and 2) the section segmentation
problem—identifying the correct section boundaries. I evaluated the system’s perfor-
mance on these two problems separately.

For the section ordering, I evaluated the performance of the model on each section us-
ing the F} measure averaged across all folds. As for the boundary detection problem, we
use the WindowDiff (W;) (Equation 3.5) [Pevzner and Hearst, 2002] and F. (Equation
3.6) [Beeferman et al., 1999] metrics. These metrics compare the number of segmentation
boundaries between a system’s output and a gold standard by observing a scrolling win-
dow of text in the document, and run from 0 to 1, with scores closer to 0 being better. W3

increases (gets worse) when the boundaries are different. Similarly P increases when



a section type transition (i.e., a section type for this study) is different. The W; score
represents the probability that the number of boundaries found by the system is different
from that in the gold standard, while the P, score represents the probability that any two

sentences are incorrectly listed as being in the same section.

N—k

Wal(ref, hyp) = ﬁ Z{|ref — hyp| # 0) (3.3)
i=1
Pk{T'E.f'. hyp] = Z D{Ij){ére_f“:.?:] XNOR ﬁhyp{i':j}} (36]

1<i<j<n
Baseline Methods

I compared the system’s performance in finding the correct labels of sections in a re-
port to two baseline methods. The first method was introduced as a baseline by Li et al.
[2010]. This method uses bigrams to independently classify each section, disregarding
any section order information. For the second baseline, I followed the primary approach
proposed by Li et al. [2010] which is a flat HMM model built similarly to my model
as described previously (§3.1.4), but operates on a section level rather than a sentence
level. Li’s method ignores hierarchical information where some report sections are im-
plicitly included within other sections. My implementation of this model included 25
states corresponding to each section within the reports. Both of these methods assume
that the section boundaries are given, and as such they only generate a sequence labeling
for section types.

I compared the system’s performance in identifying section boundaries to two other
baseline methods. The first is LCSeg—a popular text segmentation baseline [Galley et al.,
2003]. LCSeg assumes that a topic change in written text occurs when chains of frequent
repetitions of words begin and end. It rewards shorter chains over longer ones and fur-

ther rewards chains with more repeated terms. Finally, the lexical cohesion between two
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chains is evaluated using a cosine similarity. The second method is TopicTiling—an aug-
mentation of the well-known TextTiling algorithm [Hearst, 1994]. TopicTiling [Riedl
and Biemann, 2012] is LDA-based and represents segments as dense vectors of terms

contained in dominant topics (as opposed to sparse term vectors).

Results

For the section labeling problem, the HHMM equaled or outperformed both baselines in
all the sections. Table 3.3 shows the precision, recall, and F; scores for the two baselines
and my model. The DIAGNOSIS section saw the best performance due to a rule-based
approach. Similarly, CURRENT MEDICATIONS achieved high scores due to the use of
dictionaries. All three models performed the worst in identifying the LEGAL section. [
suspect that this is due to the low prevalence of this section and its content in the dataset.
Similarly, sections with lower prevalence saw lower performance than others. Both base-
lines performed well in identifying the IDENTIFYING DATA and DIAGNOSIS sections
due to their highly distinctive language. The HHMM model performed better for all im-
plicit subsections, and significantly better for two (i.e., PREGNANCY and BIRTH AND
DEVELOPMENTAL HISTORY. Finally, the HHMM model performed exactly the same
as the Flat HMM baseline for the three parent types, as my model reduces to the Flat
HMM in these cases and because the flat HMM model assumes a fixed general ordering
of the sections.

Since the report sections vary in size, I computed both macro- and micro-averaged
precision, recall, and F'-measure (last two rows in Table 3.3). My model’s micro-averaged
F-measure is above 90% which is significantly higher than both the Flat-HMM and the
independent bigram baselines performing at 85% and 62% respectively. Similar to Li
et al. [2010], both the HHMM and the Flat-HMM baseline seemed to neither overfit nor
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Independent Bigram Flat HMH HHMM

# Section P R Fy P R B P R F
GENERAL PATIENT INFO - - - - - - - -

1 IDENTIFYING DATA 0.83 0.81 082 09 09 095 095 09 097

2 CHIEF COMPLAINT 068 065 067 088 074 080 089 089 091

MEDICAL HISTORY 066 066 065 093 088 090 038 083 0%
HIST. OF PRSNT. ILLNSS. 0.69 0.67 068 091 086 0388 094 085 0%

3
4 PSYCHIATRIC HISTORY 0.65 0.6 062 074 085 079 093 086 0.89
5 SUBST. ABUSE HIST. 069 069 069 0838 080 084 095 083 0.8
6 REVIEW OF SYMPTOMS 080 067 073 079 086 082 09 087 0%
7 SURGERIES 040 031 035 079 051 062 085 064 073
8 ALLERGIES 060 080 069 09 086 088 088 091 089
9 CURRENT MEDICATIONS 0.87 074 080 09 084 087 091 093 092
FAMILY HISTORY 068 056 058 092 086 089 092 086 0.8
10 BIRTH AND DVLE HIST. 0.68 050 057 071 068 069 089 080 0.84
11 ABUSE HIST./ TRAUMA 042 033 037 087 077 0382 0% 081 088
12 FAMILY PSYCH. HIST. 057 059 058 092 087 089 092 0.9 091
13 FAMILY MED. HISTORY 065 060 062 092 089 09 09 089 09
14 SOCIAL HISTORY 067 069 068 066 089 076 093 081 087
15 PREGNANCY 060 0.67 063 089 051 065 092 080 086
16 SPIRITUAL BELIEFS 0.73 046 056 090 090 090 093 088 0.9
17 EDUCATION 066 061 063 071 077 074 092 084 0.88
18 EMPLOYMENT 065 062 063 091 088 089 092 086 0.8
19 LEGAL 016 062 026 067 061 064 072 068 070
MENTAL STATUS 056 072 062 085 09 0389 035 094 089
20 MENTAL STATUS EXAM 064 063 064 083 09 0389 085 0% 0%
21 STRENGTHS AND SUPPORTS 0.42 082 056 080 092 086 032 092 087

TREATMENT - - - - - - - -

22 FORMULATION 056 071 063 086 078 082 092 082 087
23 DIAGNOSES 0.88 076 081 09 095 09 098 0938 098
24 PROGNOSIS 066 062 064 084 082 083 0.9 086 0.88
25 TREATMENT PLAN 0.74 083 078 095 093 09 097 093 095

Macro-Average 0.62 064 062 085 082 083 091 086 0.88
Micro-Average 0.62 0.62 062 086 083 0384 093 091 092

Table 3.2: Section type identification results (precision, recall and F; scores) per section
as well as micro and macro averages. Parent sections are in bold.
underfit, which is indicated by higher micro-averaged compared to the macro-averaged
scores.

As for the boundary detection problem, and similar to the evaluation in Sherman and
Liu [2008], I performed two experiments for the baselines since both baselines require

a parameter representing the number of boundaries (number of topics minus one). In
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the first experiment I allowed the parameter to be chosen by LCSeg and TopicTiling,
respectively, while in the second experiment, I provide the algorithms with the correct
number of boundaries (i.e.., number of sections minus one). The HHMM however, needs
no prior information regarding the number of sections present in a given report. Table
3.1.5 shows the W; and P, scores for all three approaches. My system again outperformed
both baselines indicated by lower W; and F}. error rates overall. Both baselines performed
better when the number of boundaries is known—an expected result. In fact, TopicTiling
outperformed my approach by a small margin when provided with the correct parameter
value. I note, however, that when running open loop on new text, the number of sections

will be unknown, so this result does not reflect how I envision the approach being used.

# Boundaries Algorithm P. W;

. LCSeg 0.29 0.37
System Choice Topic Tiling 0.27 0.33
Provided i 020 025

Topic Tiling 0.20 0.25
HHMM 0.20 0.26

Table 3.3: Section boundary identification results.

3.1.6 Related Work

As discussed above, my work simultaneously solves two problems within a psychiatric
evaluation report: identifying section types and identifying section boundaries. The first
problem has been referred to as argumentative zoning [Teufel et al., 1999, Li et al., 2010,
Denny et al., 2009a], while the second is a type of text segmentation problem [Hearst,
1994, Riedl and Biemann, 2012]. Argumentative zoning refers to classifying text sections

into mutually exclusive categories. Work on this task is mostly centered around identi-
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fying scientific article sections (e.g., abstract, introduction, methodology, etc.) [Teufel,
1999].

My work is a combination and extension of Li et al. [2010]’s work on identifying sec-
tion types within clinical notes and Sherman and Liu [2008]’s work on text segmentation
of meeting minutes. Both approaches integrated n-gram language models into HMMs.
The former modeled HMM emissions at the section level using bigrams, while the later
modeled the emissions at the sentence level and used unigrams and trigrams. Other ap-
proaches followed similar strategies in segmenting story text and in creating generative
models for detecting story boundaries [Mulbregt et al., 1998, Yamron et al., 1998]. More
recently, Yu et al. [2016] used a hybrid deep neural network combined with a Hidden
Markov Model (DNN-HMM) to segment speech transcripts from broadcast news to a
sequence of stories.

More broadly, there has been some work on applying NLP in the mental health do-
main. However, due to lack of readily available clinical data (e.g. clinical reports),
researchers have focused on non-clinical sources (e.g., social media) [Chapman et al.,
2011]. Several algorithms were developed to detect specific emotions from suicide notes
and online journals [Pestian et al., 2012, Strapparava and Mihalcea, 2008], while twitter
data was used to detect distress and suicide ideation [Homan et al., 2014, O’'Dea et al.,
2015]. Additionally, twitter data was used to measure mood valence and detect depression
[Sadilek et al., 2013, De Choudhury et al., 2013, Coppersmith et al., 2015]. Facebook data
was used to measure emotion contagion and to predict post-partum depression [Coviello
et al., 2014, De Choudhury et al., 2014]. Instead of social media and publicly available,
non-clinical data Althoff et al. [2016] used counseling conversations gathered using a
messaging service and developed discourse analysis methods to measure the correlation

of outcomes with various linguistic aspects.
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3.2 Using Conditional Random Fields to Automatically Identify Sec-

tions in Clinical Reports

The automatic identification of sections in clinical free text is an important step in auto-
matic understanding of electronic health records, and is useful for information extraction,
data mining, and Semantic analysis. In this section I describe an improved supervised ap-
proach to identifying sections within semi-structured clinical reports that uses conditional
random fields (CRFs), thus extending the HHMM approach described in the previous
section. I developed and tested the CRF approach on three different clinical report types:

psychiatric evaluations, hospital discharge summaries, and radiology reports.

3.2.1 Background

With the exponential growth of electronic health records (EHRs), it is ever more important
to develop natural language processing (NLP) systems that can automatically understand
and parse the free text contained within those reports. When combined with other sys-
tems, these NLP models can aid in a variety of useful medical tasks, such as clinical
decision support [Hripcsak et al., 2003], trend analysis, and precision medicine [Demner-
Fushman et al., 2009].

The majority of clinical NLP work has focused on semantic parsing and information
retrieval of clinical notes found in EHRs [Reyes-Ortiz et al., 2015, Névéol et al., 2018]. In
contrast, the work I present here concerns learning and using a model of section structure,
that is, the types of sections used in for a given document type, their common ordering,
and the language typically found in that section. Automatically learning and applying
such a model to detect sections can be beneficial to overcome a number of challenges

in automatically understanding unstructured clinical text, encompassing many levels of
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language processing: identifying document layouts, determining their discourse organi-
zation, mapping lexical information to semantic concepts found in biomedical ontologies,
resolving co-references, and extracting temporal relationships [Wang et al., 2018, Roberts
et al., 2016, Filannino and Uzuner, 2018, Li et al., 2010]. For example, understanding the
section structure can greatly aid semantic concept extraction when certain concepts can be
mapped to specific sections. This, in turn, can aid further tasks in information extraction
and semantic search.

I demonstrate my improved approach on three different types of clinical reports: psy-
chiatric evaluations, radiology reports, and discharge summaries (Corpora 2.1-2.3). The
models and results presented in this section are extensions of my work for psychiatric
evaluations presented in a prior workshop paper [Banisakher et al., 2018a]. I show that
the extended approach provides significantly better performance for the task across all
three report types and can further label implicit sections (that is, sections included within
others with no explicit section headings indicating so). Figure 2.1 shows a snippet ex-
ample of a typical psychiatric evaluation report, while other reports also follow a similar
structure. [ describe the corpus in detail in the following section.

I define the section identification task as follows, which is identical to the definition
found in the previous section (§3.1.3). First, [ assume I am given a corpus of reports,
all of the same type, as well as an ontology of section types found in that report type.
The corpus is assumed to be labeled with the ontology, in that each sentence in every
document is labeled with its section type. The corpus is then split into training and testing
portions. The training portion of the corpus is then use to train a model. The test portion
of the corpus is stripped of all section headings. The model is then expected to be able to
simultaneously identify the (unlabeled) section boundaries and label their types. Thus, the
task comprises two subtasks: (1) determining the section ordering for each specific report,

including identifying when sections are missing, and (2) locating section boundaries.
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As discussed in the previous section (§3.1), this task has four main challenges. First,
there is great ambiguity and variety in the section headings present in the data [Li et al.,
2010]. Using psychiatric reports as an example, a section labeled IDENTIFICATION
OF PATIENT by one psychiatrist might be labeled REFERRAL DATA or IDENTIFYING
INFORMATION by another. Second, some sections are included inside others; for ex-
ample, the section MEDICAL HISTORY might include REVIEW OF SYMPTOMS and
PSYCHIATRIC HISTORY subsections, while the section FAMILY HISTORY might in-
clude a subsection addressing PREGNANCY. Like sections, these subsections can either
be explicitly labeled (heading present) or just implicit (heading omitted). Figures 2.1 and
3.1 show snippets of psychiatric reports that demonstrate implicit sections. Third, the
section ordering can differ between reports, again, depending on the psychiatrist. And
fourth, sections may be omitted, especially when that information in not relevant to the
patient in question. For example a report regarding a male patient would likely not contain
a PREGNANCY section. These challenges apply equally to many other types of clinical
reports, including the discharge summaries and radiology reports used here.

In my prior work [ developed a model to solve this task which combined Hierarchical
Hidden Markov Models (HHMMs) and n-grams. The states in the HHMM represented
sections types listed in the provided ontology, with the transition probabilities learned
from the labeled corpus. Each state was associated with an n-gram model which was
trained on the language found in corresponding sections of that type. I then applied
this combined model to a report using Viterbi decoding to simultaneously locate section
boundaries and label the section types.

In this work, I developed a more robust model based on conditional random fields
(CRFs) which takes a discriminative rather than generative approach. While generative
approaches are general and more interpretable, discriminative approaches generally have

better performance. I also demonstrate that this technique generalizes beyond psychiatric
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evaluations to at least two other clinical report types, namely, discharge summaries and
radiology reports.

The section proceeds as follows. First I describe the datasets that I use for training
and testing (§3.2.2). Then I detail the methods, including the CRF model and how it
captures both section ordering and section content, how the model is trained, and how it
is used to locate section boundaries and determine section labels (§3.2.3). I next compare
the performance of the CRF model with various baselines, demonstrating that it performs
better than prior models (§3.2.4). I then discuss limitations and future directions (§3.2.5).

Finally, I conclude this section with a discussion of related work (§3.2.6).

Report Section Avg. Sections Avg. Words

Corpus Report Type Count Count  per Report  per Report

1 Psychiatric Evaluation 150 2824 18.8 1521
Radiology Report 150 900 6 463
3 Discharge Summary 150 2977 19.8 1829

Table 3.4: Summary of corpora statistics.

3.2.2 Data

I used three corpora of clinical reports to test the improved section identification model.
Each corpus was paired with an ontology of section types specific to that report type.
These ontologies were drawn from prior work and are described in more detail in chap-
ter 2. As described previously, the data was doubly annotated. For this, various section
names were tagged with an unified heading from the respective ontology first. Second,
each sentence was tagged with a section heading. I calculated the inter-rater reliability
using Cohen’s & statistic, achieving 0.90, 0.88, and 0.84 for each corpus, respectively.
These agreement values are considered “perfect” agreement [Artstein and Poesio, 2008].

Table 3.2.1 shows a summary of the three corpora statistics [ used in this study. I list the
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corpora statistics and ontologies from chapter 2 again in this chapter for ease of reference

(Tables 3.1.2, 3.2.2, 3.2.2).

Section #Words #Sent. Sent. Length % Present % Implicit

CLINICAL INFORMATION
CLINICAL HISTORY 80 8 10 100 0
EXAM DETAILS
EXAM 16 2 8 100 0
COMPARISON 16 2 8 86 10
CONTRAST 14 2 7 14 53
PROCEDURE 12 2 6 100 60
FINDINGS
FINDINGS 192 24 8 100 0
IMPRESSION
IMPRESSION 133 19 7 100 0
ATTENDING STATEMENT - - - 0 -

Table 3.5: Section ontology for radiology reports and corpus statistics.

3.2.3 Methods

I treated section identification as a sequence modeling task. Formally, the task is as fol-
lows: given a clinical report with n sections and m sentences, where the sections are
unlabeled and n is not known, identify the optimal sequence (order) of section labels
H* = (L3, ..., L) from among all possible section sequences, and assign every sentence
a section label H* = (Hy,..., H,,) consistent with L*. Sequence labeling problems in
NLP and medical informatics have been solved by both generative and discriminative ap-
proaches, including Hidden Markov Models (HMMs; generative) and Conditional Ran-
dom Fields (CRFs; discriminative). Li ef al. [Li et al., 2010] used HMM and n-gram

models to detect the orders or labels of sections within clinical reports, while modeling

the observation probabilities at the section level. Sherman and Liu [Sherman and Liu,
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Section # Words # Sent. Sent. Length % Present % Implicit

GENERAL PATIENT INFO
ADMIT DATE 3 1 3 100 0
DISCHARGE DATE 3 1 3 100 0
SERVICE 4 2 2 100 0
PROVIDER INFO
ATTENDING 2 1 2 82 0
ADMIT PHYSICIAN 2 1 2 100 0
DISCHARGE PHY SICIAN 2 1 2 100 0
CONDITION BEFORE ADMISSION
ADMISSION DIAGNOSES 96 12 8 100 0
HISTORY 135 15 9 76 58
MEDICATIONS 35 11 5 100 0
REASON FOR ADMISSION 162 18 9 100 0
CONDITION AT DISCHARGE
CONDITION 4 2 2 100 0
DISPOSITION 2 1 2 34 10
DISCHARGE DIAGNOSES 144 18 8 89 37
OTHER DIAGNOSES - - - 0 -
PHYSICAL EXAM ON DISCH. 45 9 5 40 38
MEDICAL HISTORY
ALLERGIES 12 3 4 100 0
FAMILY HISTORY 81 9 9 43 20
GYNECOLOGICAL HISTORY - - - 0 -
PAST MEDICAL HISTORY 144 16 9 100 41
PAST SURGICAL HISTORY 32 4 8 100 58
SOCIAL HISTORY 84 7 12 37 66
HOSPITAL COURSE
CONSULTATION 88 11 8 6 0
HOSPITAL COURSE 168 14 12 85 0
PHYSICAL 66 11 6 28 13
PROCEDURES 15 5 3 65
STUDIES - - - 0
DISCHARGE INSTRUCTIONS
FOLLOW UP - - - 0 -
DIAGNOSTIC STUDIES REC'D - - - 0 -
DISCHARGE INSTRUCTIONS 408 M 12 100 0
DISCHARGE MEDICATIONS 72 12 6 100 0

Table 3.6: Section ontology for discharge summary reports and corpus statistics.

2008] used HMMs as well as n-gram models to detect topic shifts in meeting minutes,

and, in contrast to Li et al., modeled the observation probabilities on the sentence level.
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In my prior work [Banisakher et al., 2018a] (described in the §3.1) I combined the

approaches of Li et al. [Liet al., 2010] and Sherman and Liu [Sherman and Liu, 2008] to
learn the section structure and content and then used that model to both determine the most
likely section sequence and locate section boundaries, that is, segment the sections. My
approach combined a Hierarhical Hidden Markov Model (HHMM)—which used section
statistics as the model’s transition probabilities—with n-grams for the observation prob-
abilities of words. In this work I substituted CRFs for the HHMM. As noted previously,
generative models such as HMMs have more explanatory power when compared with
their discriminative counterparts such as CRFs. However, HMMs, rely on the assumption
that observations are statistically independent from one another. For this example, this
means that the HMM assumes that the presence of certain sentences within section A4 is
independent from other sentences within another section B. In practice, however, this is
not the case: for example, the fact that the CHIEF COMPLAINT section in a psychiatric
evaluation mentions depression means that the DIAGNOSIS and TREATMENT sections
will also likely mention depression. Following this intuition, I hypothesize that section
structure and language can be better modeled if the independence assumption is relaxed,
which motivates the move to CRFs.

My new approach differs from my prior work in five ways: first, I used a discrim-
inative CRF (namely, linear chain CRF) instead of a generative HMM to capture more
features encoded within the sections’ content and to model the dependencies between
sections. Second, I trained the model to learn not only n-gram features, as it is the case
with my previous approach, but also other lexical and positional features. This is pos-
sible in CRFs (as opposed to HMMs) because they do not have restrictions on variable
dependence. Third, my CRF model is flat, as opposed to the former hierarchical HMM.
This does not limit the CRF approach from detecting implicit sections. Fourth, our prior
system used a rule-based approach instead of n-grams for three section types (M EDICA-
TIONS,ALLERGIES, and DIAGNOSIS). In the this approach I eliminated the dependence
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Approach Features Hierarchical? #Model Layers Rule-Based Features? Corpus specific?

HHMM n-grams only Yes 2 Yes (for some sections) Yes
CRF n-grams, lexical, and positional Mo 1 Completely Automatic Mo

Table 3.7: Summary of differences between the previous (HHMM) and current (CRF)
approaches.

on these hand-crafted rules, making the model fully automatically learned from the data.
Fifth, because of the elimination of the rule-based approach to detecting certain sections,
this new model is generalizable and is not corpus specific, and thus can be applied to other

document types. Table 3.2.3 summarizes these differences.

Linear Chain Conditional Random Fields

Conditional Random Fields (CRFs) are undirected graphical models [Lafferty et al., 2001,
Konkol and Konopik, 2013] that can be used for discriminative sequence labeling. CRFs
have proved useful for many sequence labeling problems in NLP and computer vision
[Lin and Wu, 2009], including Named Entity Recognition (NER) and image classification.
There are several CRF variations such as the tree CRF and the hierarchical CRF which are
mostly used for computer vision related tasks. Linear chain CRFs are the most popular
among CRF approaches for sequence labeling tasks largely due to its relative simplicity
and low computational cost when compared with other CRF models.

I built and trained a linear chain CRF analogous to the prior HHMM approach. In
contrast to an HHMM, the CRF encodes sections as nodes in the CRF graphical repre-
sentation (instead of HMM states), and uses weighted feature functions for transitions
between nodes (instead of the HMM transition and emission probabilities). Additionally,
the CRF model captures the “true™ desired probability distribution, that is the conditional
distribution of labels given the observations P(}|X), instead of modeling the joint distri-
bution of observations and labels P(X,Y"). This a known advantage of CRFs in general

over HMMs and is mainly due to, again, removing the independence assumption. Thus,
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CRFs can have an arbitrary number of dependencies as opposed to the limited depen-
dency structure of HMMs. The CRF model benefits from this as it does not only record
the dependence of a section only on its predecessor and observations, but on additional
dependencies given the entire sequence of labels (i.e., section types) and observations
(i.e., sentences).

The CRF probability distribution is defined by Equation 3.7. Let [ be the sequence of
section labels, 5 be the sequence of sentences (i.e., the observations) in a given report, and
L be the possible label sequences. The model follows a typical linear chain CRF where
the conditional distribution is:

exp(32: 225 AiFj(li1, 1,5, 7))

D orer€XPQ 2 )0 A F( L L3, 1))

Where A is a set of model parameters, and each J; is a parameter (or weight) associated

P(Ifs,X) = (3.7

with each feature function F};. Each feature function represents a dependency within the
model. I used the L-BFGS method to estimate each A; [Nocedal, 1980]. The model’s
probability distribution is thus generated by summing over the entire observation se-
quence, where each observation is indexed by the variable i and the entire feature function
space index by the variable j. The denominator sums over all possible label sequences L.

The most critical component in the design of CRF models is the feature function

space. In this model, each feature function is:
F}{Ii—l'. Ii-! s, T‘} = Hj”i—l: Ii'. 3, I} : S-F;”'—l: IL-,E, '!’J (33]

Where H; models the section order, and S F; models the section content. These are similar
to an HMM’s transition and emission probability distributions, respectively. In contrast to
HMMs, however, the feature functions are evaluated over the entire observation sequence
F taking into account the neighboring labels (or sections) [; and [;_;. This thus conditions

the probability of a given section type on the content and order of the entire sequence. [



outline the intuition behind and implementation of the feature functions in the following

sections.

Section Order Modeling

The feature function Fj; incorporates section ordering through the section ordering func-
tion H(l;_1,1;,%,1). As discussed above, there is a feature function for each of the depen-
dencies defined in the model. Analogous to the state transition probabilities in the prior
HHMM approach [Banisakher et al., 2018a],  encode the interdependent order of sections
(i.e., which sections depend upon each other) using a binary matrix. To achieve this, I first
used the distinct section labels from the ontologies shown in Tables 3.1.2,3.2.2,3.2.2, and
discussed in the Data section and chapter 2. Then I created a binary matrix V;,_, ;, whose
entries represent whether a section follows another or not. For example if section SOCIAL
HISTORY (indexed as section 4) was observed in the data directly before PREGNANCY
(indexed as section 3), then the entry Vj s would contain a value of 1. The matrix con-
tained N2 entries, where N is the total number of sections for each report type as shown
in the section label ontologies presented in Tables 3.1.2, 3.2.2, 3.2.2. This was performed
for each corpus separately, and I only modeled sections that were present in the data. Thus
the CRF models contained 25 nodes each for psychiatric evaluations and discharge sum-
maries, and 7 for radiology reports. The section order feature function was formulated as

follows:

Hi(l;_1,1;,5,1) =Vi,_,4 (3.9)

Note that for each section (or label) s;, the model sums the total entries for the entire
sequence of labels and observations as shown in Equation 3.7, thus conditioning each

section on the entire sequence.
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Section Content Modeling

Similarly, the feature function F; incorporates section content via the section feature func-
tion SF'(l;_q,1;,3,1). This function is analogous to the emission probabilities in my prior
HHMM approach [Banisakher et al., 2018a]. These functions model the dependency
between a section and its content. Importantly, the feature function should not be con-
fused with the linguistic features extracted and input into the section feature function. To
capture section content (i.e., to model section-specific language) I extracted three sets of
lexical and positional features: (1) lexical features comprising n-grams (specifically, un-
igrams and bigrams), (2) sentence position and length features comprising local (relative
to section) and global (relative to an entire report) sentence positions as well as the sen-
tence length, and (3) the top three key terms per section type extracted using the TF-IDF
method [Church and Gale, 1999]. I combined these features into a feature vector X which
was then normalized and summed. I then used a threshold function T}, calculated for each
section type k to assign a binary value for the section feature function SF'(l;_1,[;,5,1) as

follows.

1 <Y X,
SF;(l;_y,1;,5,1) = (3.10)

0 otherwise

The threshold function T} is defined by Equation 3.11 below. The first part in the equation
is the average sum of feature vectors for section type k, given n; total sections of type
k. The parameter « restricts or relaxes the threshold, and o is the standard deviation
of all the sums of feature vectors for each section type k. This function was used as a
constraint in a grouping genetic algorithm for a clustering task [Falkenauer, 1992, Agusti
et al., 2012]. Finally, I estimated o to be 0.60 using a similar technique to the Wu-Palmer
score following [Warin and Volk, 2004].

Ty ZX”JFQW(EXE) (3.11)

= "
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Inference

To apply the model, I applied the usual inference process for linear chain CRFs. For the
CRF model this is equivalent to simultaneously locating section boundaries and labeling
each section with a section type. Inference in linear chain CRFs follows a similar al-
gorithm to Viterbi [Forney, 1973], which is used in decoding HMM models. While not
stated explicitly in the Equation 3.7 above, the normalization factor Z(S) is calculated
as is often done using the Gaussian prior as it was introduced in [Chen and Rosenfeld,

1999].

3.2.4 Results and Discussion

In order to test the CRF models, I randomly split each corpus into training and testing sets
in a cross-validation setup, using five folds, resulting in 120 reports for training and 30 for
testing in each fold for each document type. The models were trained to learn a total of
25 distinct sections for psychiatric reports and discharge summaries, and 7 for radiology
reports. In this section I describe the evaluation metrics, baseline comparisons, overall

experiments and results.

Evaluation Metrics

As discussed above, the CRF system simultaneously solves two tasks: (1) determining
the section order—applying the correct section label to each section—and (2) locating the
section boundaries. [ evaluated the system’s performance on these two tasks separately.
For section ordering, I evaluated performance using the F; measure averaged across
all folds. In this evaluation, the section boundaries were known to the system in order
to independently evaluate the performance of the system for this subtask. The output of

the models were compared to the annotated labels (i.e., ground truth) in the test sets. A
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section was considered to be identified correctly if it was outputted at the same position
as that in the ground truth.

Similar to the previous HHMM study, I evaluated performance for boundary detection
using the WindowDiff (W) (Equation 3.5) [Pevzner and Hearst, 2002] and F,. (Equation
3.6) [Beeferman et al., 1999] metrics. A detailed description of these metrics including

their respective calculations is listed in §3.1.5.

Baseline Methods

I compared the CRF model’s performance in determining section ordering to two base-
lines: (1) my prior HHMM model, and (2) an n-gram-only model (specifically, bigrams)
to independently classify each section, which disregards any section order information.

I compared the system’s performance in locating section boundaries against four base-
lines. The first, was a HMM-LSA model implemented as descried by Ginter et al. [Ginter
et al., 2009]. This model treated sections in ICU notes as topics and performs segmen-
tation and labeling of those sections as topics. The method is unsupervised and is based
on a combination of Hidden Markov Models and latent semantic indexing which allows
the topics of interest to be defined freely, without the need for data annotation, and can
identify short segments. The second baseline was LCSeg, a popular text segmentation
baseline [Galley et al., 2003]. LCSeg assumes that a topic (section) change in written text
occurs when chains of frequent repetitions of words begin and end. It rewards shorter
chains over longer ones and further rewards chains with more repeated terms. The lexi-
cal cohesion between two chains is evaluated using a cosine similarity. The third baseline
was TopicTiling, an augmentation of the well-known TextTiling algorithm [Hearst, 1994].
TopicTiling [Ried]l and Biemann, 2012] is LDA-based and represents segments as dense
vectors of terms contained in dominant topics (as opposed to sparse term vectors). Finally,

I compared the CRF model to my previous HHMM approach as a fourth baseline.



Experiments and Results

For the section ordering task, my model equaled or outperformed both baselines in all
sections across all three report types. Tables 3.2.4, 3.2.4, 3.2.4 show the precision, recall,
and Fj scores for the two baselines as well as the CRF model. I omitted sections that
did not exist in the corpus from the results tables. Similar to my prior work [Banisakher
et al., 2018a], the CRF model performed better for sections with higher prevalence in the
corpus (e.g. IDENTIFYING DATA in psychiatric reports, DISCHARGE INSTRUCTIONS
in discharge summaries, and CLINICAL HISTORY in radiology reports). Additionally,
the CRF models showed significantly better performance for sections with highly distinc-
tive content such as the DIAGNOSIS in psychiatric reports, ADMIT DATE in discharge
summaries, and MEDICATIONS in radiology reports.

Both the HHMM and the CRF models performed better in leading and ending sec-
tions across all three report types. This is because those sections typically display minimal
variability in position (e.g., TREATMENT PLAN in psychiatric reports, and DISCHARGE
MEDICATIONS in discharge summaries). This, in turn, increased performance on the sur-
rounding sections, as fewer errors were propagated through the models. The CRF models
equaled or outperformed the HHMM models in identifying sections for which my prior
approach used hand-crafted rules specifically ALLERGIES, CURRENT MEDICAITONS,
and DIAGNOSIS sections in psychiatric reports.

Additionally, the HHMM and CRF models identified implicit sections successfully.
The CRF model performed better for all implicit sections and significantly better for sec-
tions BIRTH AND DEVELOPMENTAL HISTORY in psychiatric reports, PAST MEDICAL
HISTORY and PAST SURGICAL HISTORY in discharge summary reports, and PROCE-
DURE in radiology reports.

My models performed worst on the sections SURGERIES and LEGAL in psychiatric

reports, CONSULTATION in discharge summaries, and CONTRAST in radiology reports.

65



Inde pendent Bigram HHMM CRF
Section F R F P R Fy P R F

IDENTIFYING DATA 0.83 0.81 0.82 098 095 097 099 099 099
CHIEF COMPLAINT 068 065 067 094 089 091 099 097 098
HIST. OF PRSNT. ILLNSS. 0.69 067 068 094 086 090 09 090 0.93
PSYCHIATRIC HISTORY 0.65 0.6 0.62 093 086 039 095 093 094
SUBST. ABUSEHIST. 0.69 0.69 069 095 083 0.89 09 092 0.94
REVIEW OF SYMPTOMS 0.80 067 073 094 0.87 090 094 094 094
SURGERIES 040 031 035 0585 064 073 086 084 085

ALLERGIES 0.0 080 069 088 091 089 090 0.88 0.89

CURRENT MEDICATIONS 0.87 074 080 091 093 0592 09 096 096
BIRTH AND DVLP. HIST. 0.68 050 057 089 080 0384 09 094 095
ABUSE HIST. / TRAUMA 042 033 037 09 0581 088 095 091 093
FAMILY PSYCH. HIST. 0.57 059 058 092 050 091 097 095 096
FAMILY MED. HISTORY 0.5 060 062 094 089 091 09 094 095
SOCIAL HISTORY 0.67 069 068 093 081 087 095 091 093
PREGNANCY 060 067 063 092 08 086 09 088 091
SPIRITUAL BELIEFS 073 046 056 093 088 090 094 092 093
EDUCATION 0.66 0.61 0.63 092 084 038 095 091 093
EMPLOYMENT 065 062 063 092 086 089 097 093 095

LEGAL 0.16 062 026 072 068 070 036 084 0.85

MENTAL STATUS 064 063 064 0385 096 090 091 093 092
STRENGTHS AND SUPPORTS 042 082 056 082 092 087 093 091 092
FORMULATION 056 071 0.63 092 082 0387 093 091 092
DIAGNOSES 0.88 076  0.81 098 098 098 099 099 099

PROGNOSIS 066 062 064 090 086 0.88 097 093 095
TREATMENT PLAN 074 083 078 097 093 095 098 09 097

Macro-Average 0.62 064 062 091 086 088 095 092 094
Micro-Average 062 062 062 093 091 092 098 096 097

Table 3.8: Section identification results for psychiatric evaluation reports.

I suspect that this is due to low prevalence of these sections and their content in the
corpora. However, while the HHMM approach struggled in identifying sections with
low prevalence, the CRF model was able to model those sections well with higher than
0.83 F; score (with the exception of the CONTRAST which only existed in 14% of the
radiology corpus). 1 hypothesize that this is due to the independence assumption in the
HHMM model. Each state in the HHMM is dependent only on the previous state as well
as its observations (L.e., the section content), while the CRF models the entire observation

sequence at every stage. Thus, the CRF is less sensitive to section prevalence. Moreover,



Independent Bigram HHMM CRF
Section P R F P B F P R F

ADMIT DATE 088 0.88 088 097 058 099 099 099 0.99

DISCHARGE DATE 088 0.86 0.87 097 098 0599 099 0.99 099
SERVICE 068 084 075 095 095 095 099 097 098

ATTENDING 039 030 034 0.5 088 091 094 094 094

ADMIT PHYSICIAN 039 035 037 079 086 094 098 092 095
DISCHARGE PHYSICIAN 037 035 036 080 086 093 097 093 095
ADMISSION DIAGNOSES 0.72 070 071 090 092 0594 099 093 096
HISTORY 071 073 072 089 089 089 094 090 092

MEDICATIONS 059 065 062 0B85 087 086 097 091 094

REASON FOR ADMISSION 0.67 0.61 064 082 088 095 097 095 096
CONDITION 058 052 055 080 086 093 098 087 092

DISPOSITION 034 034 034 071 077 084 082 0.88 085

DISCHARGE DIAGNOSES 065 0.69 067 088 091 0594 098 094 096
PHYSICAL EXAMONDISCH. 071 069 070 088 086 084 091 089 090
AILLERGIES 063 059 0.61 085 0.87 0.89 094 0.88 091

FAMILY HISTORY 0.60 060 060 084 087 090 094 090 092

PAST MEDICAL HISTORY 068 070 069 085 089 087 097 095 096
PAST SURGICAL HISTORY 069 065 067 090 089 088 093 093 093
SOCIAL HISTORY 0.55 064 059 079 081 083 089 0.85 0.87
CONSULTATION 025 035 029 067 068 069 084 082 083

HOSPITAL COURSE 078 072 075 091 0593 095 09 096 0.96
PHYSICAL 065 0.71 0.68 0.81 082 083 095 0.84 0.89

PROCEDURES 073 0.71 072 086 088 090 098 087 092

DISCHARGE INSTRUCTIONS 0.88 0.80 084 096 098 098 099 099 099
DISCHARGE MEDICATIONS 0.79 079 079 095 097 099 099 097 098

Macro-Average 063 063 063 086 088 090 095 092 093
Micro-Average 064 063 064 090 0594 092 095 094 095

Table 3.9: Section identification results for hospital discharge summaries.

of the three corpora, the radiology report corpus saw the worst performance by all models.
This again is probably due to the relatively small amount of data since radiology reports
tend to be shorter and thus contain less content.

Since the report sections vary in size, I computed both macro- and micro-averaged
precision, recall, and Fi-measure (last two rows in Tables 3.2.4, 3.2.4, 3.2.4). The CRF
model’s micro-averaged Fj-measure was 93%, 95%, and 97% for radiology reports, hos-
pital discharge summaries, and psychiatric reports respectively. Similar to my prior work

|Banisakher et al., 2018a], both the CRF model and the HHMM baseline seemed to nei-
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Independent Bigram HHMM CRF
Section P R F P R F P R B

CLINICAL HISTORY 0.72 070 0.71 096 0.89 092 098 094 0.96
EXAM 050 048 049 0.83 0.83 083 091 095 093
COMPARISON 0.38 038 038 0.81 0.70 075 089 0.81 0.85
CONTRAST 020 022 0.21 068 068 0.68 075 078 076
PROCEDURE 050 0.41 0.45 0.87 0.76 0.81 096 0.87 091
FINDINGS 0.77 0.73 0.75 093 089 091 095 091 093
IMPRESSION 0.68 059  0.63 0.84 0.80 0.82 095 092 0.94

Macro-Average 0.54 050  0.52 085 0.79 0.82 091 088 090
Micro-Average 0.52 050  0.51 0.87 0.83 0385 095 090 093

Table 3.10: Section identification results for radiology reports.

ther overfit nor underfit, which is indicated by higher micro-averaged compared to the
macro-averaged scores.

As for the boundary detection problem, and similar to the evaluation in [Sherman
and Liu, 2008, Banisakher et al., 2018a], | performed two experiments for the first two
baselines since both baselines require a parameter representing the number of boundaries
(number of topics minus one). In the first experiment I allowed the parameter to be chosen
by LCSeg and TopicTiling, respectively, while in the second experiment, I provided the
algorithms with the correct number of boundaries (i.e., number of sections minus one).
The CRF, the HMM-LSA as well as the HHMM models, however, need no prior infor-
mation regarding the number of sections present in a given report. Table 3.2.4 shows the
W, and Fj. scores for all five approaches. My system again outperformed all the baselines
indicated by lower W; and P, error rates overall. Both the text segmentation baselines
performed better when the number of boundaries is known—an expected result.

Finally, I conducted three feature combination experiments for both subtasks. In the
first experiment, I used n-gram-only features, while in the second experiment I added
sentence position and length features, and finally in the third, I used all the feature sets.

Table 3.2.4 shows the section ordering (identification) results for each of those experi-
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# of Boundaries

Algorithm

Psychiatric

Discharge

Radiology

Py

Wy

Py

Wy

P W,

System Choice

LCSeg
TopicTiling

0.29
0.27

0.37
0.33

0.31
0.28

0.40
0.35

024 0.34
0.22 0.30

Provided

LCSeg
TopicTiling

0.25
0.20

0.33
0.25

0.27
0.21

0.34
0.26

0.22 0.1
0.20 0.23

HMM-LSA
HHMM

0.25
0.20

0.32
0.26

0.26
0.19

0.35
0.26

0.25 0.30
021 0.28

CRF _Bigram_Only

CRF_Bigram_Position

CRF_Al

0.20
0.20
0.17

0.26
0.26
0.20

0.19
0.19
0.16

0.26
0.26
0.18

021 0.28
021 0.28
0.18 0.20

Table 3.11: Section boundary identification results.

Algorithm

Psychiatric

Discharge

Radiology

P

R F

P

R

Fy

P

R F

CRF_Bigram_Only
CRF_Bigram_Position
CRF_All

0.91

094 090 092 093 091

0.87 0.89 093 0.89 091
092 091

0.84 0.80 0.82

0.85 0.88

095 092 094 095 092 093 091 0.88 0.90

Table 3.12: Feature combination ex periments for section identification.

ments. I report macro-F; scores for this subtask. Table 3.2.4 also shows the results of the

feature experiments for the boundary location subtask. The CRF models outperformed

the HHMM in all experiments including the CRF_Bigram_Only with the CRF_ALL model

, which included all features, achieving the best performance. Adding the sentence po-

sition and length features to the CRF_Bigram_Position model significantly improved the

results for both subtasks. This further confirms that section content and sentences within

a clinical report are dependent upon the entire report in which they are found.
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3.2.5 Future Directions

My work demonstrates the feasibility of learning a section structure for documents con-
taining section-ordered free text. Thus, several next steps can be taken to both improve
and build upon the problem and models I demonstrated. First, the data [ used in my study
can be expanded in two dimensions: quantity and type. Additional medical documents
would help in training and honing the supervised models [ built and would allow for fur-
ther evaluation and analysis. This however is difficult due to the limitations inherent to
medical data access as well as due to the time-intensive annotation process needed to
produce the necessary data. Additionally, my section learning models are not limited to
medical document applications, as they can be further applied to other documents types
such as patent documents and scientific articles or any other structurally-similar document
types.

Second, although statistical models carry several advantages as they are highly inter-
pretable and are simple to develop and replicate, they may not be the best solution in a
practical setting when compared to deep learning models as their computation time can be
longer and their fine tuning limited. Thus further development of models such as Gated
Recurrent Units (GRU) and Long-Short Term Memory (LSTM) for this task may lead
to better results and would be a question worthy of evaluation. This however, is again
limited by the size of data available for training. Opting for a statistical based model was
thus justified in this study given the small amount of data available.

Third, and most importantly, this study opens the door for the introduction of a new
problem: section type discovery. That is, identifying and clustering sections for a given
document type (e.g. psychiatric evaluations) in an unsupervised manner. Automatically
labeling sections with a pre-defined ontology of section types is useful for document un-
derstanding, and has been shown to improve tasks as varied as information extraction

[Hofmann et al., 2009, Tepper et al., 2012], data mining [Dou et al., 2015, Repta et al.,
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2018], and document search [Wu et al., 2015a, Xu and Croft, 2017, Doucet, 2018]. But
where does the ontology come from? Automatically labeling sections with their types
requires not just a list of possible sections, but also what different headers are used for
each, their usual order (with possible exceptions), and the type of language normally
found within. As discussed above, manually creating this knowledge is laborious and
error prone, and so a solution to automatically discovering it from examples would be
preferred. Therefore, I propose and are currently working towards an approach to discov-
ering section types for a given document type in a data-driven manner using a combination
of a modified Bayesian model merging algorithm [Stolcke and Omohundro, 1994], and
the Analogical Story Merging (ASM) algorithm presented by Finlayson et al.

3.2.6 Related Work

There are several tasks related to the subtasks [ outlined that have been investigated by
other researchers. The section ordering subtask has been referred to as argumentative
zoning [Teufel et al., 1999, Li et al., 2010, Denny et al., 2009a]. Argumentative zoning
refers to classifying text sections into mutually exclusive categories. Work on this task is
mostly centered around identifying scientific article sections (e.g., abstract, introduction,
methodology, etc.) [Teufel, 1999]. The boundary location subtask can be considered as
a type of text segmentation problem [Hearst, 1994, Riedl and Biemann, 2012]. There
has been an extensive amount of research in general text segmentation tasks [Simmons
et al., 2016, Eskenazi et al., 2017]. However, work on text segmentation of clinical notes
has been limited [Ganesan and Subotin, 2014]. Most prior approaches have either treated
this task as a section classification task (as opposed to a sequence labeling task) thus
discarding contextual information [Pomares-Quimbayaet al., 2019]. Additionally, several

approaches have employed heuristics and regular expressions specific to a document type
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or a source in detecting section headers. Thus failing when faced with unseen data from
different sources [Ganesan and Subotin, 2014].

In this work, I extend an earlier study on section identification of psychiatric evalu-
ation reports that combined the work of Li et al. [Li et al., 2010] on identifying section
types within clinical reports and that of Sherman and Liu [Sherman and Liu, 2008] on text
segmentation of meeting minutes. Li et al. modeled HMM emissions at the section level
using bigrams, while Sherman and Liu modeled the emissions at the sentence level and
used unigrams and trigrams. Other approaches followed similar strategies in segment-
ing story text and in creating generative models for detecting story boundaries [Mulbregt
et al., 1998, Yamron et al., 1998]. More recently, Yu et al. [Yu et al., 2016] used a hybrid
deep neural network combined with a Hidden Markov Model (DNN-HMM) to segment
speech transcripts from broadcast news to a sequence of stories.

Further, there are several studies that have demonstrated approaches for the identifica-
tion, classification, and segmentation of clinical notes. Most of which however, focused
on the identification of section headers rather than content and used source- and note-
specific heuristics. Denny et al. [Denny et al., 2009b] developed the SecTag algorithm
which uses terminology-based rules, and naive Bayesian scoring methods to identify note
section headers in “history and physical examination documents” (H&P notes). Their
approach relied on data from a single source and a specific clinical note type, limiting
its generalizability. My work however addresses multiple clinical note types and while
the discharge summaries and radiology corpora were pulled from the same source, the
psychiatric evaluation reports corpus was collected from various sources that followed
different formats.

Using machine learning methods, Apostolova et al. [Apostolova et al., 2009] and
Tepper et al. [Tepper et al., 2012] demonstrated automatic supervised approaches for

detecting section headers and boundaries but showed low adaptability when faced with
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various clinical note types [Ganesan and Subotin, 2014]. Haug ef al. [Haug et al., 2014]
and Ganesan and Subotin [Ganesan and Subotin, 2014] also developed machine leamning
methods to secgment clinical notes sections. While these studies were extensive in ap-
plying their methods to both a multitude of clinical note types and sizes, both neglected
implicit (unlabeled sections) sections or relaxed the problem by collapsing these subsec-
tions into their parent sections. Most closely, Dai et al. [Dai et al., 2015] used CRFs
to segment clinical notes at the token-level. They report a minor improvement over the
sentence-level approach which objectively does not improve section identification espe-
cially when considering the computational overhead for processing notes at the token-
level. Additionally, although they mention implicit sections in their study, these sections
are not truly implicit as they consider sections to be implicit only when their headers are
surrounded by other text rather than appearing stand-alone on an isolated line in text. In
this study, I consider sections to be implicit if and only if the header is completely missing

and related information is included within other sections.

3.3 Improving the Identification of the Discourse Function of News
Article Paragraphs

Identifying the discourse structure of documents is an important task in understanding
written text. Building on prior work, I demonstrate an improved approach (using CRFs
extended from the previous section) to automatically identifying the discourse function of
paragraphs in news articles. [ start with the hierarchical theory of news discourse devel-
oped by van Dijk [1988] which proposes how paragraphs function within news articles.
This discourse information is a level intermediate between phrase- or sentence-sized dis-
course segments and document genre, characterizing how individual paragraphs convey

information about the events in the storyline of the article. Specifically, the theory cat-
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egorizes the relationships between narrated events and (1) the overall storyline (such as
MaIN EVENTS, BACKGROUND, or CONSEQUENCES) as well as (2) commentary (such

as VERBAL REACTIONS and EVALUATIONS).

3.3.1 Introduction

News articles usually follow strong principles of journalistic structure. By design, they
often begin with a introductory summary of main events, followed by detailed exposition
of the main events and consequences, interspersed in a stereotyped fashion with relevant
background information, current and past evidence, and reported speech. Yarlott et al.
[2018] demonstrated the feasibility of detecting this type of discourse structure for news
articles using an established hierarchical theory of news discourse [van Dijk, 1988]. In
their study, they showed that it was feasible to identify the discourse function of news
paragraphs using a support vector machine (SVM) model and a small set of simple lin-
guistic features, with a performance of 0.54 F;.

Similar to Yarlott et al.’s [2018] approach, I demonstrate an improved approach to au-
tomatically labeling news article paragraphs with the van Dijk discourse functions Yarlott
et al. [2018] applied in their study. My work uses a conditional random field (CRF)
model, along with new features, to obtain an improved performance of 0.71 F;. Most im-
portantly, my model is able to precisely capture the interdependencies between the various
discourse label types, which flows from my hypothesis that each paragraph in an article
is dependent not only on the previous one but rather on a longer sequence of previous
paragraphs.

The remainder of this section is structured as follows. I first provide a definition of
van Dijk’s theory as was presented in [Yarlott et al., 2018] (§3.3.2). Second, I describe
the dataset I used in training and testing my CRF model (§3.3.3). I then detail the dis-
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Figure 3.3: The hierarchical discourse structure of news proposed by van Dijk [van Dijk,
1988]. Boxes indicate labels that were directly annotated on the documents; other labels
can be inferred. From Yarlott et al. [2018], Figure 1.

course label identification methods, including the CRF model and how it captures both
section ordering and section content, how the model is trained, and the features it lever-
ages (§3.3.4). I next compare the performance of the CRF model with various baselines,

demonstrating that it performs better than prior models (§3.3.5). I finally conclude this

section with a discussion of the related work (§5.2.2).

3.3.2 Van Dijk’s Theory of News Discourse

Van Dijk [1988] described a hierarchical theory of news discourse, the categories of which
are shown in Figure 3.3, which I apply to a subset of the news articles of the ACE Phase 2
corpus. In this section, I repeat the descriptions of the leaf categories from Yarlott et al.’s
prior paper, as well as their parent categories when appropriate, for ease of reference.

SUMMARY elements express the major subject of the article, with the HEADLINE
being the actual headline of the article, and the LEAD being the first sentence, which is
often a summary of the main events of the article.

SITUATION elements are the actual events that comprise the major subject of the arti-

cle. EPISODES concern MAIN EVENTS, which are those events that directly relate to the

15



major subject of the article, and the CONSEQUENCES of those events. The BACKGROUND
provides important information about the relation of each paragraph with respect to the
central events of a news story. Background includes the CONTEXT, of which CIRCUM-
STANCES are temporally or spatially non-specific states that contribute to understanding
the subject, while PREVIOUS EVENTS are specific recent events that enhance understand-
ing of the main events. HISTORY paragraphs are another type of Background describing
events that have not occurred recently, typically referenced in terms of years prior, rather
than months, weeks, or days.

CoMMENTS provide further supporting context for the central events of an article.
Comments may include VERBAL REACTIONS solicited from an external source, such as
a person involved in the events, or an expert. CONCLUSIONS, by contrast, are comments
made by a journalistic entity (the newspaper, reporter, etc.) regarding the subject. Con-
clusions can be separated into EXPECTATIONS about the resolution or consequences of

an event, or EVALUATIONS of the current situation.

3.3.3 Dataset

Following the discussion in chapter 2, I used a gold-standard corpus previously developed
by Yarlott et al. [2018] of van Dijk’s labels applied to a subset of the Automated Content
Extraction (ACE) Phase 2 corpus [NIST, 2002] (Corpus 2.6). The ACE Phase 2 corpus
is a major standard corpora of news articles that boasts three advantages: it is widely-
used, has relevance to other tasks, and was readily available to researchers. This dataset
comprises 30 documents containing 28,236 words divided in 644 paragraphs. I include
Table 3.13 below (repeated from chapter 2 for ease of reference), which shows the corpus-
wide statistics for the number of words and paragraphs, where each paragraph is given a

single type in accordance to van Dijk’s theory.
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Words Paragraphs

Total 28,236 644
Average 5647 129
Std. Dev. 3221 4.9

Table 3.13: Corpus-wide statistics for Corpus 5: News Articles. Adapted from Yarlott
et al. [2018], Table 1.

Yarlott et al. [2018] doubly annotated 50 randomly selected news articles, divided into
ten sets of five documents each. Within these sets, documents were swapped or replaced
in order to obtain uniform sets in terms of total document lengths. The majority of texts
were already divided into paragraphs in an obvious manner, either with empty lines or
with indentation. The remaining texts were divided by the adjudicator based on either
contextual or structural clues, such as abrupt change in topic or unnatural line breaks. The
authors report an all-around high agreement with the gold standard (F; = 0.85, k = 0.75)
which demonstrates that the gold-standard was not dominated by a single annotator.

Although the dataset discussed was annotated for all labels discussed here, the HEAD-
LINE label could be computed automatically from the structure of ACE Phase 2 corpus,
as the files has the headline separate as part of its markup scheme.

Table 3.14 provides the resulting distribution of van Dijk’s labels. Verbal reactions and
circumstances dominate the labels. Although the distribution of labels is highly skewed,
I find that this is roughly in-line with the style of reporting featured in the ACE Phase
2 corpus, which seeks comments and analysis from experts within the field as well as

explaining the immediate context that has an effect on the main event.

3.3.4 Identifying Discourse Labels

In contrast to the approach reported by [Yarlott et al., 2018], I treated the identification

of paragraph functions as a sequence modeling task. Formally, the task is as follows:
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Label Count | Label Count

HEADLINE 50 | LEAD 42
MAIN EVENTS 60 | CONSEQUENCES 19
CircUMSTANCES 103 | PREVIOUS EVENTS 64
HisTORY 27 | VERBAL REACTIONS 252
EXPECTATIONS 21 | EVALUATIONS 56

Table 3.14: Distribution of the labels within the annotated corpus, with 644 labels total.
The majority of paragraphs fall under the categories of verbal reactions or circumstances.
From [ Yarlott et al., 2018]

given a news report with n discourse labels and m paragraphs, where the paragraphs are
unlabeled, identify the optimal sequence (order) of discourse labels H* = (Lf,...,L})
from among all possible label sequences, and assign every paragraph a discourse label
H* = (Hi,..., Hy) consistent with L*. Sequence labeling problems in NLP, medical
informatics, and discourse parsing have been studied by both generative and discrimina-
tive approaches, including Hidden Markov Models (HMMs; generative) and Conditional
Random Fields (CRFs; discriminative). Li et al. [2010] used HMM and n-gram models
to detect the orders or labels of sections within clinical reports, while modeling the ob-
servation probabilities at the section level. Sherman and Liu [2008] used HMMs as well
as n-gram models to detect topic shifts in meeting minutes, and, in contrast to Li et al.,
modeled the observation probabilities on the sentence level.

My approach was inspired by the method described in Banisakher et al. [2018a] (dis-
cussed previously in §3.1) which identifies section labels in clinical psychiatric reports.
As discussed previously, my previous approach combined a Hierarchical Hidden Markov
Model (HHMM)}—which used section statistics as the model’s transition probabilities—
with n-grams for the observation probabilities of words. In this study, I substitute a CRF
for the HHMM (similar to the approach I outlined in §3.2). Generative models such as
HMMs have more explanatory power when compared with their discriminative coun-

terparts such as CRFs. However, HMMSs, rely on the assumption that observations are
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statistically independent from one another. For this problem, this means that an HMM
assumes that the presence of certain paragraphs corresponding to a certain discourse label
or function A is independent from other paragraphs within another section B. In practice,
however, this is not the case: for example a paragraph following the MAIN EVENTS are

often either CONSEQUENCES or CIRCUMSTANCES.

Linear Chain Conditional Random Fields

I built and trained a linear chain CRF modeled on Banisakher et al.’s HHMM approach.
In contrast to an HHMM, the CRF encodes labels as nodes in the CRF graphical rep-
resentation (instead of HMM states), and uses weighted feature functions for transitions
between nodes (instead of the HMM transition and emission probabilities). Additionally,
the CRF model captures the “true™ desired probability distribution, that is the conditional
distribution of labels given the observations P(}|X), instead of modeling the joint distri-
bution of observations and labels P(X,Y"). This a known advantage of CRFs in general
over HMMs and is mainly due to, again, removing the independence assumption. Thus,
CRFs can have an arbitrary number of dependencies as opposed to the limited dependency
structure of HMMs. My model benefits from this as it does not only record the depen-
dence of a discourse label only on its predecessor and observations, but on additional
dependencies given the entire sequence of labels (i.e., paragraph discourse functions) and
observations (i.e., paragraphs).

I built and trained a linear chain CRF analogous to the prior HHMM approach. From
the earlier discussion in §3.2, in contrast to an HHMM, the CRF encodes sections as
nodes in the CRF graphical representation (instead of HMM states), and uses weighted
feature functions for transitions between nodes (instead of the HMM transition and emis-
sion probabilities). Additionally, the CRF model captures the “true™ desired probability

distribution, that is the conditional distribution of labels given the observations P(Y"| X)),
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instead of modeling the joint distribution of observations and labels P(X,Y ). This a
known advantage of CRFs in general over HMMs and is mainly due to, again, removing
the independence assumption. Thus, CRFs can have an arbitrary number of dependen-
cies as opposed to the limited dependency structure of HMMs. The CRF model benefits
from this as it does not only record the dependence of a section only on its predecessor
and observations, but on additional dependencies given the entire sequence of labels (i.e.,
section types) and observations (i.e., sentences).

The rest of the CRF model details follow exactly as discussed in §3.2.3.

Modeling the Discourse Labels’ Order

The feature function F; (from Equation 3.7) incorporates section ordering through the
section ordering function H(l;_;,l;, P, ) (Equation 3.9). As discussed in detail in §3.2.3,
there is a feature function for each of the dependencies defined in the model. I encode the
interdependent order of labels (i.e., which labels depend upon each other) using a binary

matrix following the same setup.

Modeling the Discourse Labels’ Content

Similarly, the feature function F; (from Equation 3.7) incorporates the discourse label
type content via the feature function SF'(l;_i,1;, P, ). These functions model the depen-
dency between a label type and its content. Importantly, the feature function should not be
confused with the linguistic features that are extracted from the text and input into the sec-
tion feature function. To capture label content (i.e., to model discourse label type-specific
language) [ extracted the following set of features:

Features from Yarlott et al. [2018]: Unigrams (i.e., bag of words), the tf-idf count vector
of the top 3 words (across the corpus) per label type, bag-of-words, and paragraph vectors
using the Doc2Vec approach [Le and Mikolov, 2014]. As pointed out by Yarlott et al., the
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tf-idf and paragraph vectors approximate topics within a given paragraph. Yarlott et al.
also used the previous paragraph’s label as an explicit feature; this is included by default
in the CRF model.

Lexical: Bigrams to capture the type of language per discourse label type.

Positional: Size of paragraphs represented by number sentences present. As well as the
paragraph position relative to the document head.

Syntactic: A POS count vector which encodes the number of times each part of speech
(POS) (specifically, nouns, verbs, adjectives, and adverbs) appears in the paragraph.
Semantic: Here I incorporated four additional features: a reported speech feature, a ma-
jority event tense feature, a subevent relation count vector, and NER vectors representing
a select set of named entities. For the reported speech feature, 1 extracted quotations
and sentences with tagged as reported speech by the textacy library [DeWilde, 2020]
and labeled the containing paragraph as VERBAL REACTIONS. For the majority event
tense feature, I extracted the events in each paragraph using the CAEVO event extrac-
tion system [Chambers et al., 2014], noted their POS tags using a dependency tree, and
recorded the majority verb tense in that paragraph. For the subevent relation feature, [
used Aldawsari and Finlayson’s subevent extraction system (2019) to capture relation-
ships between paragraphs. For this, I used a vector for each paragraph corresponding
to the number of paragraphs of the article with the maximum number of paragraphs in
the corpus. Aldawsari and Finlayson [2019] presented a supervised model for automat-
ically identifying when one event is a subevent of another using narrative and discourse
features. For each event relation found by this system between two distinct paragraphs,
I recorded a +1 in that corresponding vector cell, while I discarded relationships found
within a single paragraph. For the NER vectors, | applied Named Entity Recognition
(NER) and extracted the first 13 named entity types found by the Spacy library [Al, 2020]
including PERSON, LOCATION, DATE, and TIME. These 13 types were represented in
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a numerical vector for each discourse label type such that, for each type, I recorded the

number of entity occurrences.

Inference

[ applied the usual inference process for linear chain CRFs operating at the paragraph level
[Forney, 1973]. Inference in linear chain CRFs follows a similar algorithm to Viterbi,
which is used in decoding HMM models. While not stated explicitly in the Equation 3.7
above, the normalization factor Z(S) is calculated as is often done using the Gaussian

prior as it was infroduced in [Chen and Rosenfeld, 1999].

3.3.5 Results and Discussion

In order to test the CRF model, I randomly split each corpus into training and testing
sets in a cross-validation setup, using five folds, resulting in 40 news reports for training
and 10 for testing in each fold. The CRF model was trained to learn a total of 9 distinct
discourse label types as represented in 3.14 (all leaf labels minus HEADLINE). In this

section I describe the baseline comparisons and overall experiments and results.

Baseline Methods

I followed and extened Yarlott et al. [2018] in their baseline comparisons. I compared
my model’s performance against six other methods: two baselines including the most
frequent class (MFC) and a support vector machine using bag-of-words (SVM+BoW);
third, a decision tree classifier; fourth, a random forest classifier; and fifth, Yarlott et al.
[2018]’s best performing model, a support vector machine. As described above, the latter
three models incorporate a the following set of four features: bag-of-words, tf-idf, para-

graph vectors, and previous paragraph labels. [ used the same experimental setup for all of
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these models. Yarlott et al. [2018] obtained the best experimental results using grid search
to maximize the micro-averaged performance of each classifier, as measured across five
folds. Following Yarlott et al. [2018], the SVM classifier uses a linear kernel with C' = 10
and the class weights balanced based on the training data; the decision tree classifier uses
the default parameters with the class weights balanced; the random forest uses 50 estima-
tors with balanced class weights. Additionally, I included a sixth baseline (an HHMM)

following from my earlier work in Banisakher et al. [2018a] and as discussed in §3.1.4.

Results

The CRF model outperformed all other classifiers and baselines achieving a 0.71 Fj score.
Table 3.15 shows the micro-averaged precision (P), recall (1), and F; scores for the five
models from [ Yarlott et al., 2018] as well as our current CRF approach. The experimental
results show that our CRF approach is a substantial improvement over the previously best
performing model.

For the CRF model, I performed 8 feature combination experiments (shown in Table
3.15) to evaluate the effect of feature classes as well as the individual semantic features.
As discussed before, the SVM as well as the decision tree and random forest classifiers
only leveraged Yarlott et al.’s original four features: bag-of-words, #f-idf, paragraph vec-
tors, and previous paragraph labels. While our CRF approach uses a more sophisticated
set of features leveraging additional syntactic and semantic features as outlined in 5.2.4.
Most importantly, my model treats the problem as a sequence labeling task and therefore
captures the sequential dependencies between the paragraphs as well as the labels within
each report. This is evidenced by the CRF model that uses only Yarlott et al.’s features,
which achieves a higher performance than the original SVM classifier.

The CRF model achieved the largest increase in performance after adding the semantic

features. This was expected: 1 anticipated a boost in performance on the VERBAL RE-
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Model  Features P R Fi

MEFC - 039 039 039
HHMM Bigrams 042 045 043
SVM BoW 046 046 046
DT Yarlott et al. 041 041 041
RDF Yarlott et al. 043 043 043
SVM Yarlott et al. 054 054 054
CRF Yarlott et al. 058 060 059
CRF +Lexical 0.61 063 062
CRF +Positional 062 066 0.64
CRF +Syntactic 065 069 067
CEF +subevent relation 065 0070 067
CRF +majority event tense  0.67 071 0.68
CRF +reported speech 068 072 070

CRF All (+Remaining Sem.) 0.69 073 0.71

Table 3.15: Experimental results for discourse label identification. All results are micro-
averaged across instances, including precision (P), recall (R), and balanced F-measure
(Fi). The HHMM used Bigram features as discussed in [Banisakher et al., 2018a] and
§3.1. The Decision Tree, Random Forest, and SVM classifiers used the features outlined
in [Yarlott et al., 2018]. For the middle three lines of the CRF section, these indicate
features groups added to the previous line’s model. I present the results for the semantic
features individually (the last four lines). The CRF model in the last line (CRF with ALL
features) includes all the features from the previous lines as well as all remaining semantic
features.

ACTIONS class given detection of reported speech, and a similar increase in performance
on the MAIN EVENTS and PREVIOUS EVENTS classes given the addition of event and
subevent features. Of the semantic features, the reported speech feature had the biggest
impact on the model’s performance as the verbal reactions section was predominant in
the dataset. Here textacy performed quite well in automatically identifying reported
speech as the model achieved a 0.91 F; score for the VERBAL REACTIONS class. The
subevent relation and majority event tense features improved the performance by about
one point Fj each, with the second contributing slightly more to the overall performance.
The majority event tense feature contributed heavily to the PREVIOUS EVENTS and His-

TORY, | suspect due to the relatively more frequent use of past tense verbs in paragraphs



belonging to those classes. As discussed before, I used automated systems to detect events
and subevent relations. Naturally, these systems do not boast a perfect performance and
therefore error propagation is expected. Thus, I expect that my model can further achieve
higher performance using more refined event detection solutions, as well as a larger cor-
pus.

Table 3.16 presents the per-label results from our experiments. The relatively strong
performance on CIRCUMSTANCES and VERBAL REACTIONS is not surprising, given
their relative prevalence in the news articles corpus. Similarly it is not surprising to see the
low performance on labels that occur, on average, about once (or less) a document (His-
TORY, EXPECTATIONS). However, these label types saw a significant performance boost
in my model compared to the previous approaches as our features have captured more of
their distinct language. For CONSEQUENCES HISTORY, EXPECTATIONS, and EVALUA-
TIONS, the syntactic and positional features were most helpful. Similar to [Yarlott et al.,
2018], 1 observe an unexpected—but not surprising—level of performance on LEAD para-
graphs, given their relative scarcity in the dataset: I find that leads, with a single exception,
occur once at the start of the document.

Again, similar to [Yarlott et al., 2018], I expected the tree-oriented methods—decision
trees and random forests—to at least outperform the SVM classifier. However, this was
not the case in practice and they were outperformed by one of the baselines. I believe
that this partially attributed to the fact that these models did not leverage the full set of
hierarchical labels in van Dijk’s discourse theory: they were only presented with the leaf
labels.
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Label Type Fi | Label Type F

HEADLINE - LEAD 0.95
MAIN EVENTS 0.69 | CONSEQUENCES 0.29
CIRCUMSTANCES 0.72 | PREVIOUS EVENTS 0.51
HISTORY 0.24 | VERBAL REACTIONS 0.91
EXPECTATIONS 0.26 | EVALUATIONS 0.51

Macro Average 0.56

Table 3.16: Per-label F; results. The last row shows the macro average over all label
types. Best performance occurs for the LEAD, MAIN EVENTS, CIRCUMSTANCES, and
VERBAL REACTIONS.

3.3.6 Related Work

There has been substantial work describing how the structure of news operates with re-
gards to the chronology of real-world events. Much news follows an inverted chronology—
called the inverted pyramid [Bell, 1998, Delin, 2000] or relevance ordering [Van Dijk,
1986} —where the most important and typically the most recent events come first. Bell
claims that “news stories. .. are seldom if ever told in chronological order” [Bell, 1994,
p- 105], which is demonstrated by Rafiee et al. for both Western (Dutch) and non-Western
(Iranian) news (2018). Rafiee et al. also show that many stories follow a hybrid structure,
which combines characteristics from both inverted and chronological structures.

Our approach was inspired by Banisakher et al. [2018a]’s HHMM approach to section
identification in clinical notes. In turn, their work extend an earlier study on section
identification of psychiatric evaluation reports that combined the work of Li et al. [2010]
on identifying section types within clinical reports and that of Sherman and Liu [2008]
on text segmentation of meeting minutes. Li et al. modeled HMM emissions at the
section level using bigrams, while Sherman and Liu modeled the emissions at the sentence
level and used unigrams and trigrams. Other approaches followed similar strategies in
segmenting story text and in creating generative models for detecting story boundaries

[Mulbregt et al., 1998, Yamron et al., 1998]. More recently, Yu et al. [2016] used a
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hybrid deep neural network combined with a Hidden Markov Model (DNN-HMM) to
segment speech transcripts from broadcast news to a sequence of stories. Similar to my
approach, [Sprugnoliet al., 2017] used CRFs and SV Ms for the classification of automatic
classification of Content Types, a novel task that was introduced to provide cues to access
the structure of a document’s types of functional content.

Discussing van Dijk’s theory of news discourse, Bekalu stated that analysis of “the
processes involved in the production of news discourses and their structures will ulti-
mately derive their relevance from our insights into the consequences, effects, or func-
tions for readers in different social contexts, which obviously leads us to a consideration
of news comprehension” [2006, p. 150]. The theory proposed by van Dijk has also been
proposed for use in annotating the global structure of elementary discourse units in Dutch
news articles [van der Vliet et al., 2011].

Pan and Kosicki [1993], in a similar analysis, presented a framing-based approach that
provides four structural dimensions for the analysis of news discourse: syntactic structure,
script structure, thematic structure, and rhetorical structure. Of these, the syntactic struc-
ture is most closely aligned with van Dijk’s theory. In this study, I chose to focus on van
Dijk’s theory as Pan and Kosicki do not provide a list or description of the structure that
could be readily translated into an annotation scheme.

While White [ 1998] treats the structure of news as being centered around the headline
and lead. White suggests that the headline and lead, which act as a combination of both
synopsis and abstract for the news story, serve as the nucleus for the rest of the text: “the
body which follows the headline/lead nucleus—acts to specify the meanings presented in
the opening headline/lead nucleus through elaboration, contextualisation, explanation,
and appraisal” [1998, p. 275]. I focus on van Dijk’s theory for this study as I find it
to provide a higher degree of specificity: White’s specification modes serve roughly the
same purpose as higher-level groupings in van Dijk’s theory.
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CHAPTER 4
AUTOMATIC SECTION STRUCTURE CLUSTERING

Labeling document sections (e.g., Introduction, Methods, Conclusion, etc.) is an im-
portant step in automatic document understanding and is useful for information extrac-
tion, data mining, and document search. In the absence of explicit headings however,
labeling requires knowledge of the section types: what sections should be present, in
what order, their various possible headings, and containing what kind of language. In
this chapter, I describe an approach to automatically discovering section type knowledge
for a document class in a data-driven fashion using a modified Bayesian model merging
algorithm. I tested my approach on five different document classes from three domains:
psychiatric evaluations, radiology reports, and discharge summaries (Corpora 2.1-2.3) in
the clinical domain; patent documents (Corpus 2.4) in the intellectual property (IP) do-

main, and environmental scientific articles (Corpus 2.5) from the scientific domain.

4.1 Introduction

Many types of documents have explicit section structure, that is, headers which delimit
blocks of text and set expectations about the content and purpose of that block. In the
absence of explicit headers, or in the face of non-standard headers, automatically labeling
sections with a pre-defined ontology of section types is useful for document understand-
ing, and has been shown to improve tasks as varied as information extraction [Hofmann
et al., 2009, Tepper et al., 2012], data mining [Dou et al., 2015, Repta et al., 2018], and
document search [Wu et al., 2015a, Xu and Croft, 2017, Doucet, 2018]. Additionally,
automatic section labeling has been shown to be tractable and has been demonstrated on
psychiatric document understanding [Banisakher et al., 2018a]. But where does the sec-
tion type ontology come from? Automatically labeling sections with their types requires

not just a list of possible sections, but also their usual order (with possible exceptions),
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what different headers might be used for each type, and the kind of language normally
found within. Manually creating this knowledge is laborious and error prone, and so a
solution to automatically discovering it from examples would be preferred.

Interestingly, automatically discovering the types is challenging: for a document class
(e.g., a psychiatric evaluation or a U.S. patent), the presence of a particular section type
is often ambiguous. First, there is great variety and ambiguity in the section headers;
second, sections are sometimes included within other sections: third, the section order
might not be strict; and finally, sections may be omitted for a variety of reasons.

Here [ describe an approach to discovering section types for a given document class in
a data-driven manner. My approach uses a modified Bayesian model merging algorithm
[Stolcke and Omohundro, 1994], as inspired by the Analogical Story Merging (ASM)
algorithm presented by Finlayson [2016]. I demonstrate this approach on five differ-
ent corpora from two domains: psychiatric evaluations, radiology reports, and discharge
summaries (Corpora 2.1-2.3) in the clinical domain; patent documents (Corpus 2.4) in the
intellectual property (IP) domain, and environmental scientific articles (Corpus 2.5) from
the scientific domain. I show that it is feasible to learn the section structure of documents
without a pre-existing ontology of sections.

The chapter is organized as follows. I first describe the datasets I used and the chal-
lenges of discerning section types for each corresponding document class (§4.4). 1 then
define the task (§4.3) and describe my approach and its steps (§4.4). Next I compare the
performance of my approach with various baselines (§4.5), demonstrating that it performs
better than existing document clustering approaches for my task (§3.3.5). Finally, I dis-
cuss related work (§4.7) as well as the limitations and future directions of my approach
(§4.8).
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Corpus Document Class # of Docs. # of Secs.  Secs/Doc.  Words/Doc.

1 Psychiatric Evaluations 150 2,824 18.8 1.521
2 Radiology Reports 423 2,538 6.0 463

3 Discharge Summaries 150 2977 19.8 1,829
4 U.S. Patents 464 3.249 7.0 18,351
5 Scientific Articles 19 111 7.4 4,741

Table 4.1: Summary of corpora statistics.

4.2 Data and Challenges

I tested my approach on five different document classes from three domains: psychiatric
evaluations, radiology reports, and discharge summaries (Corpora 2.1-2.3) in the clini-
cal domain; patent documents (Corpus 2.4) in the intellectual property (IP) domain, and
environmental scientific articles (Corpus 2.5) from the scientific domain. For each cor-
pus I manually created or found an ontology of distinct section types. As discussed in
chapter 2, I conducted five annotation studies (one for each corpus) in a double-blinded
manner, and calculated inter-annotator agreements resulting in a Cohen’s x of (.90, 0.98,
0.94, 0.92, and 0.90 for each corpus, respectively. These agreement values are considered
“perfect” agreement|Artstein and Poesio, 2008]. The ground truth data was only used for
evaluating the approach. In the following sections I describe each corpus briefly (repeated
from chapter 2 for ease of reference) followed by the challenges in section type discovery.
Table 4.1 shows a summary of these corpora and their corresponding section and word

statistics.

4.2.1 Corpus 1: Psychiatric Evaluations

Psychiatric evaluations consist of long-form unstructured text. They are the end product
of an assessment in which a psychiatrist summarizes the information they have gathered,

integrating the patient history, evaluation, diagnosis, and suggested treatments or future



steps [Groth-Marnat, 2009, Goldfinger and Pomerantz, 2013]. Although there is no strict
format, there are general guidelines for writing these reports, typically structured as an
ordered list of headed sections [Association, 2006].

As discussed in detail in chapter 2, I used a corpus of psychiatric evaluations and
a corresponding ontology of section types previously collected and developed by Ban-
isakher et al. [2018a]. The corpus contains 150 publicly available psychiatric evaluations
collected by crawling the web and querying custom search engines. The reports in the
corpus were anonymized samples of either real or synthetic psychiatric evaluations writ-
ten and published for educational purposes. Each document is complete, and adheres to
the general writing guidelines for psychiatric evaluations discussed in prior work [Ban-
isakher et al., 2018a]. Table 4.2 (adapted from Table 2.1 for ease of reference) lists the
main section types in their usual order of appearance as well as how often they appear in

my corpus and their relevant statistics.

4.2.2 Corpus 2: Radiology Reports

A radiology report is a summary of a radiology scan such as an X-Ray or an MRI, where
a radiologist communicates findings and an analysis of the results [of Radiology, 2019,
Pool and Siemienowicz, 2019]. Similar to the previous two clinical document classes,
radiologists are typically trained to follow a general guideline. This is not a strict format,
as reports vary in their section structure and content based on the procedure performed,
the patient’s specific case, and the radiologist’s and medical institution’s writing styles.
As discussed in detail in chapter 2, I randomly extracted 423 radiology reports from
MIMIC-III that were complete and adhered to the general radiology writing guidelines
[of Radiology, 2019, Pool and Siemienowicz, 2019]. These reports covered a variety of
procedures and scan types, including X-Rays, MRIs, and ultrasound. I used the ontology
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# Section # Words # Sents. Sent. Length % Present

GENERAL PATIENT INFO
1 IDENTIFYING DATA 12 2 6 100
2 CHIEF COMPLAINT 27 3 9 100
MEDICAL HISTORY
3 HIST. OF PRSNT. ILLNSS. 232 29 8 95
4 PSYCHIATRIC HISTORY 85 8 11 82
5 SUBST. ABUSE HIST. 98 10 10 88
6 REVIEW OF SYMPTOMS 150 19 8 96
7 SURGERIES 28 3 7 33
8 ALLERGIES 4 2 2 o8
9 CURRENT MEDICATIONS 40 9 4 100
FAMILY HISTORY
10 BIRTH AND DVLE HIST. 59 5 10 31
11 ABUSE HIST./ TRAUMA 110 9 12 79
12 FAMILY PSYCH. HIST. 44 5 9 13
13 FAMILY MED. HISTORY 48 7 7 02
14 SOCIAL HISTORY 80 7 11 16
15 PREGNANCY 29 3 8 47
16 SPIRITUAL BELIEFS 12 2 5 24
17 EDUCATION 32 3 8 68
18 EMPLOYMENT 31 3 9 79
19 LEGAL 10 1 5 20
MENTAL STATUS
20 MENTAL STATUS 155 18 9 95
21 STRENGTHS AND SUPPORTS 8 1 8 71
TREATMENT
22 FORMULATION 35 4 8 62
23 DIAGNOSES 63 12 5 100
24 PROGNOSIS 8 2 3 74
25 TREATMENT PLAN 121 12 10 100

Table 4.2: Section ontology and relevant statistics for Corpus 1: Psychiatric Evaluation
Reports.

of section types presented in [Tepper et al., 2012]. Table 4.6 lists the main section types
in their usual order of appearance as well as how often they occur in my corpus and their

relevant statistics.
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# Section # Words # Sents. Sent. Length % Present
CLINICAL INFORMATION

1 CLINICAL HISTORY 80 8 10 100
EXAM DETAILS

2 EXAM 16 2 8 100

3 COMPARISON 16 2 8 86

4 CONTRAST 14 2 T 14

3 PROCEDURE 12 2 6 100
FINDINGS

6 FINDINGS 192 24 8 100
IMPRESSION

T IMPRESSION 133 19 T 100

8 ATTENDING STATEMENT - - - 0

Table 4.3: Section ontology and relevant corpus statistics for Corpus 2: Radiology Re-
ports.

4.2.3 Corpus 3: Discharge Summaries

A discharge summary is the final documentation of a hospital stay. These reports summa-
rize the course of hospital treatment by listing the various events during hospitalization
[Horwitz et al., 2013]. Similar to psychiatric evaluations, discharge summaries are gov-
erned by general writing guidelines that suggest the information that should be included.
In practice, different hospital networks and even different medical professionals within
the same hospital often write these reports differently, tailoring them to specific patient
cases.

As discussed in detail in chapter 2, and similar to radiology reports, I randomly ex-
tracted 150 discharge summaries from the MIMIC-III database [Johnson et al., 2016]. I
selected summaries that were complete and that adhere to the general clinical note writing
guidelines. As with all MIMIC-III data, the summaries are anonymized. I used the on-

tology of section types presented in [Tepper et al., 2012]. Table 4.4 lists the main section
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# Section # Words # Sents. Sent. Length % Present
GENERAL PATIENT INFO
1 ADMIT DATE 3 1 3 100
2 DISCHARGE DATE 3 1 3 100
3 SERVICE - 2 2 100
PROVIDER INFO
4 ATTENDING 2 1 2 82
5 ADMIT PHYSICIAN 2 1 2 100
6 DISCHARGE PHYSICIAN 2 1 2 100
COND. BEFORE ADMISSION
7 ADMISSION DIAGNOSES 96 12 8 100
8 HISTORY 135 15 0 16
9 MEDICATIONS 55 11 5 100
10 REASON FOR ADMISSION 162 18 0 100
COND. AT DISCHARGE
11 CONDITION - 2 2 100
12 DISPOSITION 2 1 2 34
13 DISCHARGE DIAGNOSES 144 18 8 89
14 OTHER DIAGNOSES - - - 0
15 PHYSICAL EXAM ON DISCH. 45 9 40
MEDICAL HISTORY
16 ALLERGIES 12 3 4 100
17 FAMILY HISTORY 81 9 0 43
18 GYNECOLOGICAL HISTORY - - - 0
19 PAST MEDICAL HISTORY 144 16 0 100
20 PAST SURGICAL HISTORY 32 - 8 100
21 SOCIAL HISTORY 84 7 12 37
HOSPITAL COURSE
22 CONSULTATION 88 11 8 6
23 HOSPITAL COURSE 168 14 12 85
24 PHYSICAL 66 11 6 28
25 PROCEDURES 15 5 3 65
26 STUDIES - - - 0
DISCHARGE INSTRUCTIONS
27 FOLLOW UP - - - 0
28 DIAGNOSTIC STUDIES REC'D - - - 0
29  DISCHARGE INSTRUCTIONS 408 34 12 100
30 DISCHARGE MEDICATIONS 72 12 6 100

Table 4.4: Section ontology and relevant statistics for Corpus 3: Discharge Summaries.
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types in their usual order of appearance as well as how often they occur in my corpus and

their relevant statistics.

4.2.4 Corpus 4: Patent Documents

Patent documents are the result of a successful patent application. Many of a patent’s
sections are mandatory, e.g., the claims section [WIPO, 2007]. Similarly, the descrip-
tion section in these documents is further composed of subsections, some of which are
mandatory, while others are optional and depend on the authors’ preferences as well as
the patent’s technical topics. In their work on patent section segmentation, Briigmann
et al. [2015] outlined the structure of the description section in a patent document into

five mandatory and two optional segments.

# Section # Words # Sents. Sent. Length % Present
1 TECHNICAL FIELD 85 3 8 100
2 BACKGROUND ART 267 57 11 100
3 SUMMARY OF THE INVENTION 1,286 39 10 100
4 DESCRIPTION OF DRAWINGS 975 19 8 100
5 PREFERRED EMBODIMENTS 4,106 208 7 100
6 INDUSTRIAL APPLICABILITY 2,731 26 2 31
7 EXAMPLES 1,258 32 4 14

Table 4.5: Section ontology and relevant statics for Corpus 4: U.S. Patent Documents.

For this work (as discussed in detail in chapter 2) I focus on the description section
of patent documents and refer to those as patent documents in my discussion throughout
this paper. I randomly collected 464 U.S. patent documents using the PATENTSCOPE
database [WIPO, 2019] provided by the World Intellectual Property Organization (WIPO).
The documents spanned the period between 1954 and 2010. I then extracted the descrip-
tion sections from the original patent documents to construct my corpus. Finally, I used
the ontology of section types presented in [Briigmann et al., 2015]. Table 4.5 lists the
main section types in their usual order of appearance as well as how often they occur in

my corpus and their relevant statistics.
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# Section # Words # Sent. Sent. Length % Present

INTRODUCTION
1 BACKGROUND 800 35 23 100
2 PROBLEM 400 19 21 100
3 METHOD 1.413 33 21 100
4 RESULT 1,925 84 23 100
RELATED WORK
5 CONNECTION 356 21 17 100
6 DIFFERENCE 281 14 20 100
T FUTURE WORK 350 20 18 40
3 CONCLUSION 205 10 21 100

Table 4.6: Section ontology and relevant statics for Corpus 6: Environmental Scientific
Articles. All columns represent averages. The last three rows are the max, average, and
min of averages.

4.2.5 Corpus 5: Environmental Scientific Articles

As discussed in chapter 2, this corpus was the result of an interdisciplinary collaborative
project between computer scientists (including myself and other colleagues at the School
of Computing and Information Sciences) and environmental scientists at Florida Inter-
national University’s Earth and Environment department. To the best of our knowledge
there was no corpus of scientific articles annotated with ENVO concepts, so we created
our own. We collected a total of 19 articles (90,074 total words) using four search queries
that were created by three domain experts (two PhD students and a professor of Hydrol-
ogy). Our domain experts ran the queries through Google Scholar and examined from the
several hundred results returned, identifying the top four or five most relevant articles for
each query. Importantly, several of the articles were not ranked near the top of Google's
results, and were rather found many pages deep. Table 4.6 lists the main section types in
their usual order of appearance as well as how often they occur in my corpus and their

relevant statistics.
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4.2.6 Challenges in Section Type Discovery

There are several challenges in discovering section types within a given document class.
First, section headings are varied and ambiguous [Li et al., 2010, Banisakher et al.,
2018a]. Using psychiatric reports as an example, a section labeled IDENTIFICATION
OF PATIENT by one psychiatrist might be labeled REFERRAL DATA or IDENTIFYING
INFORMATION by another. Second, some sections are included inside others; for exam-
ple, the section MEDICAL HISTORY might include REVIEW OF SYMPTOMS and PSY-
CHIATRIC HISTORY subsections, while the section FAMILY HISTORY might include a
subsection addressing PREGNANCY. Like top-level sections, subsections can either be
explicitly labeled (heading present) or just implicit (heading omitted). Third, the section
ordering can differ between reports, again, depending on the psychiatrist. And fourth,
sections may be omitted, especially when that information in not relevant to the patient in
question. For example a report regarding a male patient would likely not contain a PREG-
NANCY section [Banisakher et al., 2018a]. These challenges apply equally to many other
types of clinical reports, including the discharge summaries and radiology reports used in
my study.

Some document classes have stricter expectations about section structure than others.
For example, while patent documents are more uniformly structured than clinical doc-
uments, they still suffer from inconsistencies between different authors, and especially
between different countries [Diallo and Lupu, 2017]. In an effort to minimize these in-
consistencies and to increase interoperability of patent analysis and discovery systems,
WIPO outlined writing guidelines for patent documents in its patent drafting manual
[WIPO, 2007]. Even so, the manual itself discusses and accepts the possibility of differ-
ent formatting and structuring of the sections of patent documents. Thus, the challenges

outlined above apply, but to a lesser degree, to U.S. patent documents. Scientific articles
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are similarly ambiguous in their section structure, as many journals and conferences have

their own required structure that differ from each other.

4.3 Task Definition

Given a corpus of documents from a single document class (e.g., psychiatric reports), [
aim to identify a section structure that reflects the underlying statistics of the corpus. That
is, a solution must identify a distinct list and general order of section types regardless of
the section labels found within the documents. For example, a section originally labeled
as IDENTIFYING DATA by one psychiatrist and IDENTIFICATION OF PATIENT by

another, in two different reports, must be identified as a single distinct section type.

4.4 Approach

[ treat this task as an unsupervised clustering problem that can be appropriately tackled by
Bayesian model merging [Stolcke and Omohundro, 1994]. My approach is inspired by the
Analogical Story Merging (ASM) approach which applied model merging to clustering
events from natural language text, as introduced by Finlayson [2016]. In that prior work,
events correspond to model states, and deriving the clustering involves four steps: (1)
creating an initial model incorporating the sequence of events in each document in the
corpus, (2) defining a merge operation over the events, (3) defining a prior over the models
created, and (4) searching the merge space. The event clustering task defined there is
analogous to my section discovery problem, where events are replaced by sections.

In this approach to section discovery, I adapted and extended the ASM steps. Given
each corpus, I built an initial HMM-like model Mj, where each document is represented
as a linear chain of states, with each state corresponding to a section of unknown type

in the same order as found in the document. For example, a document containing ten
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sections will be represented with a chain of ten states. Thus for the 150 reports in the
psychiatric reports corpus, for example, I started with 150 linear branches composed of
states that represented the sections. The model also incorporates single start and end states
that link to all the first and last states of each of the linear branches, respectively. The goal
in my approach is to iteratively merge similar section states to generate a succession of
models M;, seeking to maximizing the posterior probability P(M;|D)), the probability of
a model given the data. Figure 4.1 shows a toy example of this approach. 1 discuss the
details of that example later in this section. The next three steps are non-trivial, and thus

I discuss them separately as follows.

4.4.1 The Merge Operation

The merge operation merges two states in one model M ito generate a new model M
i+1. The states’ content are represented as bigram models of their corresponding

section(s)’ free text. A merged state’s emission and transition probabilities are obtained
from the weighted sum of their parent states, thus modeling the order of section types. 1
added two restrictions on candidate merged models. First, no cycles are allowed in a
merged model, which maintains a directed order of sections and disallows repeated section
types in a single linear chain. Second, I merge only sections with section-to-document-
size ratios with one standard deviation of each other. This ratio is the number of tokens in
a section to the number of tokens in the document. The intuition of this restriction is that,
given a document class, | have a general expectation on the size of a specific section type
relative to its document size. In scientific articles, for example, an introduction section in
an 8-page long scientific article is typically about a page long while it would be two to

three pages long in a 30- or 40-page article. Placing this as a restriction on the model



rather than a weight can be seen as favoring precision over recall as [ favor models with

states containing more similar sections.

After the search converges to a model with maximum probability, I obtain the most
likely label (header) for each state by computing a majority vote over the headers of the
sections merged into that state. Thus my approach can be further used to identify actual

section headers for a document class in a given corpus.

4.4.2 Defining the Prior Over Linear Models

The posterior probability guides the search in model merging, but a prior probability is
needed to compute it. A prior probability distribution represents my initial belief over
the size and structure of the models. [ first assume a normal distribution over the number
of sections present in the model. For instance, in clinical notes this follows intuition in
that: (1) patients share similar characteristics overall, (2) most patients treated fall under
an umbrella of a small subset of medical issues (e.g., depression, anxiety, and ADHD
in mental health), and (3) most medical professionals share a similar report writing and
structuring style given that they follow the general medical writing guidelines. A similar
intuition follows for patent documents as well. I further verified my intuition through
examination of the corpora.

Additionally, I disallow models that merge sections with dissimilar content. This is
achieved by setting a similarity threshold and setting the prior probability to zero if a
state merges two sections with content less than a threshold T". The similarity function is

defined in the next section. The resulting prior P(M ) is thus formulated as follows:

P(M) = N(p,o*) [[ G(S:) 4.1)
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1 Vs;, s €55, Sim(sj,se) =T
G(S;) = (4.2)

0 otherwise
In Equation 4.1, the Normal distribution N (y, ) is multiplied by the product of a
threshold function for each state in the model M. S; is the i*" state in M. In Equation 4.2,
s; and s are section contents (i.e., text blocks) that have been merged into state S;, Sim
is the similarity function, and T is a similarity threshold. Following a parameter sweep
using grid search, and for a strict similarity threshold T is set to be 1.5 standard deviation
from the the mean similarity of all candidate sections to be merged, and therefore is tuned

to the data.

4.4.3 The Similarity Function

The similarity function Sim takes the content of two candidate sections s; and s; (or
collection of sections in the case of merged states), and computes the cosine similarity
of their vector representations. These vector representations are computed from a set of
extracted features that are used to model a section’s free text content. I extracted the
following sets of lexical, positional, and semantic features: (1) unigrams and bigrams; (2)
the top three key terms per section as indicated by #f-idf [Church and Gale, 1999]; (3)
the section position relative to its document; (4) the length of the section in tokens; (5)
extracted named entities, their types, and counts; and (6) the Wu-Palmer similiarity score
[Wu and Palmer, 1994]. Additionally, although not shown in Equation 4.2, if the headers

of all sections in the merged states are exactly the same, G(S;) is setto 1.
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4.4.4 Searching the Merge Space

As discussed earlier, the posterior probability P(M;|D) drives the search, as maximiz-
ing it will result in a generalizable model that fits the given data. Prior work with
model merging used greedy, best-first search [Stolcke and Omohundro, 1994, Finlayson,
2016] because of the size of the merge space, and I follow the same approach. As
in prior approaches, I do not compute P(M;|D) directly, but rather seek to compute
P(M;)P(D|M;), which is proportional to it. Further, because computing P(D|M;) is
costly, I estimate it following approximations described by Stolcke and Omohundro [1993]
that compute heuristics for finding a maximum a posteriori probability (MAP).

Figure 4.1 shows a toy example of the section merging approach over two small psy-
chiatric reports. Each composed of four sections: IDENTIFYING DATA, REVIEW OF
SYMPTOMS, PREGNANCY, and TREATMENT in the first report, and PATIENT, EDU-
CATION, MEDICAL HISTORY, and PLAN FORMULATION in the second. In the first
model Mp, the model is initialized such that each report is an HMM-like linear chain
of states which in turn correspond to sections in their original order of appearance. The
figure shows a series of merges leading to the model that maximizes the posterior under
the described parameters. In M, IDENTIFYING DATA and PATIENT are merged into a
single state, the transitions are inherited as well as the section headers and content. Sim-
ilarly this is shown for REVIEW OF SYMPTOMS and MEDICAL HISTORY in Ms, and
for the last two sections in each report in Ms. The final model M3 can generate not only
the two input reports (i.e., two distinct section sequences), but an additional two section
sequences that alternatively include or exclude both states 3 and 6. Thus the model has
generalized beyond the two input examples. Most importantly, | can obtain a distinct list

of section types and ordering for the input data from the generalizing final model.
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Figure 4.1: Example of the approach on two toy psychiatric reports [). Each report com-
prises four sections. States are represented by circles and transitions by arrows. Abbre-
viated section headings inside states indicate that the state can emit that section content.
Shaded states are merged into the dashed state in the next step.

4.5 Evaluation Methods and Metrics

My approach aims to identify a section structure that reflects the underlying statistics of
the corpus. Thus the output model results in a (1) a set of proposed section types and (2) a

finite state machine the structure of which models the order for those sections. I evaluate
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these two results separately. As discussed in §4.2 [ annotated each corpus with ontologies
of section types, and this ground truth (which was not provided to my models) was used
for the evaluation. Additionally, as discussed in §4.4.3, section types are given a preferred
label (header) following a majority vote of merged sections in each state.

To evaluate section type discovery (i.e., identifying the set of possible section types)
[ treated it as a document clustering task, with each section a separate document. I com-
pared the models against four document clustering baselines: Non-negative Matrix Fac-
torization (NMF) using tf-idf vectors; K-means over tf-idf vectors; K-means over latent
Dirichlet allocation (LDA) topic vectors; and k-means over word2vec embeddings. Sim-
ilar to the experimental setup in [Hosseini-Asl and Zurada, 2014] for NMF and setup in
[Xie and Xing, 2013] for K-means, I provided these algorithms with the correct number
of clusters k for each corpus. This is not possible in the general case and therefore [ would
expect worse results than shown here. Additionally, to maximize the performance of the
baselines, I disallowed clustering of sections within the same document, as sections from
the same document will often be grouped because they share similar topic and term dis-
tributions. [ evaluated the clustering using two metrics: the chance-adjusted Rand index
(Rand) to evaluate the overall clustering quality, and the F; measure to each section type
independently.

To evaluate the section ordering, I computed an F; measure for each section type that
compared the proportions of succeeded sections in the model to that in the ground truth

annotations.

4.6 Results and Discussion

I evaluated my models and baselines over the five corpora presented in §4.2. My ap-

proach significantly outperformed all four baselines when discovering section types, with
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# Section %% Present P R Fi

GENERAL PATIENT INFO
1 IDENTIFYING DATA 100 0.96 0.96 0.96
2 CHIEF COMPLAINT 100 0.94 0.92 0.93
MDEICAL HISTORY
3 HIST. OF PRSNT. ILLNSS. 05 0.96 0.94 0.95
4 PSYCHIATRIC HISTORY 82 0.89 0.89 0.89
5 SUBST. ABUSE HIST. 88 0.90 0.88 0.89
6 REVIEW OF SYMPTOMS 06 0.95 0.95 0.95
7 SURGERIES 33 0.80 0.71 0.75
8 ALLERGIES 08 0.92 0.94 0.93
9 CURRENT MEDICATIONS 100 0.94 0.90 0.92
FAMILY HISTORY
10 BIRTH AND DVLP. HIST. 31 0.73 0.67 0.70
11 ABUSE HIST./ TRAUMA 79 0.90 0.86 0.88
12 FAMILY PSYCH. HIST. 13 0.92 0.90 0.91
13 FAMILY MED. HISTORY 02 0.95 0.93 0.94
14 SOCIAL HISTORY 16 0.90 0.88 0.89
15 PREGNANCY 47 0.75 0.69 0.72
16 SPIRITUAL BELIEFS 24 0.72 0.68 0.70
17 EDUCATION 68 0.83 0.77 0.80
18 EMPLOYMENT 79 0.88 0.86 0.87
19 LEGAL 20 0.74 0.65 0.69
MENTAL STATUS
20 MENTAL STATUS 05 0.95 0.91 0.93
21 STRENGTHS AND SUPPORTS 71 0.85 0.83 0.84
TREATMENT
22 FORMULATION 62 0.83 0.79 0.81
23 DIAGNOSES 100 0.97 0.95 0.96
24 PROGNOSIS 74 0.85 0.83 0.84
25 TREATMENT PLAN 100 0.95 0.89 0.92

Average 0.88 0.85 0.86

Table 4.7: Section ontology and merging results for Corpus 1: Psychiatric Evaluations.
Column 3 shows the percentage of documents that contain that section type. Columns 4-6
show the precision, recall, and F} scores for section merging.

improvements of 68%, 77%, 67%, 58%, and 90% respectively for each corpus, over the
best performing baseline (Word2Vec+K-means). Table 4.11 shows these results. The

chance-adjusted Rand index is analogous to accuracy, which suggests that most states
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in my model had a relatively small number of dissimilar sections. I also performed five
feature combination experiments. Adding section positional and length features had a sig-
nificant positive impact on the models’ performance, achieving above 80% on the Rand
index, while semantic features helped, but by a lower factor. Further, I tested the impact
of using exact header matching (§4.4.1) by relaxing that rule. Under that condition, my
models only lost 3% performance on average between all the corpora which shows that
my model can be effective even when a corpus contains no section header information at
all.

My approach also significantly outperformed all baselines even when only using lexi-
cal features. Careful inspection of the baseline results revealed that sections were grouped
based on topics—an expected result. For example, LDA-K-means created a cluster for
ADHD in the psychiatric evaluations corpus and thus grouped sections regardless of type
into that cluster. This confirms that topical models and classical document clustering

techniques are inefficient in discriminating “types” of text rather than “topics”.

# Section e Present P R F4
CLINICAL INFORMATION
1 CLINICAL HISTORY 100 0.96 0.92 0.94
EXAM DETAILS
2 EXAM 100 0.92 0.92 0.92
3 COMPARISON 36 0.84 0.76 0.80
4 CONTRAST 14 0.71 0.65 0.68
5 PROCEDURE 100 0.91 0.30 0.90
FINDINGS
6 FINDINGS 100 0.39 0.83 0.86
IMPRESSION
7 IMPRESSION 100 0.90 0.84 0.87
8 ATTENDING STATEMENT 0 - - -

Average 0.88 0.83 0.85

Table 4.8: Section ontology and merging results for Corpus 2: Radiology Reports.
Columns are organized as in Table 4.5.
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# Section % Present P R Fq

GENERAL PATIENT INFO
1 ADMIT 100 095 0.9 0.93
2 DISCHARGE 100 095 0.9 0.93
3 SERVICE 100 091 0.9 0.91
FROVIDER INFO
4 ATTENDING 82 0a2 0.82 082
5 ADMITTING 100 073 0.77 0.76
i DISCHARGING 100 080 0.74 077
COND. BEFORE ADMISSION
7 ADMISSION DIAGNOSES 100 090 0.82 .86
8 HISTORY 76 090 0.81 .85
9 MEDICATIONS 100 &3 0.81 082
10 REASON FOR ADMISSION 100 080 0.78 079
COND. AT DISCHARGE
11 CONDITION 100 078 0.76 077
12 DISPOSITION M 63 0.71 .68
13 DISCHARGE DIAGNOSES 8 085 0.83 0.84
14 OTHER. DIAGNOSES 0 - - -
15 PHYSICAL EXAM ON DISCH. 40 &4 0.84 0.84
MEDICAL HISTORY
16 ALLERGIES 100 085 0.79 082
17 FAMILY HISTORY 43 0a2 0.80 081
18 GYNECOLOGICAL HISTORY 0 - - -
19 PAST MEDICAL HISTORY 100 081 0.83 082
20 PAST SURGICAL HISTORY 100 088 0.84 .86
A SOCIAL HISTORY 7 077 0.75 0.76
HOSFITAL COURSE
2 CONSULTATION & e 0.64 064
23 HOSPITAL COURSE 835 089 0.85 087
24 PHYSICAL 28 079 0.77 0.78
25 PROCEDURES 63 &4 0.82 083
26 STUDIES 0 - - -
DISCHARGE INSTRUCTIONS
x FOLLOW UP 0 - - -
28 DIAGNOSTIC STUDIES REC'D 0 - - -
9 DISCHARGE INSTRUCTIONS 1040 092 0.92 0.92
0 DISCHARGE MEDICATIONS 100 091 0.93 0.91
Average 083 081 0.82

Table 4.9: Section ontology for the discharge summary corpus and merging results for
Corpus 3: Discharge Summaries. Columns are organized as in Table 4.2.

I also evaluated the models’ performance on each section type individually using pre-
cision, recall, and F; (Tables 4.5-4.5). Compared against ground truth, my models per-

formed significantly better for sections with highly distinctive content (compared with
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# Section % Present P R Fi

1 TECHNICAL FIELD 100 0.87 0.83 0.85
2 BACKGROUND ART 100 0.93 0.80 0.91
3 SUMM. OF THE INVENTION 100 0.94 0.92 0.93
4 DESC. OF DRAWINGS 100 0.96 0.04 0.95
5 PREF. EMBODIMENTS 100 0.96 0.96 0.96
6 INDUST. APPLICABILITY 41 0.85 0.72 0.78
7 EXAMPLES 16 0.80 0.71 0.75

Average 0.90 0.85 0.88

Table 4.10: Section ontology and merging results for Corpus 4: U.S. Patent Documents.
Columns are organized as in Table 4.2.

other sections): e.g., DIAGNOSIS in psychiatric evaluations, DISCHARGE INSTRUC-
TIONS in discharge summaries, EXAM in radiology reports, and DESCRIPTION OF
DRAWINGS in patent documents. Similarly, my models performed better in beginning
and ending sections in general (e.g., TREATMENT PLAN in psychiatric reports, and DIS-
CHARGE MEDICATIONS in discharge summaries). [ suspect that this is because those
sections typically display minimal variability in position. On average the precision was
higher than recall reflecting my explicit choice to bias toward precision (c.f., §4.4.2).

I computed the the confusion matrix counting the correct (T'FP), incorrect (F'P), and
missing (F'N) forward transitions for each section type in comparison with the ground
truth annotation, and then used these to compute the precision (P), recall (K), and F}
scores. Average P, R and F) were then obtained by weighing the scores by the number
of sections for each section type (Table 4.12). The model achieved high performance for
all four corpora, while again performing best on the patent corpus and achieving a (.95
weighted Fj score. This can be partially attributed to the fact that patent documents have
a more uniform section structure compared to the other document classes (c.f. §4.2.6).

Overall, my approach performed best on patents, followed by the psychiatric and
radiology corpora, and worst on discharge summaries. A further analysis of the results

and data led us to characterize my approach in four ways as the resulting models favor
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Psychiatric Dischcharge Radiology Patent Scientific

Algorithm Reports. Summaries Reports. Documents Articles.
NMF 0.40 0.39 0.43 0.42 0.35
tf-idf +K-means 0.47 0.40 0.52 0.49 0.39
LDA+K-means 0.50 0.41 0.54 .51 0.40
Word2Vec+K-means 0.53 0.48 0.52 0.59 0.44

My Approach

Lexical Only 0.74 0.72 077 .81 075
Semantic+Lexical 0.80 0.75 0.78 0.83 0.80
Positional+Lexical 0.84 0.80 0.81 (.85 0.81
All_Features_No Header 0.87 0.83 0.85 0.87 0.82
Section Merging ALL 0.89 0.85 0.87 0.93 0.84

Table 4.11: Rand results for section type discovery of the baseline algorithms and my
approach. My approach’s results are also shown for different combinations of features

document classes with (1) higher variance in section content distinctiveness, (2) lower
average section-to-document ratio, (3) higher average word-to-section ratio, and (4) more

uniform ordering

4.7 Related Work

To the best of my knowledge there have not been any prior attempts to automatically dis-
cover section types. Bayesian model merging [Stolcke and Omohundro, 1993] has been
adapted for various tasks including induction of probabilistic programming languages
[Hwang et al., 2011], induction of stochastic grammars for page classification [Frasconi
et al., 2001], lexical categorization and word grouping [Brent and Cartwright, 1996], and
inference of story grammars [Finlayson, 2016]. Bayesian model merging has also been
extended for clustering sequence data [Li and Biswas, 1999]. There, model merging is
used to search for the HMM topology that best represents sequence data; clustering is
done for an entire sequence, rather than parts of a sequence as in my approach.

Several studies have demonstrated approaches for the identification and segmentation

of documents such as clinical notes and scientific articles. Most approaches have focused
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Corpus P R Fq

Psychiatric Evaluations 0.87 092 0.89
Radiology Reports 0.87 091 0.89
Discharge Summaries 0.83 0.88 0.85
US Patents 0.94 096 0.95

Scientific Articles 0.82 0.86 0.84

Table 4.12: Section Ordering results for section type discovery.

on the identification of section headers rather than content. Denny et al. [2009b] devel-
oped the SECTAG algorithm which uses terminology-based rules, and naive Bayes scor-
ing methods to identify clinical note section headers. Using machine learning methods,
Apostolovaet al. [2009] and Tepper et al. [2012] demonstrated supervised approaches for
detecting section headers and boundaries but showed low adaptability when faced with
various clinical note documents [Ganesan and Subotin, 2014]. More recently, Li et al.
[2010] and Banisakher et al. [2018a] demonstrated HMM-based approaches to leaming
the section structure and ordering in clinical note documents.

Finally, the output model in my approach contains a distinct list of section types (i.e.,
an ontology). In ontology learmning and extraction however, there has been no efforts to
learn documents’ section structure. Rather most approaches focused on learning semantic
concepts and relations [Dou et al., 2015], some of which used the document structure as

input instead [Rimale et al., 2016, Diallo and Lupu, 2017].

4.8 Limitations and Future Work

My approach finds a general model of section types and their orders, given corpus of
documents from the same class. The evaluation suggest four limitations of my current ap-
proach which point toward next steps. First, although I tested on four corpora, an evalua-

tion over a more diverse set of larger corpora would help better characterize the approach.
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Second, although my approach requires no training, the prior still requires knowledge that
the document class is governed by some at least rough writing guidelines. I hypothesize,
however, that a normal distribution with default parameters can be assumed, regardless of
the document class, without a significant performance loss. Third, my approach does not
use discourse features which likely would be beneficial in certain cases. Discourse fea-
tures would be a natural extension of the positional and length features that I use already.

Finally, my approach assumed knowledge of the section boundaries, which is not
guaranteed in practice. A fully general approach would require a companion system able
to segment the sections. I did not investigate this as numerous approaches have success-
fully tackled segmentation for both general and specific classes of documents. Modifying
my approach to operate on the sentence level would conceivably be possible, which po-

tentially could transform the approach into a complete section structure extraction system.
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CHAPTER 5
ONTOLOGICAL SEMANTIC SEARCH

5.1 Survey of Academic Search Approaches

Academic search is the process of using specialized search engines or bibliographic
databases to find academic articles, often involving highly specific academic concepts.
It is more specialized than general web or database search, and is a critical first step in
any research project. Academic search has become increasing challenging in the past few
decades as the academic literature has grown exponentially, with a proliferation of new
venues and subfields which may contain relevant material and yet are unknown to even
well-read researchers or scholars. This review presents state-of-the-art approaches to aca-
demic search, specifically focusing on semantic academic search. Semantic search con-
trasts with traditional keyword-based search by attempting to analyze conceptual meaning
behind user queries and match them to concepts in target documents. Evidence suggests
that this highly informed search has significantly better performance for academic search,

and represents one of the most promising future directions.

5.1.1 Introduction

Academic search is the process in which an individual uses specialized search engines or
bibliographic databases to query and search through a database of academic articles for
relevant scientific literature. Academic search is the first step in any research project. Be it
anovice or an experienced researcher, the major concerns accompanying academic search
are: first, the efficiency of research methodologies; second, the comprehensiveness of re-
search materials available: third, the volume of research undertaken; and fourth, the time

needed to perform the desired research using digital media [Redfern, 2011]. Academic
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search engines aim to address these four major concerns through various methods involv-
ing content inclusion and exclusion or content selection as well as search and retrieval
approaches and user interface design.

Numerous studies have surveyed and evaluated general search engines with studies
concerning keyword-based and semantic search approaches [Mangold, 2007, Yu et al.,
2010, Wilson et al., 2010, Dou et al., 2015, Laddha et al., 2015, Klusch et al., 2016,
Zhou et al., 2016]. However, relatively much less research has been conducted on aca-
demic search engines and the impact of different approaches on systems’ retrieval output
[Amolochitis, 2014, Rodrigues and Prates, 2016, Khabsa et al., 2016]. In this section, I
discuss state-of-the-art in the field of academic search. I present the approaches, tech-
nologies, and tools developed over the last decade for searching the academic literature
for both open and closed domains. Throughout my discussion, I group these technologies
into two main approaches, namely, keyword-based search and semantic search while also

discussing other novel approaches.

5.1.2 History

Search is a core problem in the theory of computation and computability. Numerous
algorithms were developed over the past half century that paved the path to current so-
phisticated search systems. With the growth of digitized data, search problems became
even more important and pressing. Similarly, with the growth of knowledge and pub-
lished science in the form of scientific articles, academic search is evermore important
[Amolochitis, 2014].

In 1945, the closest idea of an Internet was introduced by Bush [1945] where he pro-
posed a future where individuals could store their books, articles, and communications

as well as link them and allow them to be searched and retrieved. Garfield introduced
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the idea of citation indices for scientific articles in 1955 |Garfield, 1955] and later fol-
lowed that with the introduction of the Science Citation Index (SCI) [Garfield, 1964].
Decades later, the Institute for Science Information introduced the Web of Knowledge, a
subscription-based scientific citation indexing service which is currently maintained by
Clarivate Analytics (previously known as Thomson Reuters) [Analytics, 2016].

Web of Science (WoS) (then Web of Knowledge) was launched in 2002 as an aca-
demic search engine backed by a database that included high quality journals, patents,
and proceedings. Its content included published work in the sciences, social sciences,
arts, and humanities dating back to 1945. This was followed by the introduction of several
relevant tools for cross search, cited reference search, text linking, and automatic citation
engines [cla, 2018]. Google Scholar followed in 2004 as another academic search engine
allowing users to search through a specialized database of scientific journals. After GS,
numerous academic search engines were developed and made available such as Windows
Live Academic Search (currently known as Microsoft Academic) [Harzing, 2016], Else-
vier's Scopus [sco], and CiteSeer™ [Li et al., 2006]. Among many others, these academic
search engines make up the standard method for academic search today utilizing different
search, indexing, and ranking approaches and algorithms most of which I will discuss in
this section.

Historically, two approaches have been proposed to conduct document and text search
given a query: keyword-based search, and semantic search. Fundamentally, given a
search query (that is, a text span an individual uses to find relevant or desired documents),
keyword-based search seeks to retrieve what the individual “said” (i.e. word spans), while
semantic search seeks to retrieve what the individual actually “wants” (i.e. concepts be-
hind word spans). Following, I discuss these two approaches and their respective uses in

academic search.
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5.1.3 Keyword-based Search

Keyword-based search is the de facto approach for most text-based search engines [Lad-
dha et al., 2015]. It relies on lexical forms (that is, words and collections of words) to
determine whether a document is relevant to the search query or not. A core—classical—
method for implementing this approach is the Term Frequency-Inverse Document Fre-
quency (TF-IDF) Sparck Jones [1972], Jones [1973]. TF-IDF aims to find how important
a word is in a collection of documents (i.e. a corpus) using numerical statistics. Keyword-
based search engines typically use TF-IDF to index documents in their databases linking
each document to its respective representative words. These search engines then use the
terms in a user’s query to search through the index and retrieve the documents with the
highest TF-IDF weights corresponding to those terms [Tiimer et al., 2009, Laddha et al.,
2015].

Most search engines nowadays however, use more sophisticated keyword-based ap-
proaches for document indexing, retrieval, and ranking. Google Scholar,PubMed, Science
Direct, and earlier versions of Microsoft Academic are prime examples of keyword-based
academic search engines and searchable bibliographic databases. Although popular for
scientific research and literature search, these examples have been shown to be insuffi-
cient for retrieving what users actually look for [Falagas et al., 2008, Boeker et al., 2013,
Giustini and Boulos, 2013, Mangold, 2007]. This is relatable, as many of us have to learn
the “art of search™ in order to achieve efficient and accurate search. Researchers have dis-
cussed and consistently complain about these search engines in their writings, meetings,
and over online discussion forms among others [Amolochitis, 2014, Laddha et al., 2015,
Schoormann et al., 2018).

Keyword-based search systems have been improved recently by including several Nat-
ural Language Processing (NLP) tasks in preprocessing and search steps [Laddha et al.,

2015]. Such tasks include word repetition, multiword, and named entity recognition. In
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a sense, these search engines are no longer pure keyword-based systems. Although early
approaches were successful and sufficient at the time, this approach diversion is due to the
recognition that keyword-based search is inefficient and ineffective in today s vast knowl-
edge base [Tiimer et al., 2009]. Keyword-based search performs well for small databases
and niche research topics, however with the growth of published research these databases
are becoming larger than ever with Google Scholar estimated to contain over 160 mil-
lion documents as an example. Additionally, keyword-based search can be considered
advantageous due to its simple and computationally inexpensive nature.
Here, I highlight some of the well-known deficiencies typically inherited with keyword-

based search [Zou et al., 2008, De Virgilio et al., 2012]:

¢ retrieval of an overwhelming number of results,
¢ rankings that do not precisely reflect true relevance,

¢ the omission of relevant results because they do not contain the idiosyncratic key-

words of the query

5.1.4 Semantic Search

Semantics represent the underlying meaning behind words—that is, the true conceptual
meaning [Cruse, 2004]. In linguistics, semantics consists mainly of two areas: logical
semantics and lexical semantics. The former is concerned with the words presupposition,
causality, sense, and reference, while the latter is concerned with the words’ senses and
their interrelations [Cruse and Cruse, 1986, Geeraerts, 2002, Mangold, 2007]. In aca-
demic search, semantic search uses concepts in the query and documents’ text to drive
document retrieval, indexing, and ranking. Semantic search often leverages domain-
specific knowledge, typically encoded in ontologies, to help rank the relevance of doc-

uments relative to a search query [Mangold, 2007].
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Semantic search is difficult, however, because the required process entails significant
knowledge engineering as well as sophisticated natural language processing (NLP). De-
spite these problems, search engines today do boast high performance compared to prior
decades precisely due to the inclusion of minor semantic knowledge in their search algo-
rithms; Latent Semantic Indexing (LSI) [Deerwester et al., 1989], for example, has been
used in various academic search engines. LSI uses synonyms and relationships between
page headers, document titles, and content to assist ranking [Deerwester et al., 1990].
Nevertheless, we are still far from the full realization of true semantic search which uses
deep semantic techniques fully integrated into back-end algorithms. For these reasons se-
mantic search research is experiencing a rise in interest among various groups [Wu et al.,
2015b].

Semantic search was proposed as a possible search solution over four decades ago,
while academic semantic search was sought as a solution in the early 2000s after the rise
of keyword academic search engines. Additionally, the introduction of the ideas of the
Semantic Web which was proposed by Berners-Lee et al. [2001] and the Web Ontology
Language (OWL) [Antoniou and Van Harmelen, 2004, McGuinness et al., 2004] pushed
semantic academic search further by allowing ontologies (which represent the knowledge
base for academic search systems) to be created and leveraged in a highly organized
structure [blo, 2007]. Academic search systems have come a long way from the initial
ideas; Currently, systems like Semantic Scholar, Microsoft Academic, Textpresso, and
even Google Scholar integrate semantic search techniques in their backend algorithms in
various degrees [Kearl et al., 2017].

Although advantageous to keyword-based search, semantic search has some disadvan-
tages and limitations that must be taken into account when considering building systems
that rely on such algorithms [De Virgilio et al., 2012]. As discussed earlier, the most sig-

nificant limitation to semantic search is its theoretical complexity and difficulty. Another
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limitation, although can be overcome with the advancement of other sectors in storage
and communication technologies, is the time and space complexity semantic search en-
tails especially when dealing with a large knowledge base. Finally, true semantic search
may sometimes lead to results that are too specific (achieving its goal of favoring preci-
sion over recall)—users could be starved from being exposed to results that they did not

intend to look for but that may be of aid to their overall search [Latard et al., 2017].

5.1.5 Academic Search Approaches

Academic search approaches, as discussed earlier, are mainly split into two domains, (1)
keyword-based search and (2) semantic search. Due to its advantages centered around
simplicity and effectivity when dealing with small datasets, keyword-based search was
(and still is) the first choice for most search engines. Specifically, in the past decade,
academic search was heavily dominated by this approach. Following, I first briefly dis-
cuss Google Scholar and its backbone algorithms as they represent the general approach
to keyword-based search. I follow by discussing semantic search, document ranking ap-
proaches for document retrieval, as well as other approaches.

In 2004, Google Scholar launched, a web-based search engine focusing on the re-
trieval of academic articles. This search engine was well known for eliminating reliance
on sorting by date or citation and instead retrieved articles based on relevance. For Google
Scholar and many other search engines, relevance was—and, in large, still is—being deter-
mined by exact keyword matching, while heavily relying on citation counts as a ranking
method [Tiimer et al., 2009, Malve and Chawan, 2015]. This ranking approach was cho-
sen to make for a quicker search for the most significant papers as opposed to the tra-
ditional bibliographic databases at the time (i.e. PubMed, Web of Science, and Scopus)

[Martin-Martin et al., 2016]. Two years later, Microsoft released its own academic search
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engine as a direct competitor to Google Scholar. Windows Live Academic Search was
launched in 2006 and was later renamed twice in 2008 and late 2009 to Live Search Aca-
demic [Jacso, 2008] and Microsoft Academic Search, respectively Martin-Martin et al.
[2016]. Microsoft Academic Search enjoyed a steady growth since its launch, introduc-
ing helpful visualization tools [Orduifia-Malea et al., 2014]. Nonetheless, Google Scholar
remained to be the most favored tool due to its wide literature coverage, its focus on the
academic citations and metrics, and its clean bibliographic knowledge base which linked
and removed duplicated records.

Although Google Scholar has become an essential tool for researchers in academia
and industry, it has its limitations. It makes use of the PageRank algorithm [Page et al.,
1999a], adapted from Google’s web search engine, to measure the relevance of a partic-
ular paper using exact-keyword matching and heavily relying on the documents’ citation
counts. When it comes to web search, the PageRank algorithm works on a graph created
by treating all sites in the World Wide Web as nodes and their hyperlinks as edges. It
indicates the importance of a web page by favoring older pages since new pages typically
do not contain as many links [Al-Hattab, 2016]. PageRank works best when looking for
standard papers in a certain field. However, it is not the best choice when trying to explore
novel ideas and what some researchers might call “hidden gems” [Langville and Meyer,
2011].

Other than citation counts, Google Scholar also relies heavily on terms found in the
document’s title. Its methods for retrieval and ranking of relevant papers has also been
shown to suffer from cases of academic search engine spam. By learning the approach
for Google Scholar to rank the papers, users are able to exploit the algorithm to obtain
a higher rankings for specific papers in relation to certain specified search queries [Beel

and Gipp, 2010].
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Semantic Search Approaches

Semantic search systems were introduced following the standards established by the
World Wide Web Consortium (W3C) for the Semantic Web. In the Semantic Web, re-
sources that have some type of relationships between each other need to have an explicit
set of connections for effective navigation and discovery of new information. The goal
for the creation of semantic web was to: (1) provide information that is well-defined and
structured, (2) provide data that is readily interpretable by machines, and (3) facilitate the
exchange and reuse of data. With the ever-increasing number of papers published each
day, there is a need for a more effective, efficient, and specific search that focuses on the
retrieval of the most relevant articles (that is, a focus on precision over recall). Following
I highlight the various components of an academic search engine and their integration in

semantic search approaches.

Document and Query Pre-processing

Pre-processing is a general and essential step in any data mining task which serves to
organize and structure raw data or free-text. Document and query pre-processing involves
common NLP tasks such as tokenization, sentence segmentation, and stop-word removal
(i.e. removing language-specific common words such as “the”, "that”, “a”). This step
aims at preparing the free-text for higher syntactic and semantic NLP tasks:

Word normalization involves transforming words into their most basic form (i.e. roots
or lemmas). In natural text, words are found in their inflectional forms (e.g. studying,
systems, subjects). This presents a problem to search algorithms as each word can be
inflected in several ways while its core meaning would be unchanged. Thus searching
for inflected words would be redundant and ineffective. Stemming and lemmatization are

two NLP techniques used for word normalization. Both achieve similar results; in that,
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they allow systems to identify all words that share the same base or root. For example,
when searching “study”, all other forms must be matched including “studies™ and “study-
ing”. The main difference between both techniques is that stemming is a crude heuristic
proveess that reduces inflection by chopping off the ends of words, while lemmatiztion is
an accurate inflection reduction process that makes use of vocabularies and morphologi-
cal analysis of words. This step allows search engines to properly search documents for
words found in a search queries.

Fart-of-speech (POS) tagging is the process of assigning words to defined sets of
grammatical categories or tags (e.g. nouns, pronouns, vervs, adjectives, adverbs). This
process involves identifying word definitions as well as word context (i.e. surrounding
words, sentences, or paragraphs). Several automatic taggers were proposed and are used
by search engines. For example, Texpresso makes use of the brill tagger to attach syntactic
categories to each tokenized word [Miiller et al., 2004]. Brill tagger is a well-known and
publicly available simple rule-based POS tagger which automatically acquires its rules
and tags [Brill, 1992]. Used transformation-based learning, with rule-templates referring
to neighboring words, POS tags, and chunk tags (up to a distance of 3 for words or POS
tags, and 2 for chunk tags). Additionally, POS tagging is also considered a preparatory
step for several semantic NLP tasks such as Named Entity Recogition and Word Sense
Disabiguation. GeneView has also demonstrated the use of POS tagger as influential in
determining the relationship between key concepts [Thomas et al., 2013].

Another syntactic pre-processing step is Parsing, which entails analyzing strings of
words (i.e. sentences) for their constituents following a formal grammar and resulting in
a parse tree. This step is important for analyzing referential phrases, sentences, and text
chuncks. Several search engines including Textpresso and SemanticScholar make use of

this technique in order to analyze both, search queries and documents.
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Finally, recognizing the document structure for scientific articles is an important pre-
processing task. A growing focus on identifying the physical and logical document struc-
ture of scientific articles is present among academic search engines. For example, the
detection of section headings and abbreviation to long-form mappings allows academic
search engines to better identify and search specific parts of the documents such as the
titles, headings, or abstracts in isolation of the rest of the test. This step can also aid in the

visualization of documents (e.g. retrieving abstracts or summaries) [Thomas et al., 2013].

Entity Recognition

Named Entity Recognition (NER) is a semantic task that concerns the identification and
mapping of words to named entity categories that correspond to real-world objects such
as persons, organizations, locations, and products. Semantic search engines such as GoP-
ubMed [Doms and Schroeder, 2005] and GoWeb [Dietze and Schroeder, 2009], for exam-
ple, utilize entity recognition techniques that can identify protein and gene names. These
systems use a simple approach which implements the named entity recognition process
by matching the term against a pre-defined synonym list [Hakenberg et al., 2007]. Some
systems demonstrate the fusion of a large variety of named-entity recognition tools which
can automatically annotate different entity classes in academic literature [Thomas et al.,
2012]. In the biomedical domain, various tools are used to annotate genes, species, chem-
icals, histone modifications, protein-protein interactions (PPIs) and other entities. These
tools use a range of methods spanning from sophisticated machine learning approaches
such as conditional random fields (CRFs) and other deep learning methods to to simple
sting and regular expression matching.

Word Sense Disambiguation (WSD) [Agirre, 2006] is a challenging task often used
for NER as well as other higher semantic tasks. WSD involves mapping words to their

true senses (i.e. meaning). Methods implementing WSD rely on extracting the con-
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textual meaning of words using surrounding word groups, spans of sentences, and para-
graphs[Navigli, 2009]. BabelNet is a multilingual semantic network [Navigli and Ponzetto,
2012], developed to perform both monolingual and cross-lingual WSD and automatically
map encyclopedic entries to a computational lexicon. Because of its extensive function-
ality, it has been proposed as a good knowledge database for semantic search engines for
scientific literature as well as general search engines [Latard et al., 2017].

Additionally, it is important to recognize domain-specific entities especially when
developing domain-specific systems. This task is typically referred to as terminology ex-
traction|Pazienza et al., 2005]. The process is a subtask of information extraction and
involves extracting terms specific to a given corpus often by leveraging POS and WSD
tasks as a precursory step [Alrehamy and Walker, 2017]. The first step in terminology
extraction is collecting a vocabulary of domain-relevant terms that is representative of
the domain’s concepts (e.g. a list of drug names). Because of their low ambiguity and
high specificity, these terms are especially useful in conceptualizing a knowledge do-
main or a terminology base (e.g. an ontology). Several approaches have been proposed
[Pazienza et al., 2005], many of which relying on pre-built ontologies [Park et al., 2002,
Lossio-Ventura et al., 2016a, Spasic et al., 2015], while others aim at building the on-
tologies themselves [Navigli and Velardi, 2004, Wong et al., 2007, Lossio-Ventura et al.,
2016b]. Semantic academic search engines, especially domain-specific engines, such as
GeneView, Semantic Scholar, and SEMEDICO have used terminology extraction to tailor
their algorithms to be more specific in document retrieval [Mangold, 2007, Thomas et al.,
2012].

Multiword expressions are prevalent in text (e.g. “search engine”, “academic search”,
“Word Sense Disambiguation™). Multiword recognition is essential for terminology ex-

traction [Alrehamy and Walker, 2017] and WSD tasks [Finlayson and Kulkarni, 2011].

Additionally, recognizing such expressions is paramount to search engines due to the
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prevalence of multiwords in both, search queries and scientific articles [Karttunen et al.,
1996, Jacquemin et al., 1997]. Thus, almost all search engines (Google Scholar, Mi-
crosoft Academic, Semantic Scholar, Textpresso, among otters) make use of some ap-
proach to detect connected word spans and multiword expressions. Historically, linguistic
approaches had dominated the field of multi-word recognition (as is the case with many
other NLP tasks), however, more recent approaches (i.e. early 2000s to present day) have
employed statistical as well as linguistic knowledge [Heid, 1998], building models us-
ing supervised and semi-supervised techniques [Frantzi et al., 1998, 2000, Kulkarni and
Finlayson, 2011, Oliver and Vazquez, 2015].

Relation Extraction

Once the key entities are identified from the text, finding the relationship between each en-
tity is essential when searching for underlying meanings—that is, semantics. Typically,
this step involves identifying keywords such as “located_in”, “part of”, “is a”, which
are recognized phrases in the English language that serve to unite two or more entities.
Other abstract relationships are also possible such as “ecologically_related_to™ and “pro-
duced_by” which are commonly found in subfields of life sciences [Faessler and Hahn,
2017]. The use of ontologies in identifying the relationships between entities has shown
promising results in many applications of relation extraction. Ontologies are essential in
the portrayal of a hierarchical relationships between different entities. Especially promi-
nent in the biomedical field, ontologies have proven to be essential when identifying key
relationships such as protein-protein interactions and linking protein symptoms and ge-
nomic entities to diseases [Miiller et al., 2004, Delfs et al., 2004, Dietze and Schroeder,
2009, Faessler and Hahn, 2017, Hu et al., 2017]. Some methodologies have made use

of machine learning techniques to identify the relations and properties [Thomas et al.,
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2013]. Machine leamning methods such as Support Vector Machines (§VMs) can been
used to classify pairs of entities found in sentences based on large feature vectors that

include Bag of Words (BoWs) of the text surrounding the entities.

Topic Discovery

In NLP and machine learning, topic modeling concerns the development of statistical
models for the discovery of abstract topics present in a collection of documents or a cor-
pus. This process is frequently used in text-mining for the discovery of hidden semantic
structures in unstructured text [Steyvers and Griffiths, 2007]. This is particularly useful
for multidisciplinary search engines as documents are classified into buckets of topics
which aids in the retrieval and indexing of documents [Brophy and Bawden, 2005]. For
example given a query (e.g. “Natural Language Processing”), a user does not typically
mean to find papers containing those three words, but rather is looking to find papers in
the field of NLP—that is, the topic [Tang et al., 2008a]. Latent Semantic Indexing or
Analysis (LSI) and Latent Dirichlet Allocation (LDA) are two prominent algorithms that
are used for the discovery and clustering of documents based on topics. While both LSI
and LDA are wildly used by academic search engines, they are typically augmented or
extended to fit the academic search domain. For example, Tang et al. [2008a] proposed a
unified probalistic topic model, namely, Author-Conference-Topic (ACT) model, specific
for academic search engines and frameworks. The ACT model simultaneously models
papers, authors, and publication venues. Developing topic modeling methods for the aca-
demic search domain typically concerns the retrieval accuracy, specificity, and precision

of documents.
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Indexing

While some search engines such as PubMed and GeneView index their own database,
most search engines with a multi-disciplinary focus, including Google Scholar, Microsoft
Academic, and Semantic Scholar, provide the capability of indexing multiple databases
on the web. Having a central site to search multiple sources from is useful as it reduces
the time spent searching for relevant documents. However, it can be a limitation in the
creation of semantic search systems as they typically rely on source and domain-specific
semantics and thus need a uniform representation of data. Some systems proposed the us-
age of a exhaustive mappings of keywords or concepts with semantic categories to index
an entire corpus [M"uller et al., 2004]. While others follow a more popular approach by
building on top of Apache Lucene and taking advantage of its inverted indexing. Lucene’s
indexing method retrieves sections within a document related to a keyword by first search-
ing an article’s index, as opposed to searching the words within each document. Lucene
provides an efficient searching methodology and is used by GeneView, for example, in
its text storage, query processor, and ranking engine modules. A more recent search tool
based on Lucene, known as Elasticsearch, has seen more popularity among some of the
latest proposed semantic search systems [Liu et al., 2015, Faessler and Hahn, 2017]. Ad-
ditionally, Elasticsearch’s TF-IDF scoring, is often treated as a basic document scoring

algorithm.

Query Expansion

Query expansion is a technique that reformulates the user’s original query, to improve the
retrieval performance. After analyzing the input query, the system generates alternative
queries on a lexical and semantic level. Query expansion provides the advantage of no
vocabulary mismatch problem, or expensive human-constructed knowledge bases. Two

ways, either updating the query keywords or their weights to enhance efficiency of in-
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formation retrieval. It is an indispensable for solving ambiguous queries [Vechtomova
and Wang, 2006]. A recently proposed Proximity Relevance Model (PRM) adapted the
relevance model by incorporating contextual proximity information. The closer a term is
to a query term, the better the QE term candidate; moreover, proximity is directly cap-
tured in terms of sentences rather than tokens [Ermakova et al., 2016]. An example of
Query Expansion is demonstrated by the search engine BioSearch, which leverages the
Semanticscience Integrated Ontology (S10) for the mediating ontology and use hierarchi-

cal relations between ontology classes to conduct query expansion [Hu et al., 2017].

Visualization and Organization of Results

In search engines following a keyword-search approach, the visualizations of results are
often pretty simple. An interface for academic search must make sure to display the
critical metadata of each document (e.g. title, authors, abstract) and provide the user with
the enough information for hefshe to be able to identify if the paper is relevant to what
they are searching. After searching for a keyword in GS, the interface displays the results
by giving focus to the title, author names, year of publication, citation counts, publisher
and a snippet of the paper’s abstract. Google Scholar will also highlight the keyword
the user searched within the paper’s title and the abstract snippet. The Google Scholar
interface is easy to navigate, providing a user-friendly functionality. However, because
of it’s simplicity, users often struggle to make more advanced searches. In graphical user
interfaces for semantic search systems, the aim is often to show more advanced visuals
but in a simple approach. Systems such as Textpresso, the focus is a side menu with links
to informative pages about the ontology, a document type definition, a user guide, and
example searches, as well as the two retrieval and customization interfaces. The result

list retrieved by a query can be customized in such a way that the user can choose how to
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display the information [Miiller et al., 2004]. GoPubMed follows a similar approach by
showing the Gene Ontology in the interface on the left-side of the page. The part of the
Gene Ontology (GO) relevant to the query is highlighted and on the right there are listed
the abstracts for a selected GO term. GoPubMed also uses color as visual cues where the

search terms are highlighted in orange and the GO terms in green [Thomas et al., 2013].

Document Ranking Approaches

Ranking algorithms for academic search engines usually fall into two categories (1) sort-
ing based on the paper’s prestige (i.e. citation count, publishing venue, impact factor)
and (2) sorting based on the paper’s level of relevance to the user’s query. Most search

engines, nowadays, use a combination of both approaches.

Ranking based on importance or prestige

There are many factors that can be used to measure the importance of a paper in a specific
research field. The most popular approach is a sorting that depends on the number of
times the paper has been cited by other academic works. Google Scholar is well-known
for measuring a paper’s importance by heavily relying on citation counts [Beel and Gipp,
2009]. The method is beneficial when looking for standard papers that have had a high
influence on a certain research field throughout the years. However, it makes it difficult
to find recently proposed works that advance a certain research field. Other factors that
could be considered as prestigious (e.g. the journal’s impact index) seems to not have any
influence on the paper rank in Google Scholar.

The PageRank algorithm, adopted by Google’s search engine, is a well-known method
to compute the ranking of every page in the web [Page et al., 1999b]. It is an algorithm that
works on a graph created by all world wide web pages as nodes and hyperlinks as edges.

It indicates the importance of a web page by favoring the older pages since a new page
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will not contain many links [ Al-Hattab, 2016]. The following is the simplified formula of
how the algorithm works. Assuming we have a series of web pages {w;, wa, wa, wy, ...},
the PageRank of a page is recursively defined, and depend on the number of incoming
links. PageRank algorithm depends on the relation between pages.

—d PR(was) PR(ws) PR(w,)
N TN Ty T Tws) T L) )

PR(w;) = -
where L is number of outbound links, d the damping factor, N is the total number of pages
on the web. It is strongly believed that Google Scholar adopted the PageRank algorithm
along with other undefined methodologies to aid on its article retrieval [Al-Hattab, 2016].

One major concern for PageRank algorithm is new papers will never be cited and
remain buried under the pile of older and highly-cited papers. Hasson et al. [Hasson
et al., 2014] addresses these issues by proposing Paper Time Ranking Algorithm (PTRA),
an approach that depends on the paper’s age, citation index, and publication venue. The
algorithm gives a different level of priority for each of these parameters, giving more

weight to the publication date such that new papers come out at the highest rank. The

weight of each paper is calculated using the following formula.
Paperweight = A+T +C

where A is either the age of the conference or publishing journal’s impact factors, T is
the age of the paper and C is the citation index. Depending on whether the paper is a
conference of journal paper, the algorithm may calculate A as either A = M = d; where
M is the journal impact factor, or A = () = dy, where (Q is the year of the conference and
d, is the coefficient. The value for date of publication T, is regarded as the most important
metric in the equation. It is calculated by T' = (C'urrentY ear — PublicationY ear) = d,
where d5 is the coefficient. And lastly, the citation index value C' is calculated by C' =
T # d3, where T is the value of citation index and ds is the coefficient. Although the

approach showed a significant improvement compared to other ranking algorithms, it’s
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performance was not as impressive compared to other similar methodologies [Brisebois
et al., 2017].

Reputation-Based Ranking [Ribas et al., 2015] The authors propose a random walk
model to identify the most reputable entities of a domain based on a conceptual framework
of reputation flows The focus on the paper is not ranking articles, but instead identifying
and ranking venues and research groups. Model research groups as reputation sources and
publication venues as reputation targets, with edges running from a source to a target and
back again to indicate the transference of reputation through one or more publications.
The paper interprets the relative reputation from entities such as author, research group
and publication venue. Each entity reflects a steady state probability, which can be further
propagated to other comparable entities depending on the matrix P! of size |T'| x |C|
representing the transitions from reputation targets to collateral entities. The P-score of

of an entity e is defined as

Yier PE e ifeeC
P — score(e) =

Te otherwise

PTC) The calculated P-score is then used to produce an overall reputation-oriented rank-

ing of the entities.

Ranking based on content relevance

These ranking methodologies are query-dependent, where the top-ranked papers must in-
clude concepts that are closely related to the user’s request. The most standard ranking
algorithm is based on a simple keyword-count. After keywords have been identified in the
user’s query, the system will look through the . For a long time, literature has acknowl-
edged the limitations and criticized the method of keyword-based indexing for academic
articles [Lee et al., 1997]. Nonetheless, it remains the preferred approach by most search

engines.
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Ranking based on concept TF-IDF (term frequency-inverse document frequency) is
a frequency-based approach and one of the most popular schemes for document term-

weighting [Breitinger et al., 2015].
tfidf(t,d, F) = tf(t,d) x idf (¢, D)

Term frequency is defined by

fea
max{ fp 4 : t' € d}

tf(t,d) = 0.5+ 0.5 x

Meanwhile, inverse document frequency is defined by

N

idf (t, D) = log H{d e D:ted}

where N is the number of documents in the corpus. After determining the term weights,
a ranking function serves to measure the similarity between the query and document vec-
tors. As shown by Lee et al.[Lee et al., 1997] cosine measure is a commonly known sim-
ilarity measure which calculates the angle between the document vectors and the query
vector that are represented in a V-dimensional Euclidean space, where V' is the vocabulary
size. The similarity between a document D); and a query (7 is defined as

Z?=1 Wo.j X Wi

Vv ] Vv ]
\/ D=1 Wy X Dl Wi

where wg ; is the weight of term j in the query, and is defined similar to w; ;. The denom-

Sim(Q, D;) =

inator in this equation, known as the normalization factor, discards the effect of document
lengths on document scores.

Explicit Semantic Ranking (ESR) [Xiong et al., 2017] is a proposed ranking technique
that leverages knowledge graph embedding to analyze query logs from Semantic Scholar
(S2). It is an approach proposed to improve S2’s current ranking system, at the time

built on top of ElasticSearch’s vector space model. It works by creating an estimation

131



of the ranking score for the query terms and bi-grams on the papers’ title, abstract, body
text, and citation context. Entity embeddings are used to obtain “soft-match™ feature of
each query, document pair. First, the paper builds knowledge graphs, that stores semantic
information. Given a query q, and a set of candidate documents D = {d,, ...,d,}, ESR
finds a ranking function f(g, d|G), that better ranks D using the explicit semantics stored
in the knowledge graph G. The explicit semantics include entities (£ = ey, ..., ejz|) and
edges (represented by predicates P and tails T'). ESR creates a representation for query
and documents through their bag-of-entities. ESR matches query and documents’ entity
representations using the knowledge graph embedding. Each element in the matrix is the
connection strength between a query entity e; and a document entity e;, calculated by

their embeddings’ cosine similarity. The ranking with semantic evidence is defined as

where f.2(q,d) is the score produced by S2, wy and W as the parameters to learn, and
f(g,d|G) is the final ranking score. B is the bin score produced by the bin-pooling (his-
togram), count the matches at different strengths. One of the limitations of ESR is its re-
quirement for training data to combine word-based and entity-based relevance scores and
to select parameter settings, addressed by Dual Embedding Space Model (DESM) [Mitra
et al., 2016]. The paper investigates neural word embeddings as a source of evidence in
document ranking. DESM trains a word2vec embedding model on an unlabeled query
corpus, retaining both the input and the output projections and identifying whether a doc-
ument is about a query term in addition to what is modeled by traditional term-frequency
based approaches. Part of the ranking process, the system maps the query words into the
input space and the document words into the output space, then estimates query-document
relevance score by aggregating the cosine similarities across all the query-document word

pairs.
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Other Approaches

Compared to the methodologies we discussed thus far, these approaches are more innova-
tive in nature. Ametminer (AMiner) is a novel online academic search and mining system,
with the goal to provide a systematic modeling approach and extract researchers’ profiles
automatically from the Web and integrates them with published papers, first performing
name disambiguation. Generative probabilistic model is devised to simultaneously model
the different entities while providing a topic-level expertise search [Tang et al., 2008b].
AMiner is devised as a unified topic modeling approach to modeling the different entities
(authors, papers, venues) simultaneously and providing a topic-level expertise search. It’s
focus fall into social influence analysis, influence visualization, collaboration recommen-
dation, relationship mining, similarity analysis, and community evolution [Tang, 2016].
Another approach is random walk model to infer the reputation of a target set of entities
with respect to suitable sources of reputation. Utilized for ranking a target set of entities

with respect to suitable sources of reputation [Ribas et al., 2015].

5.1.6 Conclusion

In this section, I introduced academic search, its history, segments, and approaches. The
advancement in technology and its various sectors brought about an exponential growth
in digitized data of all forms. Human knowledge is no exception. In fact, the “knowledge
doubling curve™ Fuller and Kuromiya [1981] once created by Buckminster Fuller as an
indicative to the average growth of human knowledge is no longer valid Schilling [2013].
By the end of World War II, human knowledge was doubling every 25 years, while more
recently it has been doubling every 13 months on average. According to IBM, the rise
in adoption of technologies within the Internet of Things (IOT) is predicted to double

human knowledge every 12 hours [Coles et al., 2006] indicating a shift from linear to
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exponential growth of knowledge. The academic search space and market have seen an
increase in demand followed-naturally—by an increase in offer due to the explosion of
published human knowledge and digitized data. This was especially the case over the
past decade with the initial spark in the early 2000s.

Since the launch of early solutions such as Web of Science (WoS) and Google Scholar
(GS), the area has been dominated with a simple yet insufficient approach—that is, keyword-
based search. This is not to state that this approach has been static. In fact, it has been
significantly improved and hybridized such that it is becoming inaccurate to compare
current practices to their predecessors. Semantic search has always been a desired ap-
proach for most academics and researchers working in the field. However on one hand,
its inherited difficulties and complexities, and on the other hand, keyword-based search’s
simplicity and effectiveness (when dealing with a small knowledgebase) has pushed it

further away from widespread adaptation and realization.

5.2 Ontology-Based Supervised Concept Learning for the Biogeo-
chemical Literature

Academic literature search is a vital step of every research project, especially in the face
of the increasingly rapid growth of scientific knowledge. Semantic academic literature
search is an approach to scientific article retrieval and ranking using concepts in an at-
tempt to address well-known deficiencies of keyword-based search. The difficulty of se-
mantic search, however, is that it requires significant knowledge engineering, often in the
form of conceptual ontologies tailored to a particular scientific domain. It also requires
non-trivial tuning, in the form of domain-specific term and concepts weights. In this

section | present an ontology-based supervised concept learning approach for the biogeo-
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chemical scientific literature. This study was part of an ongoing project (ENVOSCHOLAR)

seeking to build a domain-specific semantic search system.

5.2.1 Introduction

The first step of most scientific research projects is a review of the existing literature.
Academic literature search allows a researcher to understand what hypotheses have been
proposed, what methods or procedures have been tried or tested, and what results have
been achieved. In most cases, indexing and retrieval of relevant articles is done us-
ing keywords [Lewandowski, 2015]. Although simple and computationally inexpensive,
keyword-based search has serious limitations considering the complexity of human lan-
guage [Lewandowski, 2015, Martinez-Sanahuja and Sanchez, 2016]. Furthermore, as
scientific knowledge grows exponentially larger, these limitations become more serious
and serve to inhibit the ability of researchers to use existing tools to find relevant scientific
literature [Brophy and Bawden, 2005].

A solution to this problem that has often been proposed is semantic search, that is,
systems that can infer the meaning of a user’s query and therefore retrieve articles of
greater relevance [Leyba, 2016]. Ontologies are a key component of this approach, as
they provide a specific lists of terms and concepts as well as relationships between those
items [Huang et al., 2016]. The challenge, however, lies in mapping articles and their
constituent parts to the relevant parts of the ontologies [Dang et al., 2017].

Early work on ontology-based concept extraction used regular expressions or exact
keywords matching [Miiller et al., 2004, Allahyari et al., 2014]. However, this requires
encoding knowledge of all possible tokens that can map to specific ontology entities [Sri-
haree, 2015], a problematic task because of the ambiguity of language. Because of this,

keyword approaches often miss essential concepts during the recognition and extraction
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steps. More recent work tackles the problem using matches driven by supervised ma-
chine learning (ML), which can automatically learn and judge which ontology concept is
indicated by observed text.

The work presented here demonstrates the latter approach specifically for the biogeo-
chemical domain. This was part of a larger domain-specific semantic search engine for
the biogeochemical academic literature. In a prior report, my co-authors and I demon-
strated the efficacy and feasibility of using ontological concepts to rank articles based on
a search query [Eisenberg et al., 2017]. In this section, I demonstrate the development
of a supervised machine learning (ML) approach that automatically learms ontological
concepts, and labels sentences from biogeochemical articles with those concepts using
features extracted from the unstructured text. I discuss the features necessary to build
such systems and the process by which those features are extracted.

The remainder of this section is organized as follows: I first review related work
on ontology-based concept extraction (§5.2.2). Next, I describe my approach including
the task definition, the ontology used, as well as the dataset created (§5.2.4). I finally
present and discuss the experiments performed as well as the results obtained from those

experiments (§3.2.5).

5.2.2 Related Work

An ontology provides formal and explicit specifications of conceptualizations, usually
with a focus on a particular domain. Ontologies are one of the most recognized method-
ology of knowledge representation, providing definitions for a particular entities, relation-
ships between entities, and classification of an entity on a class hierarchy. Ontology-based
information extraction (OBIE) has been recently coined as a subfield of information ex-

traction. In OBIE, ontologies play a crucial role in providing knowledge representation.
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The process is a core building block for the implementation of semantic search for large
document repositories as well as the development of the Semantic Web [Dou et al., 20135,
Wimalasuriya and Dou, 2010].

Ontologies have been useful for semantic data mining and search tasks. Ontology-
based semantic data mining and search approaches and task include: association rule
mining, classification, clustering, information extraction, recommendation systems, and
link prediction for social networks [Dou et al., 2015]. Classification is a common task
in data mining as well as other fields which aims at finding a model (or function) to
describe and distinguish data classes or concepts [Jaiwei and Kamber, 2006]. Typical
use of classification in ontology-based semantic search is the annotation of classification
labels using entities and relations defined within the ontology. Setchi et al. [Setchi and
Tang, 2007] proposed a concept indexing algorithm that makes use of general-purpose
ontologies. Although their work uses a supervised approach, the ontology tagging process
was done automatically instead of manually. Therefore, the accuracy of the tagged terms
is only an approximate.

Some approaches to ontology-based classification of documents or topic modeling use
the similarity of semantic graphs. The HITS algorithm [Kleinberg et al., 1999] works over
semantic graphs to identify core entities. Using DBpedia-based ontologies, Allahyari et
al. [Allahyari et al., 2014] identified entities and their relations from test documents. By
contrast, for this work, I focus on indexing ontology concepts at the sentence level, other
approaches have indexed concepts at the word or the document level [Wimalasuriya and
Dou, 2010].

Most related to this work is Textpresso [Miiller et al., 2004], a search engine which
promises to enhance the retrieval of biological literature (as opposed to the biogeochem-
ical here) by using an ontology-based approach. In Textpresso, multiple ontologies play

essential roles in the retrieval of pertinent information from documents, resulting in sig-
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nificant acceleration of extraction of biological facts. The user can retrieve a set of doc-
uments by searching one or a combination of keywords. Ontologies make it possible
to create semantic queries, facilitating the search the corpus of text by meaning instead
of keyword-match. Textpresso achieves this by first identifying and matching the terms
against pre-defined regular expressions.

Additionally, the creation and use of ontologies have been especially relevant in the
biomedical domain where they were used for the identification of biological terms within
raw text—such as scholarly publications and medical records [iitnik et al., 2015, Gu-
rulingappa et al., 2012, Moens, 2006]. The first step in the extraction of such terms is
named entity recognition (NER), where the system can recognize and extract names of
genes, drugs, chemical compounds, diseases, and so on. After these terms have been
listed and formally defined via ontologies, the next step is defining the relationships be-
tween different entities (i.e., identify gene-gene or protein-protein interaction) [Moens,
2006].

5.2.3 Dataset

As discussed in chapter 2, In a prior study with my colleagues [Eisenberg et al., 2017]
we determined that the most useful ontology for our academic search engine project’s
purposes was the Environment Ontology (ENVO), a community-led, open ontology for
various life science disciplines [Buttigieg et al., 2013]. According to its creators, ENVO
is an attempt at establishing a standard annotation scheme for several co-dependent or
related disciplines, including, but not limited to, ecology, hydrology, environmental bi-
ology, and the geospatial sciences. ENVO contains concepts corresponding to a wide
range of natural environments and environmental conditions. It is encoded in the Open

Biomedical Ontologies (OBO) syntax, which is a subset of the Web Ontology Language
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(OWL). ENVO can be populated, managed, and maintained using the OBO-Edit ontology
development tool.

ENVO, like many ontologies, is hierarchical in design. Three of its top-level, most
developed branches are environmental system, environmental feature, and environmen-
tal material. 1It’s hierarchical structure allows for it to include not only entities, but
also higher-level relationships between various concepts, including many standard on-
tological relationships such as is—a, part-of, contained-in, connects, and
has—condition. ENVO also contains scientific and domain-specific relationships
suchasderives—from, input—of, cutput-of,has-habitat,and biomechanically-rel
Furthermore, the ontology boasts a well-connected graph of synonymy relationships, en-
coded using different granularities including broad, exact, and narrow.

ENVO has seen quite a bit of success in adoption and use. It has served as the foun-
dation for the creation and expansion of a number of other ontologies, as well as ap-
plied in several annotation projects such as the International Census of Marine Microbes
(ICOMM) and the International Nucleotide Sequence Database Collaboration (INSDC)
[Field et al., 2011]. Additionally, ENVO has been used in data retrieval and query-
based systems such as the Genomic Metadata for Infectious Agents Database (GEMINA)
[Schriml et al., 2010], while the National Institute for Allergy and Infectious Diseases
Bioinformatics Resource Centers (NIAID BRCs) employ ENVO in metadata formulation
and manipulation [NIH NAIDS].

To the best of our knowledge there is no corpus of scientific articles annotated with
ENVO concepts, so we created our own. For this study we collected a total of 14 articles
(62,015 total words) using three search queries that were created by two domain experts.
Our domain experts ran the queries through Google Scholar and examind from the several
hundred results returned, identifying the top four or five most relevant articles for each

query. Importantly, several of the articles were not ranked near the top of Google’s results,
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Unigue

Query Tille Citaflen Tokens Sentences Concepls =
Methy]l-Mercumy Mercury in the Aqguatic Environment ... . [Wirich et al, 2001] 5,081 162 26 nfa
CconEntrations in Sulfide Controls on Mercumy Speciation ... . [Benpit et al., 1999] 4,133 168 13 nfa
Everglades water and Sulfate Stimulation of Mercusy Methylation . .. [Gilmouret al., 1992] 3,642 160 18 nfa
sdiment Effect of Salinity on Mercury Activity . .. [Compean and Bartha, 1967] 3421 150 22 nfa
Anaerohic Microflor of Everglades Sediments ... [Drake ot al., 1996] 4,651 179 s et
Sulfate reduction Constants for mercumy binding .. . [Bemoit et al., 3001] 4,620 173 17 &2
occurting in Everglade s Mercury methylation in periphyton.. .. [Cleckneret al., 195949] 3,830 159 18 075
pore wakers and sdiments  Methy lmencury Concentrations ... . [Gilmouret al, 1998] 4,795 183 26 03]
Bacerial Methylmercury Degradation .. . [Marvin-DiPasquale and Onemiand, 1998] 3,696 199 I 44
Croundwater’s significance to changing . .. [Harvey and McCormick, 2009] 9,650 3o 73 &3
Sulfir reduction affecting ~ Variation in Soil Phospharus .. . [Chambers and Pederson, 2006] 3,032 103 k] o7l
South Flarids Everglades  Sulfur in the South Florida ecosystem ... . [Orem et al, 2011] 3485 149 k1) e
soils Sulfur in peat-forming systems . .. [Caszgrande et al, 1977] 3,998 165 s o7l
Effects of sulfae amendments . ... [[DHerterg etal, 2011] 4,463 160 42 &2
Mo 9,650 3o 73 075
Average 4,430 172 il el
Min 3,032 103 13 30
Standard Deviallon 1,604 43 15 o4

Table 5.1: Articles in the test set. Listed are the number of tokens in each article, the
number of sentences overall, the number of unique concepts, and the annotator agreement
expressed as Cohen’s k.

and were rather found many pages deep. We then manually annotated articles at the
sentence level using concepts from ENVO (chapter 2 and §5.2.3 discusses the annotation
study in detail). Table 5.1 lists the queries, the corresponding articles returned from the
search results, as well as article-specific statistics. The articles have an average of 4,430
tokens, 172 sentences, 192 unique ENVO concepts. Table 5.1 presents detailed statistics

on the test set.

Annotation Study

As discussed in chapter 2, the purpose of manually annotating concepts from the ontol-
ogy was twofold: first, to show that the ontological concepts appear in the target texts and,
second, to show that it is possible to automatically learn domain-specific concepts from
a relevant ontology. Because developing concept detectors is a non-trivial task, in prior
work we tested the utility of the ontology, as well as verified that it is feasible to auto-
matically rank articles using detected ontological concepts [Eisenberg et al., 2017]. The
current work expands that effort by creating a larger gold-standard corpus and demon-

strating that we can identify the concepts in the articles automatically.
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As discussed above, we collected a corpus of 14 articles from the biogeochemical
domain, aligned with three search queries. Our team of domain trained annotators then
annotated the queries and the articles for concepts from ENVO. For each article, annota-
tions were collected at the sentence level. The resulting micro-averaged inter-annotator
measure agreement over all annotator groups using Cohen’s x is 0.61 which is “substan-

tial” agreement [Artstein and Poesio, 2008].

5.2.4 Approach

The goal of the work presented here was to label the sentences of scientific articles—
drawn from the biogeochemical academic literature—with concepts derived from a domain-
specific ontology (specifically the Environment Ontology, or ENVO). I treated this as a
supervised classification problem where I train a classifier using sentences that have been
manually labeled (annotated) for their concepts; then, this classifier takes individual sen-
tences found in a new article as input, outputting ontology concepts.

In this section [ first describe the task in detail, next I discuss the classification training
process, starting with data preprocessing, followed by feature extraction, and ending with

classifier construction.

Task Definition

As noted above, the task was to index academic articles in the biogeochemical domain
with concepts derived from ENVO. That is, given a set of academic articles and a domain-
specific ontology, the solution is a supervised classification model that can assign ontol-
ogy concepts to the sentences found in the articles. As discussed above, we created a
dataset of articles which was manually labeled and indexed with concepts from ENVO.

Each sentence may have any number of concepts and therefore the labels are not mutually
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exclusive and my solution must admit a multi-label classification, including possibly no
label. identified a set of distinctive features to support this classification, and designed

feature extractors to compute these features over article text.

Data Preprocessing

In addition to annotating the data with ENVO concepts as described in the previous sec-
tion, I performed standard NLP preprocessing tasks to prepare the data for feature ex-
traction and supervised learning. First, I encoded document structure and formatting in-
formation such as section and paragraph headers, as well as sentence counts and relative
positions of sentences within sections. Next, I cleaned the text by removing in-text cita-
tions and stand-alone mathematical, chemical, and biological formulas. I then tagged each
token with its part-of-speech [Bird and Loper, 2004], lemmatized tokens using WordNet
[Fellbaum, 1998], filtered known stop words using PubMed’s list [PubMed Help, 2005],
and used the pywsd module to perform word-sense disambiguation [Tan, 2014] to tag

words with WordNet senses.

Data Balancing

The articles included 192 unique concepts across 3,434 occurrences. More than half of
these occurrences (2,049) represented only 10 concepts, while the most frequent 50 con-
cepts (26% of the total) occurred 3,091 times in total. Additionally, 61 concepts (32%)
appeared only once. When supervised ML is performed over such distributions, they
tend to overfit the classes with higher number of examples. Several solutions have been
proposed and used for the problem of imbalanced data such as sampling (undersampling
and oversampling) and weight assignment. These techniques are used to help supervised
ML classifiers learn more about a class that has a significantly smaller number of exam-

ples relative to others. In this case I opted to use the Synthetic Minority Over-sampling
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Technique (SMOTE) [Chawla et al., 2002]. SMOTE is a hybrid sampling technique that
oversamples the minority classes while undersampling the majority classes. I applied

resampling to the training set only, leaving the testing set with the original distribution.

Feature Extraction

Identifying a useful set of features is integral for an accurate machine learning model.
For this task [ extracted lexical, syntactic, and semantic features from the articles and
their sentences. For lexical features, I used the most frequent distinctive terms for each
article using term frequency-inverse document frequency (tf-idf) [Church and Gale, 1999].
I used the top 10% of the resulting lists. Additionally, I used global and local sentence
positions as features—i.e., the relative position of a sentence in both its section and article,
expressed as a real number between 0 and 1, inclusive. Further, I extracted named entities
from each sentence by examining parts-of-speech (looking for runs of tokens tagged NNP
or NNPS), and used these entities as features. As discussed earlier, recognizing named
entities is useful for many IR and NLP tasks. An example of this from my study is the
term Everglades which is found encoded in ENVO as a synonym and part definition for
peat swamp.

Finally, for semantic features, I mapped the words in each sentence to a semantic
embedding space. As an example of an embedding approach, word2vec [Mikolov et al.,
2013] is a popular and powerful method to represent high-dimensional word embeddings
which reduce the complexity and size of the feature set as opposed to a bag of words
(BoW) approach. However, word2vec does not consider words that have multiple senses,
mapping them to the same position in the vector space. To address this limitation, I used
sense2vec [Trask et al., 2015], where different senses of the same word are placed dif-
ferently in the embedding space. I used Sense2vec as implemented in the SpaCy python
module [Al, 2015], and followed the algorithm described in [Trask et al., 2015] by us-
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ing the part-of-speech tags and named entity labels assigned to the tokens. Additionally, I
merged named entities into single tokens (using hash symbols), so that they were assigned
a single vector.

In addition features extracted directly from the raw text, I also used other concepts
as features. First, | used concepts identified in the abstract of each article as features
for the body of the article. Second, I used the concepts present in a the immediately
preceding sentence as features for determining the next sentence’s concepts. This feature
engineering led to several interesting observations; first that concepts found in the abstract
of an article can improve concept labeling performance for the article body; and further,
that knowing which concepts came before a sentence (i.e., in sentences preceding the

sentence in question) also improves concept labeling performance.

Concept Learning

The first stage of classification is model training, followed by a stage of testing on sep-
arate (unseen) data. The original data was randomly split into two portions ten different
times (ten folds), 80% in the training set and 20% in testing set (11 and 3 articles, re-
spectively). I built and trained the concept learning models using random decision forest
models (RDFs). RDFs are ensemble learning methods and are employed in regression and
classification applications [Ho, 1995]. They operate through the construction of numer-
ous decision trees during the training stage. The technique outputs the class that contains
the mode of the classes of the collection of collection of tress. This technique is influen-
tial, especially in data mining applications [Franklin, 2005]. A major advantage of RDF
over regular decision trees is that the RDF avoids overfitting the training set [Criminisi
et al., 2012].

I built and trained two separate models using the features discussed in the previous

section—a body-only model, which used all features, and an abstract-only model, which
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omitted the abstract concept features as well as the sentence counts and position features.
This two-model approach attempts to mimic how human read scientific articles, namely,
using the concepts found in the abstract to better guide the understanding concepts found
in the rest of the text.

With regard to the parameters of the RDF classifiers, max_features was set to the
square root of the total number of features in an individual run, number_of_trees was
arbitrarily set to 50, where this is referring to the number of trees built before taking the
average tree votes for predictions. Finally, min_sample_leaf was set to 50. To implement

these models I used the scikit-learn python ensemble module [Pedregosa et al., 2011].

5.2.5 Experiments and Results

As discussed above, I randomly split the dataset into training and testing sets across ten
folds, resulting in 11 articles for training and 3 for testing in each fold. The models
learned a total of 192 unique concepts. For all experiments, I evaluated the performance
of the models on each concept using the F; measure averaged across all folds. Here [
present the evaluation methods and results, describing the baseline approaches, as well as
the performance of both the baselines and my method average, averaged across the test

sets.

Baseline Methods

I compared my approach to two baseline methods. The first baseline was a keyword-based
approach, where [ matched sentence words directly to the names of ontology concepts.
All previously mentioned preprocessing steps were performed on both the text and the
ontology, such as lemmatization of both concepts and words in the sentences. This model

needed no training. The second baseline was a Bag of Words (BoW) supervised classifier.
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For this classifier, [ trained and tested a support vector machine (SVM) [Cortes and Vap-
nik, 1995] following the same cross-validation splits and multi-label fashion as used for
my proposed approach. The SVM classifier was trained using the RBF kemnel function

and a soft margin C of 10,000—a common setup.

Experiments

As noted above I built two models: (1) an abstract-only model, and (2) a body-only
model. Both the models learn concepts using all sentences in the text (including the
abstract), but as the names suggest, they only used to label the abstract sentences and
the body sentences respectively. Additionally, the the body-only model uses the labels
produced by the abstract-only model as features for labeling the body of an article. In
order to compare the efficacy of using the sense2vec approach as a feature, I built trained
and tested the same models using a word2vec approach instead.

Table 5.2 shows three average F} scores over different sets of concepts for all dis-
cussed approaches. The first column shows the average Fj score for the concepts with sin-
gle occurrence in the original data (61 concepts), while the second column shows the av-
erage scores for the top 50 concepts in terms of total occurrences over all the articles. The
last column shows the results over all concepts. The proposed approach (RDF _sense2vec)
outperforms both baselines as well as the RDF_word2vec models across all concepts. Ad-
ditionally, Figure 5.1 shows the frequency of the top 50 ENVO concepts as well as the
average F) score of each for each of the concepts. As shown, the score drops with the
frequency of the concept in the dataset, although not dramatically. This is expected as
it is a result of the original class imbalance. Finally, the abstract-only model performed
similarly well with a 0.69 F} over all concepts present in the abstract sections, which were

relatively small in number.
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Figure 5.1: Frequency of the top 50 ENVO concepts (grey bars) and the average 10-fold
testing results (F scores) for each of the concepts (black line).

Unique Concepts
Approach Single Top 30 All

Keyword Search  0.39 035 0.38

SVM_BoW 045 0.56 0.50
RDF_word2Vec  0.54 0.69 0.61
RDF_sense2Vec  0.67 078 0.76

Table 5.2: Average F scores per approach over all concepts, the 50 most frequent con-
cepts, and the 61 least frequent concepts with single occurrences.

As discussed in §5.2.4, I proposed that the model’s performance would improve when
(1) abstract concepts are used as features for the body concept extraction, and (2) sentence
positions are also included as features (i.e., sentence positions relative to the article as a
whole and individual sections). To evaluate this, I performed four experiments, testing
the inclusion of abstract concepts and sentence position features. Table 5.3 shows three
average I scores over different sets of concepts per experiment.

In the last row in Table 5.3, both abstract concepts and sentence positions were in-
cluded as features in the models. The results confirm my hypothesis, in that the inclusion
of both of those features yields better labeling results across all concepts. The second-to-

last row shows the results for including the abstract concepts as features, but omitting the
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Features Unique Concepts
Abstract Position Single Top 50 All

Omitted Omitted 0.52  0.69 0.65
Omitted Included 0.63 0.71  0.68
Included Omitted 0.63 0.76  0.70
Included Included 0.67 0.78  0.76

Table 5.3: Average F) scores for the feature combination experiments. The first two
columns indicate whether the abstract concepts and sentence positions were included or
omitted as features in the models.

position features. This resulted in lower results overall, but significantly impacted the av-
erage score for the single occurrence concepts. Interestingly, I investigated this and found
that deeper concepts (i.e., in terms of the ontology hierarchy) are found at higher densities
close to the middle of the articles as well as the centers of article sections. In retrospect
this makes sense, as the methodology section of a scientific paper (located around the
middle) would normally contain detailed concepts rather than abstract ones. To put this
together, most of the single occurrence concepts are deeper, low-level concepts, hence the
low occurrence frequency in the original data. The second row shows the results for only
omitting the abstract concepts as features when labeling the rest of the text in the articles.
Again, the models’ performance dropped overall, but less so than for single occurrence
concepts. This can be attributed again to including the sentence position features, which
aid the labeling for less frequent concepts. Finally, the first row shows the results for

omitting both features with the models performing the worst across all concepts.

5.3 Using Document Structure for Ontology-Based Concept Learn-
ing

Ad discussed before, academic literature search is a vital step of every research project,

especially in the face of the increasingly rapid growth of scientific knowledge. Ontology-
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based semantic search is a an approach to scientific article retrieval using concepts in
an attempt to address well-known deficiencies of keyword-based search. Leveraging
domain-specific ontologies is useful for an accurate retrieval of scientific articles. How-
ever, many solutions often miss leveraging key information that is typically encoded in
the document structure of scientific articles. In this section, I present an extended ap-
proach to ontology-based supervised concept learning for the biogeochemical scientific

literature that uses the section structure of scientific articles.

5.3.1 Introduction

We all have had the experience of searching the scientific literature using a keyword-based
search engine. You probably started with a general query, which returned thousands of
articles that only tangentially related to your interests. Because no researcher would have
time to even skim all the results, you returned to the original query, rewording it multiple
times in different ways until highly relevant articles were ranked at the top of the search.
These are long-known deficiencies of keyword-based search, namely: (1) retrieval of an
overwhelming number of results, (2) rankings that do not precisely reflect true relevance,
and (3) the omission of relevant results because they do not contain the idiosyncratic
keywords of the query [Tiimer et al., 2009].

A long-proposed solution to this problem is semantic search, which uses concepts in
the query rather than just keywords to drive document retrieval and ranking. Semantic
search often leverages domain-specific knowledge, usually encoded in ontologies, to help
rank the relevance of documents relative to a search query. Semantic search is difficult,
however, because the required knowledge entails significant knowledge engineering or
sophisticated natural language processing (NLP). Despite these problems, search engines

today do boast high performance compared to prior decades precisely because they in-
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clude minor semantic knowledge in their search algorithms; one approach, for example,
is Latent Semantic Indexing (LSI), which uses synonyms and relationships between page
headers, document titles, and content to assist ranking [Li et al., 2014]. Nevertheless,
we are still far from the full realization of true semantic search that uses deep semantic
techniques fully integrated into back-end algorithms. For these reasons semantic search
research is experiencing a rise in interest among various groups [Bast et al., 2016, Jindal
et al., 2014, Li et al., 2014].

Scientific articles usually follow strong principles of scientific writing structure. By
design, they often contain a certain number of standard sections that convey different sets
of ideas and solutions that support a central hypothesis or approach. These documents
typically start with an introduction or motivation which discusses the research problem,
followed by the research methodology, results and experiments, related work, and finally
a conclusion. Semantic search approaches often miss utilizing this structure in identifying
the key information to be retrieved. In the previous section (§5.2), I showed the feasibility
of learning domain-specific concepts for the biogeochemical scientific literature. In this
section, | present an improved ontology-based approach that uses a simple linear chain
conditional random fields model to learn domain-specific semantic concepts. In my ap-
proach I use the automatic section discovery solution discussed in chapter 4 to embed the
section structure of scientific articles as a feature in automatic concept learning. XXX

The remainder of this section is organized as follows: I discuss the dataset I ussed in
this study (§5.3.2), then, I describe my approach including the task definition, the CRF
apporach, the features extracted, as well as how I used the section structure for leaming

semantic concepts (§5.3.3).
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Unigue

Query Tille Citaflen Tokens Sentences Concepls =
Methy]l-Mercumy Mercury in the Aqguatic Environment ... . [Wirich et al, 2001] 5,081 162 26 nfa
CconEntrations in Sulfide Controls on Mercumy Speciation ... . [Benpit et al., 1999] 4,133 168 13 nfa
Everglades water and Sulfate Stimulation of Mercumy Methy lation.. .. [Gilmouret al, 1992] 3,642 160 18 nfa
= diment Effect of Salinity on Mercury Activity . .. [Compeau and Bartha, 1987] 3421 150 22 nfa
Anaerohic Microflor of Everglades Sediments ... [Drake ot al., 1996] 4,651 179 s et
Sulfate reduction Constants for mercumy binding .. . [Bemoit et al., 3001] 4,620 173 17 &2
occurting in Everglade s Mercury methylation in periphyton.. .. [Cleckneret al., 195949] 3,830 159 18 075
pore wakers and sdiments  Methy lmencury Concentrations ... . [Gilmouret al, 1998] 4,795 183 26 03]
Bacerial Methylmercury Degradation .. . [Marvin-DiPasquale and Onemiand, 1998] 3,696 199 I 44
Croundwater's significance to changing . .. [Harvey and McCormick, 2009] 9,650 300 73 a3
Sulfir reduction affecting ~ Variation in Soil Phosphorus ... . [Chambers and Pederson, 2006] 3,032 103 k) 7l
South Flarids Everglades  Sulfur in the South Florida ecosystem ... . [Orem et al, 2011] 3485 149 k1) e
soils Sulfur in peat-forming systems . .. [Caszgrande et al., 1977] 3,998 165 5 7l
Effects of sulfae amendments . ... [[DHerterg etal, 2011] 4,463 160 42 &2
Coastal groundwater discharge — an additional . .. [Prics et al., 2006] 4,445 158 3z DES
The Influence of Hydrologic Restaration .. . [Sullivan et al., 2014] 5,860 23 28 nEl

Everglade E

“ﬂﬁ w;:?m_ " Cround Water Recharge and Discharge . .. [Marvey st al., 2004] 6,257 73 3 0ER
Estimates of groundwater dischange .. . ZapatsRios and Price, 2012] 6,480 o7 48 nE3
Cruantifying time-varying ground-water ... . [Choi and Harvey, 2000] 4,747 185 46 LEl
Mo 9,650 o7 73 0ER
Average 4741 186 3 e
Min 3,032 103 13 30
Standard Deviallon 1,604 43 15 15

Table 5.4: Articles used in the corpus. Listed are the number of tokens in each article, the
number of sentences overall, the number of unique concepts, and the annotator agreement
expressed as Cohen’s k.

5.3.2 Dataset

As discussed in chapter 2 and in the previuos section (§3.2), a team of reserachers and
I collected and annotated a corpus of environmental scientific articles with the help of
domain experts. While in the previous study (§5.2) I only utilized 14 articles for the
development of the concept learning model, I used the full expanded corpus discussed
in chapter 2. Again, similar to the previous study, I used the ENVO ontology and the
annotation results from our annotation study (discussed in detail in chapter 2. The dataset
consisted of 19 articles (90,074 total words) collected using four search queries that were
created by three domain experts (two PhD students and a professor of Hydrology). Our
domain experts ran the queries through Google Scholar and examined from the several
hundred results returned, identifying the top four or five most relevant articles for each
query. Importantly, several of the articles were not ranked near the top of Google’s results,
and were rather found many pages deep. I list detailed statistics of the dataset I used as

presented in chapter 2 for ease of reference in Table 5.4.
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5.3.3 Approach

Similar to my previous study (presented in section 5.2), the goal of the work presented
here was to label the sentences of scientific articles—drawn from the biogeochemical
academic literature—with concepts derived from a domain-specific ontology (specifically
the Environment Ontology, or ENVO). [ treated this as a supervised classification problem
where [ train a classifier using sentences that have been manually labeled (annotated) for
their concepts; then, this classifier takes individual sentences found in a new article as
input, outputting ontology concepts.

In this section I first describe the task in detail, next I discuss the classification train-
ing process, starting with data preprocessing, followed by feature extraction, document

structure encoding, and ending with classifier construction.

Task Definition

As noted above, the task was to index academic articles in the biogeochemical domain
with concepts derived from ENVO. That is, given a set of academic articles and a domain-
specific ontology, the solution is a supervised classification model that can assign ontol-
ogy concepts to the sentences found in the articles. Additionally, the task included testing
the efficacy and efficiency of using the section strucutre of scientific articles for automatic
concept learning. As discussed before, we created a dataset of articles which was manu-
ally labeled and indexed with concepts from ENVO. Each sentence may have any number
of concepts and therefore the labels are not mutually exclusive and my solution must ad-
mit a multi-label classification, including possibly no label. I identified a set of distinctive
features to support this classification, and designed feature extractors to compute these

features over article text and included the document section structure as a feature.
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Data Preprocessing

In addition to annotating the data with ENVO concepts as described in the previous sec-
tions and in chapter 2, I performed standard NLP preprocessing tasks to prepare the data
for feature extraction and supervised learning. Similar to the previous study [Banisakher
et al., 2018b] (discussed in §5.2), I cleaned the text by removing in-text citations and
stand-alone mathematical, chemical, and biological formulas. I then tagged each token
with its part-of-speech [Bird and Loper, 2004], lemmatized tokens using WordNet [Fell-
baum, 1998], filtered known stop words using PubMed’s list [PubMed Help, 2005], and
used the pywsd module to perform word-sense disambiguation [Tan, 2014] to tag words

with WordNet senses.

Data Balancing

The articles included 261 unique concepts across 5,562 occurrences. More than half of
these occurrences (3,318) represented only 10 concepts, while the most frequent 50 con-
cepts (26% of the total) occurred 4,728 times in total. Additionally, 98 concepts (37%)
appeared only once. When supervised ML is performed over such distributions, they
tend to overfit the classes with higher number of examples. Several solutions have been
proposed and used for the problem of imbalanced data such as sampling (undersampling
and oversampling) and weight assignment. These techniques are used to help supervised
ML classifiers learn more about a class that has a significantly smaller number of exam-
ples relative to others. Similar to the previous study [Banisakher et al., 2018b], I opted
to use the Synthetic Minority Over-sampling Technique (SMOTE) [Chawla et al., 2002].
SMOTE is a hybrid sampling technique that oversamples the minority classes while un-
dersampling the majority classes. I applied resampling to the training set only, leaving

the testing set with the original distribution.
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Feature Extraction

Identifying a useful set of features is integral for an accurate machine learning model. In
my previous study, I extracted lexical, syntactic, and semantic features (§5.2.4). In this
extended study, I used the same features as well as additional features in each feature
class as follows:

Features from Banisakher et al. [2018b] (§5.2.4): t#f-idf (term frequency-inverse
document frequency) [Church and Gale, 1999] I used the top 10% of the most frequent
distinctive terms for each article using; global-position and local-position correspond-
ing to the relative position of a sentence in both its section and article; named-entities
for which I extracted named entities from each sentence by examining parts-of-speech
examining parts-of-speech (looking for runs of tokens tagged NNP or NNPS); sentence-
embeddings for which I used sense2vec [Trask et al., 2015], where different senses of the
same word are placed differently in the embedding space. I used Sense2vec as imple-
mented in the SpaCy python module [AI, 2015], and followed the algorithm described in
[Trask et al., 2015] by using the part-of-speech tags and named entity labels assigned to
the tokens. Additionally, I merged named entities into single tokens (using hash symbols),
so that they were assigned a single vector; abstract-concepts where I used concepts iden-
tified in the abstract of each article as features for the body of the article. Banisakher et al.
(§5.2.4) also used the previous sentence’s concept as an explicit feature; this is included
by default in the CRF model.

Lexical: I added the bigrams feature to capture the type of language per section type;
and reference where the number of citations or referred tables and figures were counted
in a given sentence.

Syntactic: I added gramatical-relation where 1 captured the following: Subject (nc-
subj), direct object (dobj), indirect object (iobj) and second object (obj2) relations involv-

ing verbs, e.g. (ncsubj observed difference obj).
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Structural: To capture and encode the section structure of the scientific articles, [
used my earlier work for section type discovery demonstrated in chapter 4 which tags
runs of sentences with a section heading. After running the model merging approach and
obtaining a section heading for each sentence, I tagged each concept to be learned with a

section heading number.

Concept Learning

The first stage of classification is model training, followed by a stage of testing on separate
(unseen) data. As I did in the previous study, I randomly split the dataset into into five
folds, 80% in the training set and 20% in testing set (15 and 4 articles, respectively).
I built and trained the concept learning models using a simple linear chain conditional
random field (CRF) model.

Conditional Random Fields (CRFs) are undirected graphical models [Lafferty et al.,
2001, Konkol and Konopik, 2013] that can be used for discriminative sequence labeling.
CRFs have proved useful for many sequence labeling problems in NLP and computer
vision [Lin and Wu, 2009], including Named Entity Recognition (NER) and image clas-
sification. There are several CRF variations such as the tree CRF and the hierarchical
CRF which are mostly used for computer vision related tasks. Linear chain CRFs are
the most popular among CRF approaches for sequence labeling tasks largely due to its
relative simplicity and low computational cost when compared with other CRF models.

I built and trained two separate models using the features discussed in the previous
section—a body-only model, which used all features, and an abstract-only model, which
omitted the abstract concept features as well as the sentence counts and position features.
This two-model approach attempts to mimic how human read scientific articles, namely,
using the concepts found in the abstract to better guide the understanding concepts found

in the rest of the text.
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With regard to the CRF implimentation, I used the python CRFsuite [Okazaki, 2007]
utlizing the 1st-order Markov CRE. As for model optimization and parameter estimiation,
I used the L-BFGS [Nocedal, 1980] which is a quazi-Newton method that computes an
approximation to the Hessian from only the first derivative of the objective function, and

has been shown to be successful in parameter estimation and optimization.

5.3.4 Results and Discussion

As discussed above, I randomly split the dataset into training and testing sets across five
folds, resulting in 15 articles for training and 4 for testing in each fold. The models
learned a total of 261 unique concepts. For all experiments, I evaluated the performance
of the models on each concept using the F; measure averaged across all folds. Here [
present the evaluation methods and results, describing the baseline approaches, as well as
the performance of both the baselines and my method average, averaged across the test

sets.

Baseline Methods

I compared my CRF approach against six other models: three baselines including two
from my previous study [Banisakher et al., 2018b] (§5.2.5), namely, a keyword search ap-
proach, where I matched sentence words directly to the names of ontology concepts, and
a support vector machine (SVM) [Cortes and Vapnik, 1995] using Bag of Words (BoW)
as the sole feature. I added a third baseline using another SVM model that incorported
sense2vec as it’s base feature (see discussion on sense2vec in the previous section and in
section 5.2.4). 1 trained and tested the SVM models following the same cross-validation
splits and multi-label fashion as used for my proposed approach. The SVM classifier was

trained using the RBF kemel function and a soft margin C of 10,000—a common setup.
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Additionally, I compared my approach against two random decision tree models: for
the first, I used the same set of features outlined from my previous RDF study [Banisakher
et al., 2018b], while for the second, I used the same features as the CRF model. This
is to test wether the CRF performs better at capturing the inter-dependencies between
sequences of sentences and concepts. Finally, for the the sixth comparison, I trained and
tested a Long Short-Term Memory (LSTM) recurrent nueral network (RNN) with the

same features as the CRF model as discussed previously in feature extraction.

Results

As noted above I built two models: (1) an abstract-only model, and (2) a body-only
model. Both the models learn concepts using all sentences in the text (including the
abstract), but as the names suggest, they were used to label the abstract sentences only
and the body sentences only, respectively. Additionally, the the body-only model uses the
labels produced by the abstract-only model as features for labeling the body of an article.

Table 5.5 shows three average F} scores over different sets of concepts for all dis-
cussed approaches. The first column shows the average F) score for the concepts with
single occurrence in the original data (98 concepts), while the second column shows the
average scores for the top 50 concepts in terms of total occurrences over all the articles.
The last column shows the results over all concepts.

The CRF approach with the additional features outperforms the three baselines as
well as the previous RDF model with the previous set of features across all concepts.
Notably, the CRF model outperforms the RNN-LSTM model—an expected result as the
size of data is not enough for a deep learning model. Additionally, the results show that
the new features in this study perform much better that the previously discussed ones in
|Banisakher et al., 2018b). This is evident in the RDF model that uses the current features

which achieved an 11% increase in performance over the previous RDF model.
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Figure 5.2: Frequency of the top 50 ENVO concepts (grey bars) and the average 5-fold
testing results (F} scores) for each of the concepts (black lines). The solid line represents
the CRF model, while the dotted line represents the RDF model with features from the
previous study [Banisakher et al., 2018b]

Additionally, Figure 5.2 shows the frequency of the top 50 ENVO concepts as well as
the average Fj score for both the CRF model and the previous RDF model with features
from [Banisakher et al., 2018b] for each of the concepts. As shown, the scores drops with
the frequency of the concept in the dataset, although not dramatically. This is expected as
it is a result of the original class imbalance. Finally, the abstract-only model performed
similarly well with a 0.79 F} over all concepts present in the abstract sections, which were
relatively small in number.

As discussed above, [ expected that the model’s performance would improve when (1)
abstract concepts are used as features for the body concept extraction, and (2) structural
features (i.e the section structure encoding and sentence positional features) are encoded
as features in the model. To evaluate this, I performed four experiments, testing the
inclusion of abstract concepts and structural features. Table 5.6 shows three average I}

scores over different sets of concepts per experiment.
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Unique Concepts

Approach Features Single Top 50 All
Keyword Search - 039 036 0.38
SVM BoW 0.43 0.55 049

SVM [Banisakheret al., 2018b] 0.69 075 0.73
RDF [Banisakheret al., 2018b]  0.70 076  0.74
RNN-LSTM  Current features (§5.3.3) 0.72 078 0.76
RDF  Current features (§5.3.3) 0.78 0.84 0.82
CRF  Current features (§5.3.3)  0.81 0.87  0.85

Table 5.5: Average Fi scores per approach over all concepts, the 50 most frequent con-
cepts, and the 61 least frequent concepts with single occurrences.

Features Unique Concepts
Abstract Structural Single Top 50 All

Omitted Omitted 0.56 0.69 0.64
Omitted  Included 0.70 078 0.75
Included  Omitted 0.70 082 077
Included  Included 0.81 0.87 0.85

Table 5.6: Average F) scores for the feature combination experiments over the CRF
model. The first two columns indicate whether the abstract concepts and structural fea-
tures were included or omitted as features in the models.

Similar to my results discussion in §5.2.5, in the last row in Table 5.6, both abstract
concepts and sentence positions were included as features in the models. The results
confirm my hypothesis, in that the inclusion of both of those features yields better labeling
results across all concepts.

The second-to-last row shows the results for including the abstract concepts as fea-
tures, but omitting the structural features. This resulted in lower results overall, but sig-
nificantly impacted the average score for the single occurrence concepts. From further
investigation, I found that deeper concepts (i.e., in terms of the ontology hierarchy) are
found at higher densities close to the middle of the articles as well as the centers of article
sections. In retrospect this makes sense, as the methodology section of a scientific paper

(located around the middle) would normally contain detailed concepts rather than abstract

159



ones. To put this together, most of the single occurrence concepts are deeper, low-level
concepts, hence the low occurrence frequency in the original data.

The second row shows the results for only omitting the abstract concepts as features
when labeling the rest of the text in the articles. Again, the models’ performance dropped
overall, but less so than for single occurrence concepts. This can be attributed again to
including the structural features, which further shows the efficacy for the labeling of less
frequent concepts.

Finally, the first row shows the results for omitting both features with the models

performing the worst across all concepts.
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CHAPTER 6
CONCLUSION

As discussed in chapter 1 My research problem, in large, concerns the analysis and
development of a framework for using logical document structure knowledge (that is, sec-
tion structure) in detecting semantic concepts within documents in various domains. This
entailed four abstract conceptual components which have driven my research, namely,
corpora collection and annotation, modeling the logical document structure, detecting se-
mantic concepts through the use of domain-specific ontologies, and incorporating section
structure in the detection of semantic concepts.

In chapter 2, I presented the corpora I used for the development and evaluation of
the models I discussed in the dissertation. These corpora consisted of documents from
six different datasets spanning four domains: medical, legal,scientific, and news report-
ing.The document classes are as follows: psychiatric report evaluations, hospital dis-
charge summaries, and radiology reports in the medical domain; Patent documents in the
legal domain; environmental journal articles in the scientific domain; Finally, business
and politics news articles. There, I discussed each of these document classes, and the
specific corpora I used or collected. 1 also discussed the corpora ontologies and report
detailed statistics as well as the annotation process, agreement metrics, and annotation
results for each corpus.

In chapter 3, I presented three studies for section structure identification. The first
(§3.1), uses an Hierarchical Hidden Markov Model (HHMM) that was developed using
the psychiatric evaluation reports (Corpus 2.1). The second (§3.2), extends the HHMM
approach by using Conditional Random Fields (CRFs) which I developed using three
corpora: psychiatric evaluation reports, radiology reports, and discharge summaries (Cor-

pora 2.1-2.3). Finally, in the third (§3.3), I present an extended application of the CRF
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approach to improving the detection of paragraph functions in news article paragraphs
(Corpus 2.6).

To the best of my knowledge, my work presented in section 3.1 represents the only
attempt at detecting the position and type of psychiatric report sections. In that section [
presented an approach that applies and extends earlier work on document section discov-
ery and segmentation. I collected a corpus of psychiatric documents and created a unified
hierarchy of section labels. I built an n-gram-based HHMM model that successful detects
the order of sections as well as their boundaries within a given report. I evaluated the
model’s performance over two separate tasks, namely the section ordering task and the
section boundary identification. My model outperformed baselines for both of those tasks.
Finally, my approach further confirms that learning the section ordering of a psychiatric
report yields better performance for boundary identification and text segmentation.

I also presented an approach that extends the HHMM work on section identification
of clinical reports in section 3.2. My CRF model of section structure can be used to iden-
tify sections in a variety clinical reports types regardless of whether headings are present:
that is, whether the section headings are explicit or implicit. We built a linear chain
CRF model incorporating n-gram features that successfully detects the order of sections
as well as their boundaries within a given report. I evaluated my model’s performance
with regard to to two subtasks, namely determining the section ordering and locating the
section boundaries, using different combinations of features. Additionally, my approach
further confirms that learning a combined model of section ordering and section content
yields better performance on the overall task. Finally, | demonstrated that modeling de-
pendencies between sections’ presence, order, and content across the entire report yields
significantly better performance.

Finally, I presented a study that extended earlier work on news paragraph discourse

function labeling. I built a linear chain CRF model incorporating various lexical, posi-
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tional, syntactic, and semantic features that improves detection of the order of discourse
labels in a news article at the paragraph level as well as models the paragraph content
of each label type. 1 evaluated my model’s performance against two baselines and three
existing models with various subsets of features. I showed that the CRF model repre-
sents a significant improvement in this task. Most importantly, my work demonstrated
the importance of modeling paragraph and discourse label type inter-dependencies.

In chapter 4 I demonstrated the first approach to discovering, in a data-driven manner,
the section structure for a document class. My approach uses a modified Bayesian model
merging algorithm [Stolcke and Omohundro, 1994, Finlayson, 2016], which outperforms
three baselines across five different document classes by significant margins.

On another tangent, in chapter 5, I first presented a literature review of state-of-the-
art approaches to academic search, specifically focusing on semantic academic search
and contrasting that with keyword search approaches. I then discussed two studies on
ontology-based semantic concept detection of scientific articles. In section 3.2, I pre-
sented a system for learning to identify domain-specific ontology concepts in the aca-
demic literature, specifically for the biogeochemical domain. I created a dataset of aca-
demic articles that a team of researchers and I manually annotated. I then used the an-
notated dataset to build a supervised machine learning model—a random decision forest
classifie—which was trained and tested using cross-validation. Further, [ identified a set
of useful features and evaluated their efficacy in training and testing the models. The
RDF model significantly outperformed the the baseline methods discussed. Finally, in
section 5.3, I demonstrated an extended approach for semantic concept leamning for the
scientific literature. I used a conditional random fields model with an extended set of
features that demonstrated the efficacy and efficiency of structural features for concept
learning. Importantly, | incorporated my earlier approach on section type discovery of

scientific articles and demonstrated that it significantly improves the classification results.
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This highlights the importance of using information embedded in document structure in
semantic search tasks.

Finally, my research advances NLU and automatic semantic extraction research through
the creation of novel domain-specific document structure understanding and concept de-
tection models. As discussed earlier digitized data is ever-growing, and that includes
medical, legal, journalistic and scientific documents [Feldman et al., 2012]. Published
scientific articles and human knowledge is no different. In fact, according to IBM the
human knowledge curve has moved from being linear to exponential and it is expected
that soon (a few years) human knowledge will be doubling every 12 hours [Coles et al.,
2006].

More specifically, this research has an expected impact in several NLP subdomains
and applications. To name a few: semantic search is a direct example of the applica-
tions that benefit from such research as keyword-based search is becoming obsolete given
the amount of available information and its well-known deficiencies in identifying and
retrieving relevant results. While automatic summarization of documents is another ex-
ample. Applications in this subdomain and relevant to this work would include automatic
summarization of psychiatric reports, for example, to allow medical practitioners to have
more time listening to patients rather than reading documents describing them. While
scientific article summarization models can automatically generate abstracts as well as be

used to semantic plagiarism analyzers.

164



BIBLIOGRAPHY

Ronald T Kellogg. The psychology of writing. Oxford University Press, 1999.

Ruogu Fang, Samira Pouyanfar, Yimin Yang, Shu-Ching Chen, and SS Iyengar. Compu-
tational health informatics in the big data age: a survey. ACM Computing Surveys
(CSUR), 49(1):12, 2016.

Richard Power, Donia Scott, and Nadjet Bouayad-Agha. Document structure. Computa-

tional Linguistics, 29(2):211-260, 2003.

Scott G Paris, Barbara A Wasik, and Julianne C Turner. The development of strategic

readers. 2016.

Rob Waller. What makes a good document? University of Reading, United Kingdom,
Tech. Rep, 2011.

Walter Kintsch. The representation of meaning in memory. 1974.

Timothy McNamara, Diana L Miller, and John D Bransford. Mental models and reading

comprehension. 1991.

Mary B McVee, Kailonnie Dunsmore, and James R Gavelek. Schema theory revisited.
Review of educational research, 75(4):531-566, 2005.

Bengt Nordstrom. Towards a theory of document structure. 2008.

Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D Trippe,
Juan B Gutierrez, and Krys Kochut. Text summarization techniques: a brief survey.

arXiv preprint arXiv: 1707.02268, 2017.

Lucas Drumond and Rosario Girardi. A survey of ontology learning procedures. WONTO,
427:1-13, 2008.

165



Dejing Dou, Hao Wang, and Haishan Liu. Semantic data mining: A survey of ontology-
based approaches. In Proceedings of the 2015 IEEE International Conference on
Semantic Computing (ICSC), pages 244-251, Anaheim, CA, 2015.

Roberto Navigli and Paola Velardi. Learning domain ontologies from document ware-

houses and dedicated web sites. Computational Linguistics, 30(2):151-179, 2004.

Deya Banisakher, Naphtali Rishe, and Mark A. Finlayson. Automatically Detecting the
Position and Type of Psychiatric Evaluation Report Sections. In Proceedings of
the Ninth International Workshop on Health Text Mining and Information Analysis,
pages 101-110, Brussels, Belgium, October 2018a. Association for Computational
Linguistics. doi: 10.18653/v1/W18-5612. URL https://www.aclweb.org/

anthology/W18-5612.

R Reeves and R Rosner. Forensic psychiatry and forensic psychology: Forensic psychi-

atric assessment. 2016.

American Psychiatric Association. What is psychiatry?, 2018. URL https://www.
psychiatry.org/patients—families/what-is—psychiatry. (Ac-
cessed on Feb 10, 2019).

Gary Groth-Marnat. Handbook of Psychological Assessment. John Wiley & Sons, Hobo-
ken, NJ, 20009.

Karen Goldfinger and Andrew M Pomerantz. Psychological Assessment and Report Writ-
ing. Sage, Thousand Oaks, CA, 2013.

American Psychiatric Association. American Psychiatric Association Practice Guide-
lines for the Treatment of Psychiatric Disorders: Compendium 2006. American
Psychiatric Association Publishing, Washington, DC, 2006.

American Board of Radiology. Diagnostic Radiology, 2019. URL https://www.

theabr.org/diagnostic-radiology. (Accessed: 20 Feb. 2020).

166


https://www.aclweb.org/anthology/W18-5612
https://www.aclweb.org/anthology/W18-5612
https://www.psychiatry.org/patients-families/what-is-psychiatry
https://www.psychiatry.org/patients-families/what-is-psychiatry
https://www.theabr.org/diagnostic-radiology
https://www.theabr.org/diagnostic-radiology

Michael Tepper, Daniel Capurro, Fei Xia, Lucy Vanderwende, and Meliha Yetisgen-
Yildiz. Statistical section segmentation in free-text clinical records. In Proceed-
ings of the Eighth International Conference on Language Resources and Evaluation

(LREC-2012), pages 2001-2008, 2012.

Leora I Horwitz, Grace Y Jenq, Ursula C Brewster, Christine Chen, Sandhya Kanade,
Peter H Van Ness, Katy LB Araujo, Boback Ziaeian, John P Moriarty, Robert L

Fogerty, et al. Comprehensive quality of discharge summaries at an academic medi-

cal center. Journal of hospital medicine, 8(8):436-443, 2013.

Alistair EW. Johnson, Tom J. Pollard, Lu Shen, Li wei H. Lehman, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G. Mark. MIMIC-IIL, a freely accessible critical care database. Scientific
Data, 3:160035-160035, 2016.

WIPO. WIPO Patent Drafting Manual. World Intellectual Property Organization,
Geneva, Switzerland, 2007.

Soren Briigmann, Nadjet Bouayad-Agha, Alicia Burga, Serguei Carrascosa, Alberto Cia-
ramella, Marco Ciaramella, Joan Codina-Filba, Enric Escorsa, Alex Judea, Simon
Mille, et al. Towards content-oriented patent document processing: intelligent patent

analysis and summarization. World Patent Information, 40:30-42, 2015.

WIPO. PATENTSCOPE - World Intellectual Property Organization. https://www.

wipo.int/patentscope/en/, 2019. Accessed: 20 May 2019.

Susanne M Ullrich, Trevor W Tanton, and Svetlana A Abdrashitova. Mercury in the
Aquatic Environment: A Review of Factors Affecting Methylation. Critical Reviews

in Environmental Science and Technology, 31(3):241-293, 2001.

167


https://www.wipo.int/patentscope/en/
https://www.wipo.int/patentscope/en/

Janina M Benoit, Cynthia C Gilmour, Robert P Mason, and Andrew Heyes. Sulfide con-
trols on mercury speciation and bioavailability to methylating bacteria in sediment

pore waters. Environmental Science & Technology, 33(6):951-957, 1999.

Cynthia C Gilmour, Elizabeth A Henry, and Ralph Mitchell. Sulfate stimulation of mer-
cury methylation in freshwater sediments. Environmental Science & Technology, 26

(11):2281-2287, 1992.

Geoffrey C Compeau and Richard Bartha. Effect of salinity on mercury-methylating ac-
tivity of sulfate-reducing bacteria in estuarine sediments. Applied and Environmental

Microbiology, 53(2):261-265, 1987.

Harold L Drake, Nicholas G Aumen, Carla Kuhner, Christine Wagner, Anja Griessham-
mer, and Martina Schmittroth. Anaerobic microflora of Everglades sediments: Ef-

fects of nutrients on population profiles and activities. Applied and Environmental

Microbiology, 62(2):486-493, 1996.

IJM Benoit, Robert P Mason, Cynthia C Gilmour, and George R Aiken. Constants for
mercury binding by dissolved organic matter isolates from the Florida Everglades.
Geochimica et cosmochimica acta, 65(24):4445-4451, 2001.

Lisa B Cleckner, Cynthia C Gilmour, James P Hurley, and David P Krabbenhoft. Mercury
methylation in periphyton of the Florida Everglades. Limnology and Oceanography,
44(7):1815-1825, 1999.

Cynthia C Gilmour, GS Riedel, MC Ederington, JT Bell, GA Gill, and MC Stordal.
Methylmercury concentrations and production rates across a trophic gradient in the

northern Everglades. Biogeochemistry, 40(2-3):327-345, 1998.

Mark C Marvin-DiPasquale and Ronald S Oremland. Bacterial methylmercury degrada-
tion in Florida Everglades peat sediment. Environmental Science & Technology, 32

(17):2556-2563, 1998.

168



Judson W Harvey and Paul V McCormick. Groundwater’s significance to changing hy-
drology, water chemistry, and biological communities of a floodplain ecosystem,

Everglades, South Florida, USA. Hydrogeology Journal, 17(1):185-201, 2009.

Randolph M Chambers and Kristin A Pederson. Variation in soil phosphorus, sulfur, and
iron pools among South Florida wetlands. Hydrobiologia, 569(1):63-70, 2006.

William Orem, Cynthia Gilmour, Donald Axelrad, David Krabbenhoft, Daniel Scheidt,
Peter Kalla, Paul McCormick, Mark Gabriel, and George Aiken. Sulfur in the South
Florida ecosystem: Distribution, sources, biogeochemistry, impacts, and manage-
ment for restoration. Critical Reviews in Environmental Science and Technology, 41

(51):249-288, 2011.

Daniel J Casagrande, Kristine Siefert, Charles Berschinski, and Nell Sutton. Sulfur in
peat-forming systems of the Okefenokee swamp and Florida Everglades: Origins of

sulfur in coal. Geochimica et Cosmochimica Acta, 41(1):161-167, 1977.

Forrest E Dierberg, Thomas A DeBusk, Nichole R Larson, Michelle D Kharbanda, Nancy
Chan, and Mark C Gabriel. Effects of sulfate amendments on mineralization and

phosphorus release from South Florida (USA) wetland soils under anaerobic condi-

tions. Seil Biology and Biochemistry, 43(1):31-435, 2011.

Rene M Price, Peter K Swart, and James W Fourqurean. Coastal groundwater discharge—
an additional source of phosphorus for the oligotrophic wetlands of the everglades.
Hydrobiologia, 569(1):23-36, 2006.

Pamela L Sullivan, René M Price, Jessica L Schedlbauer, Amartya Saha, and Evelyn E
Gaiser. The influence of hydrologic restoration on groundwater-surface water inter-

actions in a karst wetland, the everglades (fl, usa). Wetlands, 34(1):23-35, 2014.

Judson W Harvey, Steven L Krupa, and James M Krest. Ground water recharge and
discharge in the central everglades. Groundwater, 42(7):1090-1102, 2004.

169



Xavier Zapata-Rios and René M Price. Estimates of groundwater discharge to a coastal
wetland using multiple techniques: Taylor slough, everglades national park, usa.

Hydrogeology Journal, 20(8):1651-1668, 2012.

Jungyill Choi and Judson W Harvey. Quantifying time-varying ground-water discharge
and recharge in wetlands of the northern florida everglades. Wetlands, 20(3):500~
511, 2000.

Joshua D Eisenberg, Deya Banisakher, Maria Presa, Kalli Unthank, Mark A Finlayson,
Rene Price, and Shu-Ching Chen. Toward semantic search for the biogeochemical
literature. In Proceedings of the 2017 IEEE International Conference on Information

Reuse and Integration (IRI), pages 517-525, San Diego, CA, 2017.
Pier Luigi Buttigieg, Norman Morrison, Barry Smith, Christopher ] Mungall, and
Suzanna E Lewis. The environment ontology: Contextualizing biological and

biomedical entities. Journal of Biomedical Semantics, 4(1):43, 2013.

Teun A van Dijk. News as Discourse, chapter Structure of News, pages 52-57. Lawrence
Erlbaum Associates, Inc., Hillsdale, New Jersey, USA, 1988.

W. Victor Yarlott, Cristina Comelio, Tian Gao, and Mark Finlayson. Identifying the dis-
course function of news article paragraphs. In Proceedings of the Workshop Events
and Stories in the News 2018, pages 25-33, Santa Fe, New Mexico, USA, August
2018. Association for Computational Linguistics. URL https: //www.aclweb.
org/anthology/W18-4304.

NIST. Ace phase 2, 2002. URL  https://www.ldc.
upenn.edu/collaborations/past-projects/ace/

annotation-tasks—and-specifications.

American College of Radiology et al. Practice parameters and technical standards, 2018.

170


https://www.aclweb.org/anthology/W18-4304
https://www.aclweb.org/anthology/W18-4304
https://www.ldc.upenn.edu/collaborations/past-projects/ace/annotation-tasks-and-specifications
https://www.ldc.upenn.edu/collaborations/past-projects/ace/annotation-tasks-and-specifications
https://www.ldc.upenn.edu/collaborations/past-projects/ace/annotation-tasks-and-specifications

Mark A. Musen. The Protégé project: A look back and a look forward. Al Matters, 1(4):
4-12, 2015.

Simone Teufel and Marc Moens. Summarizing scientific articles: experiments with rele-

vance and rhetorical status. Computational linguistics, 28(4):400-445, 2002.

Yoko Mizuta, Anna Korhonen, Tony Mullen, and Nigel Collier. Zone analysis in biol-
ogy articles as a basis for information extraction. International journal of medical

informatics, 75(6):468-487, 2006.

Yufan Guo, llona Silins, Ulla Stenius, and Anna Korhonen. Active learning-based
information structure analysis of full scientific articles and two applications for
biomedical literature review. Bioinformatics, 29(11):1440-1447, 04 2013. ISSN
1367-4803. doi: 10.1093/bicinformatics/btt163. URL https://doi.org/10.

1093/bicinformatics/bttl163.

JRichard Landis and Gary G Koch. An application of hierarchical kappa-type statistics in
the assessment of majority agreement among multiple observers. Biometrics, pages

363-374, 19717.

Ron Artstein and Massimo Poesio. Inter-Coder Agreement for Computational Linguis-

tics. Computational Linguistics, 34(4):555-596, 2008. doi: 10.1162/coli.07-034-R2.

Cornelis I. van Rijsbergen. Information retrieval. Butterworths, London Boston, 1979.

ISBN 0-408-70929-4.

Jacob Cohen. Weighted kappa: Nominal scale agreement provision for scaled disagree-

ment or partial credit. Psychological bulletin, T0(4):213, 1968.

Dina Demner-Fushman, Wendy W Chapman, and Clement J McDonald. What can nat-

ural language processing do for clinical decision support? Jowrnal of Biomedical

Informatics, 42(5):760-772, 2000.

171


https://doi.org/10.1093/bioinformatics/btt163
https://doi.org/10.1093/bioinformatics/btt163

George Hripcsak, Suzanne Bakken, Peter D Stetson, and Vimla L Patel. Mining complex
clinical data for patient safety research: A framework for event discovery. Journal

of Biomedical Informatics, 36(1-2):120-130, 2003.

Ying Li, Sharon Lipsky Gorman, and Noémie Elhadad. Section Classification in Clinical
Notes Using Supervised Hidden Markov Model. In Proceedings of the 1st ACM In-
ternational Health Informatics Symposium IHI, pages 744750, Arlington, Virgina,
USA, 2010.

M. Sherman and Yang Liu. Using Hidden Markov Models for Topic Segmentation of
Meeting Transcripts. In Proceedings of the 2008 IEEE Spoken Language Technology
Workshop, pages 185-188, Goa, India, 2008.

Regina Barzilay and Lillian Lee. Catching the drift: Probabilistic content models, with
applications to generation and summarization. In Proceedings of the 2004 North
American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies Conference (HLT-NAACL), pages 113120, 2004.

L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE, T1(2):257-286, 1989. doi: 10.1109/5.18626.

Hung H. Bui, Dinh Q. Phung, and Svetha Venkatesh. Hierarchical hidden markov models
with general state hierarchy. In Proceedings of the 19th National Conference on
Artifical Intelligence, AAAT'04, pages 324329, San Jose, California, 2004. ISBN (-
262-51183-5. URL http://dl.acm.org/citation.cfm?id=1597148.
1597202.

Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden markov model:
Analysis and applications. Machine Learning, 32(1):41-62, 1998. doi: 10.1023/A:
1007469218079.

172


http://dl.acm.org/citation.cfm?id=1597148.1597202
http://dl.acm.org/citation.cfm?id=1597148.1597202

Kush Jain, Priya Khatri, and Garima Indolia. Chunked n-grams for sentence validation.

Procedia Computer Science, 57:209-213, 2015.

Jeffrey C Reynar. Topic Segmentation: Algorithms and Applications. PhD thesis, Univer-
sity of Pennsylvania, Philadelphia, PA, 1998.

eMedicineHealth. Medications and drugs listing. https://www.
emedicinehealth.com/medications—-drugs/article_em.htm,

2018. (Accessed on Feb 18, 2018).

S. Liu, Wei Ma, R. Moore, V. Ganesan, and S. Nelson. Rxnorm: Prescription for elec-
tronic drug information exchange. IT Professional, 7(5):17-23, Sept 2005. doi:
10.1109/MITP.2005.122.

Lev Pevzner and Marti A Hearst. A critique and improvement of an evaluation metric for

text segmentation. Computational Linguistics, 28(1):19-36, 2002.

Doug Beeferman, Adam Berger, and John Lafferty. Statistical models for text segmenta-
tion. Machine Learning, 34(1):177-210, 1999.

Michel Galley, Kathleen McKeown, Eric Fosler-Lussier, and Hongyan Jing. Discourse
segmentation of multi-party conversation. In Proceedings of the 41st Annual Meet-
ing on Association for Computational Linguistics (ACL), volume 1, pages 562-569,

Sapporo, Japan, 2003.

Marti A. Hearst. Multi-paragraph segmentation of expository text. In Proceedings of the
32nd Annual Meeting on Association for Computational Linguistics, ACL "94, pages
016, Las Cruces, NM, 1994,

Martin Riedl and Chris Biemann. Topictiling: A text segmentation algorithm based on
Ida. In Proceedings of ACL 2012 Student Research Workshop, ACL *12, pages 37—
42, Jeju Island, Korea, 2012. URL http://dl.acm.org/citation.cfm?

1d=2390331.2390338.

173


https://www.emedicinehealth.com/medications-drugs/article_em.htm
https://www.emedicinehealth.com/medications-drugs/article_em.htm
http://dl.acm.org/citation.cfm?id=2390331.2390338
http://dl.acm.org/citation.cfm?id=2390331.2390338

Simone Teufel, Jean Carletta, and Marc Moens. An annotation scheme for discourse-
level argumentation in research articles. In Proceedings of the ninth conference on
European chapter of the Association for Computational Linguistics (EACL), pages
110-117, Bergen, Norway, 1999.

Joshua C. Denny, Anderson Spickard, III, Kevin B. Johnson, Neeraja B. Peterson, Josh F.
Peterson, and Randolph A. Miller. Evaluation of a method to identify and categorize

section headers in clinical documents. Journal of the American Medical Informatics

Association, 16(6):806-815, 2009a.

Simone Teufel. Argumentative zoning: Information Extraction from Scientific Text. PhD

thesis, University of Edinburgh, Edinburgh, Scotland, UK, 1999.

Paul van Mulbregt, Ira Carp, Lawrence Gillick, Steve Lowe, and Jon Yamron. Text Seg-
mentation and Topic Tracking on Broadcast News Via a Hidden Markov Model Ap-
proach. In Fifth International Conference on Spoken Language Processing, ICSLP
"08, Sydney, Australia, 1998.

J. P. Yamron, 1. Carp, L. Gillick, S. Lowe, and P. van Mulbregt. A Hidden Mrkov
Model Approach to Text Segmentation and Event Tracking. In Proceedings of the

1998 IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP "98, pages 333-336 vol. 1, Seattle, Washington, USA, May 1998.

Jia Yu, Xiong Xiao, Lei Xie, Chng Eng Siong, and Haizhou Li. A DNN-HMM A pproach
to Story Segmentation. In INTERSPEECH 2016, San Francisco, California, USA,
2016.

Wendy W Chapman, Prakash M Nadkarni, Lynette Hirschman, Leonard W D’ Avolio,
Guergana K Savova, and Ozlem Uzuner. Overcoming barriers to NLP for clinical

text: The role of shared tasks and the need for additional creative solutions. Journal

174



of the American Medical Informatics Association, 18(5):540-543, 2011. doi: 10.
1136/amiajnl-2011-000465.

John P. Pestian, Pawel Matykiewicz, Michelle Linn-Gust, Brett South, Ozlem Uzuner, Jan
Wiebe, K. Bretonnel Cohen, John Hurdle, and Christopher Brew. Sentiment analysis
of suicide notes: A shared task. Biomedical Informatics Insights, 5s1:BIL.S9042,
2012.

Carlo Strapparava and Rada Mihalcea. Learning to identify emotions in text. In Proceed-
ings of the ACM Symposium on Applied Computing (SAC), SAC "08, pages 1556
1560, Fortaleza, Ceara, Brazil, 2008. URL http://doi.acm.org/10.1145/
1363686.1364052.

Christopher Homan, Ravdeep Johar, Tong Liu, Megan Lytle, Vincent Silenzio, and Ce-
cilia Ovesdotter Alm. Toward macro-insights for suicide prevention: Analyzing
fine-grained distress at scale. In Proceedings of the Workshop on Computational
Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality,
pages 107-117, 2014.

Bridianne O’Dea, Stephen Wan, Philip J. Batterham, Alison L. Calear, Cecile Paris, and
Helen Christensen. Detecting suicidality on twitter. Internet Interventions, 2:183—

188, 4 2015. doi: 10.1016/.invent.2015.03.005.

Adam Sadilek, Christopher Homan, Walter S Lasecki, Vincent Silenzio, and Henry Kautz.
Modeling fine-grained dynamics of mood at scale. WSDM, Rome, Italy, pages 3-6,
2013.

Munmun De Choudhury, Michael Gamon, Scott Counts, and Eric Horvitz. Predicting de-
pression via social media. In Proceedings of the 7th International AAAI Conference

on Weblogs and Social Media (ICWSM), volume 13, pages 1-10, Boston, MA, 2013.

175


http://doi.acm.org/10.1145/1363686.1364052
http://doi.acm.org/10.1145/1363686.1364052

Glen Coppersmith, Mark Dredze, Craig Harman, Kristy Hollingshead, and Margaret
Mitchell. CLPsych 2015 shared task: Depression and PTSD on twitter. In Proceed-
ings of the 2nd Workshop on Computational Linguistics and Clinical Psychology:
From Linguistic Signal to Clinical Reality (CLPsych), pages 31-39, 2015.

Lorenzo Coviello, Yunkyu Sohn, Adam D. L Kramer, Cameron Marlow, Massimo
Franceschetti, Nicholas A. Christakis, and James H. Fowler. Detecting emo-
tional contagion in massive social networks. PLOS ONE, 9(3):1-6, 2014. doi:
10.1371/journal.pone.0090315.

Munmun De Choudhury, Scott Counts, Eric J. Horvitz, and Aaron Hoff. Characterizing
and predicting postpartum depression from shared facebook data. In Proceedings
of the 17th ACM Conference on Computer Supported Cooperative Work & Social
Computing, CSCW 14, pages 626638, Baltimore, MD, 2014.

Tim Althoff, Kevin Clark, and Jure Leskovec. Large-scale analysis of counseling conver-
sations: An application of natural language processing to mental health. Transac-

tions of the Association for Computational Linguistics, 4:463-476, 2016.
José A Reyes-Ortiz, Beatriz A Gonzilez-Beltran, and Lizbeth Gallardo-Lopez. Clinical
decision support systems: a survey of nlp-based approaches from unstructured data.

In 2015 26th International Workshop on Database and Expert Systems Applications
(DEXA), pages 163—167. IEEE, 2015.

Aurélie Névéol, Hercules Dalianis, Sumithra Velupillai, Guergana Savova, and Pierre
Zweigenbaum. Clinical natural language processing in languages other than english:

opportunities and challenges. Journal of biomedical semantics, 9(1):12, 2018.

Yanshan Wang, Liwei Wang, Majid Rastegar-Mojarad, Sungrim Moon, Feichen Shen,
Naveed Afzal, Sijia Liu, Yuqun Zeng, Saeed Mehrabi, Sunghwan Sohn, et al. Clin-

176



ical information extraction applications: a literature review. Jowrnal of biomedical

informatics, 77:34-49, 2018.

Kirk Roberts, Matthew Simpson, Dina Demner-Fushman, Ellen Voorhees, and William
Hersh. State-of-the-art in biomedical literature retrieval for clinical cases: a survey

of the trec 2014 cds track. Information Retrieval Journal, 19(1-2):113-148, 2016.

Michele Filannino and Ozlem Uzuner. Advancing the state of the art in clinical natural
language processing through shared tasks. Yearbook of medical informatics, 27(01):
184-192, 2018.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Pro-
ceedings of the Eighteenth International Conference on Machine Learning, ICML
"01, page 282-289, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc. ISBN 1558607781.

Michal Konkol and Miloslav Konopik. CRF-Based Czech named Entity Recognizer and
Consolidation of Czech NER. Research. In Ivan Habernal and Vaclav Matousek, edi-
tors, Text, Speech, and Dialogue, pages 153160, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

Dekang Lin and Xiaoyun Wu. Phrase Clustering for Discriminative Leamning. In Pro-
ceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP,
pages 1030-1038, Suntec, Singapore, August 2009. Association for Computational

Linguistics. URL https://www.aclweb.org/anthology/P09-1116.

Jorge Nocedal. Updating Quasi-Newton Matrices with Limited Storage. Mathematics of
computation, 35(151): 773782, 1980.

177


https://www.aclweb.org/anthology/P09-1116

Kenneth Church and William Gale. Inverse document frequency (idf): A measure of de-
viations from Poisson. In Natural Language Processing Using Very Large Corpora,
pages 283-295. Springer, New York, 1999.

Emanuel Falkenauer. The grouping genetic algorithms-widening the scope of the gas.
Belgian Journal of Operations Research, Statistics and Computer Science, 33(1):2,

1992.

LE Agusti, Sancho Salcedo-Sanz, Silvia Jiménez-Fermandez, Leopoldo Carro-Calvo,
Javier Del Ser, José Antonio Portilla-Figueras, et al. A new grouping genetic algo-
rithm for clustering problems. Expert Systems with Applications, 39(10):9695-9703,
2012.

Martin Warin and HM Volk. Using wordnet and semantic similarity to disambiguate an

ontology. Retrieved January, 25:2008, 2004.
G.D. Forney. The Viterbi Algorithm. Proceedings of the IEEE, 61(3):268-278, 1973.

Stanley F Chen and Ronald Rosenfeld. A Gaussian Prior for Smoothing Maximum En-

tropy Models. Technical report, Carnegie-Mellon University, School of Computer
Science, Pittsburgh, Pennsylvania, USA, 1999.

Filip Ginter, Hanna Suominen, Sampo Pyysalo, and Tapio Salakoski. Combining hidden
markov models and latent semantic analysis for topic segmentation and labeling:

Method and clinical application. International journal of medical informatics, 78

(12)el-e6, 2009.

Katja Hofmann, Manos Tsagkias, Edgar Meij, and Maarten De Rijke. The impact of doc-
ument structure on keyphrase extraction. In Proceedings of the 18th ACM conference

on Information and knowledge management, pages 1725-1728. ACM, 2009.

178



Dragos Repta, Ioan Stefan Sacala, Mihnea Alexandru Moisescu, and Ioan Dumitrache.
Towards document flow discovery in e-health systems. In 2018 International Con-

ference on Intelligent Systems (I5), pages 267-271. IEEE, 2018.

Jian Wu, Kyle Mark Williams, Hung-Hsuan Chen, Madian Khabsa, Comelia Caragea,
Suppawong Tuarob, Alexander G Ororbia, Douglas Jordan, Prasenjit Mitra, and
C Lee Giles. CiteSeerX: Al in a digital library search engine. Al Magazine, 36
(3):35-48, 201 5a.

Jinxi Xu and W Bruce Croft. Quary expansion using local and global document analysis.
In Aem sigir forum, number 2, pages 168-175. ACM, 2017.

Antoine Doucet. Logical structure extraction from digitized books. Document Analysis

And Text Recognition: Benchmarking State-of-the-art Systems, 82:1, 2018.

Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by bayesian
model merging. In International Colloguium on Grammatical Inference, pages 106—

118. Springer, 1994,

Michael Simmons, Ayush Singhal, and Zhiyong Lu. Text mining for precision medicine:
bringing structure to ehrs and biomedical literature to understand genes and health.

In Translational Biomedical Informatics, pages 139-166. Springer, 2016.

Sébastien Eskenazi, Petra Gomez-Kriimer, and Jean-Marc Ogier. A comprehensive survey

of mostly textual document segmentation algorithms since 2008. Pattern Recogni-

tion, 64:1-14, 2017.

Kavita Ganesan and Michael Subotin. A general supervised approach to segmentation of
clinical texts. In 2014 IEEE International Conference on Big Data (Big Data), pages
33-40, 2014.

179



Alexandra Pomares-Quimbaya, Markus Kreuzthaler, and Stefan Schulz. Current ap-
proaches to identify sections within clinical narratives from electronic health records:

a systematic review. BMC medical research methodology, 19(1):155, 2019.

Joshua C. Denny, III Spickard, Anderson, Kevin B. Johnson, Neeraja B. Peterson, Josh F.
Peterson, and Randolph A. Miller. Evaluation of a Method to Identify and Cate-

gorize Section Headers in Clinical Documents. Journal of the American Medical

Informatics Association, 16(6):806-815, 11 2009b. doi: 10.1197/jamia.M3037.

Emilia Apostolova, David S. Channin, Dina Demner-Fushman, Jacob Furst, Steven Lyti-
nen, and Daniela Raicu. Automatic segmentation of clinical texts. In 2009 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
volume 2009, pages 5905-5908, 2009.

Peter J. Haug, Xinzi Wu, Jeffery P. Ferraro, Guergana K. Savova, Stanley M. Huff, and
Christopher G Chute. Developing a section labeler for clinical documents. In AMIA
... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium, volume
2014, pages 636644, 2014

Hong Jie Dai, Shabbir Syed-Abdul, Chih Wei Chen, and Chieh Chen Wu. Recognition
and evaluation of clinical section headings in clinical documents using token-based
formulation with conditional random fields. BioMed Research International, 2015:

873012-873012, 2015.

Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Documents.
In Proceedings of the 31st International Conference on Machine Learning, pages
1188-1196, Beijing, China, 2014.

Burton DeWilde. textacy, Mar 2020. URL https://pypi.org/project/

textacy/.

180


https://pypi.org/project/textacy/
https://pypi.org/project/textacy/

Nathanael Chambers, Taylor Cassidy, Bill McDowell, and Steven Bethard. Dense
Event Ordering with a Multi-Pass Architecture. Transactions of the Association
for Computational Linguistics, 2:273-284, 2014. doi: 10.1162/tacl_a_00182. URL

https://www.aclweb.org/anthology/Q14-102Z.

Mohammed Aldawsari and Mark Finlayson. Detecting Subevents using Discourse and
Narrative Features. In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 4780-4790, Florence, Italy, July 2019.
Association for Computational Linguistics. doi: 10.18653/1/P19-1471. URL

https://www.aclweb.org/anthology/P19-1471.

Explosion AL.  Annotation Specifications-SpaCy API Documentation, 2020. URL

https://spacy.ioc/api/annotation#named-entities.

Allan Bell. The Discourse Structure of News Stories. In Approaches to Media Discourse,

pages 64—104. Blackwell Oxford, 1998.
Judy Delin. The Language of Everyday Life: An Introduction. Sage, London, UK, 2000.

Teun A Van Dijk. Studying Writing: Linguistic Approaches. Written Communication
Annual: An International Survey of Research and Theory Series, Volume 1., chapter

News Schemata, pages 155-185. Sage, Beverly Hills, California, USA, 1986.

Allan Bell. Telling stories. In David Graddol and Oliver Boyd-Barrett, editors, Media
texts: Authors and readers, pages 100-118. Multilingual Matters, Clevedon, U.K.,
1994,

Afrooz Rafiee, Wilbert Spooren, and José Sanders. Culture and Discourse Structure: A
Comparative Study of Dutch and Iranian News Texts. Discourse & Communication,
12(1):58-79, 2018. doi: 10.1177/1750481317735626. URL https://doi.org/
10.1177/1750481317735626.

181


https://www.aclweb.org/anthology/Q14-1022
https://www.aclweb.org/anthology/P19-1471
https://spacy.io/api/annotation#named-entities
https://doi.org/10.1177/1750481317735626
https://doi.org/10.1177/1750481317735626

Rachele Sprugnoli, Tommaso Caselli, Sara Tonelli, and Giovanni Moretti. The con-
tent types dataset: a new resource to explore semantic and functional characteris-
tics of texts. In Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume 2, Short Papers, pages 260
266, Valencia, Spain, April 2017. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/E1T7-204Z.

Mesfin Awoke Bekalu. Presupposition In News Discourse. Discourse & Society, 17(2):
147-172, 2006. doi: 10.1177/0957926506060248. URL https://doi.org/

10.1177/0957926506060248.

Nynke van der Vliet, Ildiké Berzlanovich, Gosse Bouma, Markus Egg, and Gisela Re-
deker. Building a Discourse-Annotated Dutch Text Corpus. Bochumer Linguistische
Arbeitsberichte, 3:157-171, 2011.

Zhongdang Pan and Gerald M Kosicki. Framing Analysis: An Approach to News Dis-

course. Political Communication, 10(1):55-75, 1993.

Peter R White. Telling Media Tales: The News Story as Rhetoric. Department of Linguis-

tics, Faculty of Arts, University of Sydney, Sydney, Australia, 1998.

Mark Alan Finlayson. Inferring propp’s functions from semantically annotated text. The
Journal of American Folklore, 129(511):55-77, 2016. doi: 10.5406/jamerfolk.129.
511.0055.

Felicity Jane Pool and Miranda Lynette Siemienowicz. New RANZCR clinical radiology
written report guidelines. Journal of Medical Imaging and Radiation Oncology, 63

(1):7-14, 2019.

Barrou Diallo and Mihai Lupu. Future patent search. In Current Challenges in Patent
Information Retrieval, volume 37, pages 433-455. Springer, 2017. doi: 10.1007/
078-3-662-53817-3_17.

182


https://www.aclweb.org/anthology/E17-2042
https://doi.org/10.1177/0957926506060248
https://doi.org/10.1177/0957926506060248

Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Proceedings
of the 32nd annual meeting on Association for Computational Linguistics, pages

133-138. Association for Computational Linguistics, 1994.

Andreas Stolcke and Stephen Omohundro. Hidden markov model induction by bayesian
model merging. In Advances in neural information processing systems, pages 11-18,

1993.

Ehsan Hosseini-Asl and Jacek M Zurada. Nonnegative matrix factorization for document
clustering: A survey. In International Conference on Artificial Intelligence and Soft

Computing, pages 7126-7137. Springer, 2014.

Pengtao Xie and Eric P Xing. Integrating document clustering and topic modeling. In Pro-
ceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence,

pages 694-703. AUAI Press, 2013.

Irvin Hwang, Andreas Stuhlmiiller, and Noah D Goodman. Inducing probabilistic pro-
grams by bayesian program merging. arXiv preprint arXiv:1110.5667, 2011.

Paolo Frasconi, Giovanni Soda, and Alessandro Vullo. Text categorization for multi-
page documents: A hybrid naive bayes hmm approach. In Proceedings of the 1st

ACMV/IEEE-CS joint conference on Digital libraries, pages 11-20. ACM, 2001.

Michael R Brent and Timothy A Cartwright. Lexical categorization: Fitting template
grammars by incremental md] optimization. In International Colloquium on Gram-

matical Inference, pages 84-94. Springer, 1996.

Cen Li and Gautam Biswas. Clustering sequence data using hidden markov model rep-
resentation. In Data Mining and Knowledge Discovery: Theory, Tools, and Tech-

nology, volume 3695, pages 14-22. International Society for Optics and Photonics,
1999.

183



Zouhair Rimale, Abderrahim Tragha, et al. An approach for the automatic generation af a
content type of a semantic learning object from ontology. In 2016 11th International
Conference on Intelligent Systems: Theories and Applications (SITA), pages 1-6.
IEEE, 2016.

Victoria Lesley Redfern. Enhanced searching using a thesaurus, September 27 2011. US
Patent 8,027,991.

Christoph Mangold. A survey and classification of semantic search approaches. Interna-

tional Journal of Metadata, Semantics and Ontologies, 2(1):23-34, 2007.

Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword search in relational databases: A
survey. IEEE Data Eng. Bull., 33(1):67-78, 2010.

Max L Wilson, Bill Kules, Ben Shneiderman, et al. From keyword search to exploration:
Designing future search interfaces for the web. Foundations and Trends(R) in Web
Science, 2(1):1-97, 2010.

Shilpa S Laddha, Anurag R Laddha, and Pradip M Jawandhiya. New paradigm to key-
word search: A survey. In Green Computing and Internet of Things (ICGCloT),
2015 International Conference on, pages 920-923. IEEE, 2015.

Matthias Klusch, Patrick Kapahnke, Stefan Schulte, Freddy Lecue, and Abraham Bern-
stein. Semantic web service search: a brief survey. KI-Kiinstliche Intelligenz, 30(2):

139-147, 2016.

Yuchao Zhou, Supama De, Wei Wang, and Klaus Moessner. Search techniques for the
web of things: A taxonomy and survey. Sensors, 16(5):600, 2016.

Emmanouil Amolochitis. Algorithms for Academic Search and Recommendation Sys-

tems. PhD thesis, Aalborg Universitet, 2014.

184



Pricila R Rodrigues and Raquel O Prates. A semiotic study on academic search interfaces.
In Proceedings of the 15th Brazilian Symposium on Human Factors in Computing
Systems, page 53. ACM, 2016.

Madian Khabsa, Zhaohui Wu, and C Lee Giles. Towards better understanding of academic
search. In Digital Libraries (JCDL), 2016 IEEE/ACM Joint Conference on, pages

111-114. IEEE, 2016.

Vannevar Bush. As we may think, July 1945. URL https://www.theatlantic.

com/magazine/archive/1945/07/as—-we-may-think/303881/.

Eugene Garfield. Citation indexes for science; a new dimension in documentation through

association of ideas. Science (New York, NY), 122(3159):108, 1955.

Eugene Garfield. Science citation index”-a new dimension in indexing. Science, 144

(3619):649-654, 1964.

Clarivate Analytics. Acquisition of the thomson reuters intellectual prop-
erty and science business by onex and baring asia completed, Oct
2016. URL https://www.prnewswire.com/news—releases/

acquisition—of-the-thomson-reuters—intellectual -property—and-scien

html.

Libguides: Librarian toolkit: Our history, October 2018. URL https://clarivate.

libguides.com/newlibrarian/history.

Anne-Wil Harzing. Microsoft academic (search): a phoenix arisen from the ashes? Sci-

entometrics, 108(3):1637-1647, 2016.
Scopus preview. URL http://www. scopus. com/.

Huajing Li, Isaac Councill, Wang-Chien Lee, and C Lee Giles. Citeseerx: an architecture
and web service design for an academic document search engine. In Proceedings of

the 15th international conference on World Wide Web, pages 883-884. ACM, 2006.

185


https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.prnewswire.com/news-releases/acquisition-of-the-thomson-reuters-intellectual-property-and-science-business-by-onex-and-baring-asia-completed-300337402.html
https://www.prnewswire.com/news-releases/acquisition-of-the-thomson-reuters-intellectual-property-and-science-business-by-onex-and-baring-asia-completed-300337402.html
https://www.prnewswire.com/news-releases/acquisition-of-the-thomson-reuters-intellectual-property-and-science-business-by-onex-and-baring-asia-completed-300337402.html
https://clarivate.libguides.com/newlibrarian/history
https://clarivate.libguides.com/newlibrarian/history
http://www.scopus.com/

Karen Sparck Jones. A statistical interpretation of term specificity and its application in

retrieval. Journal of documentation, 28(1):11-21, 1972.

Karen Sparck Jones. Index term weighting. Information storage and retrieval, 9(11):
619-633, 1973.

Duygu Tiimer, Mohammad Ahmed Shah, and Yiltan Bitirim. An empirical evaluation
on semantic search performance of keyword-based and semantic search engines:
Google, yahoo, msn and hakia. In 2009 Fourth International Conference on Internet

Monitoring and Protection, pages 51-55. IEEE, 2009.

Matthew E Falagas, Eleni I Pitsouni, George A Malietzis, and Georgios Pappas. Com-
parison of pubmed, scopus, web of science, and google scholar: strengths and weak-

nesses. The FASEB journal, 22(2):338-342, 2008.

Martin Boeker, Wemner Vach, and Edith Motschall. Google scholar as replacement for
systematic literature searches: good relative recall and precision are not enough. In

BMC medical research methodology, 2013.

Dean Giustini and Maged N Kamel Boulos. Google scholar is not enough to be used
alone for systematic reviews. Online journal of public health informatics, 5(2):214,

2013.

Thorsten Schoormann, Dennis Behrens, Michael Fellmann, and Ralf Knackstedt. jj sorry,
too much information;; design principles for supporting rigorous search strategies
in literature reviews. In 2018 IEEE 20th Conference on Business Informatics (CBI),

pages 99-108. IEEE, 2018.

Guobing Zou, Bofeng Zhang, Yanglan Gan, and Jianwen Zhang. An ontology-based
methodology for semantic expansion search. In 2008 Fifth International Conference

on Fuzzy Systems and Knowledge Discovery, volume 5, pages 453-457. IEEE, 2008.

186



Roberto De Virgilio, Francesco Guerra, and Yannis Velegrakis. Semantic search over the

web. Springer Science & Business Media, 2012.

Alan Cruse. Meaning in Language: An introduction to Semantics and Pragmatics. Ox-

ford: Oxford University Press, 2004.

D Alan Cruse and David Alan Cruse. Lexical semantics. Cambridge university press,

1986.

Dirk Geeraerts. The theoretical and descriptive development of lexical semantics. The

lexicon in focus. Competition and convergence in current lexicology, pages 23-42,

2002.

Scott C Deerwester, Susan T Dumais, George W Furnas, Richard A Harshman, Thomas K
Landauer, Karen E Lochbaum, and Lynn A Streeter. Computer information retrieval
using latent semantic structure, June 13 1989. US Patent 4,839,853.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauver, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American society
for information science, 41(6):391-407, 1990.

Jian Wu, Jason Killian, Huaiyu Yang, Kyle Williams, Sagnik Ray Choudhury, Suppawong
Tuarob, Cornelia Caragea, and C Lee Giles. Pdfmef: A multi-entity knowledge

extraction framework for scholarly documents and semantic search. In Proceedings

of the 8th International Conference on Knowledge Capture, page 13. ACM, 2015b.

Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific ameri-

can, 284(5):28-37, 2001.

Grigoris Antoniou and Frank Van Harmelen. Web ontology language: Owl. In Handbook

on ontologies, pages 67-92. Springer, 2004.

Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10(10):2004, 2004.

187



Qé&a with tim berners-lee: The inventor of the web explains how the new semantic web
could have profound effects on the growth of knowledge and innovation, Apr 2007.

URL https://www.bloomberg.com/news/articles/2019-03-08/

tesla-bull-left-shares—-photo-of-what-he-says—is-the—new-model-s.

Matthew Russell Kearl, Cherie Bakker Noteboom, and Deb Tech. A novel improvement

to google scholar ranking algorithms through broad topic search. 2017.

Bastien Latard, Jonathan Weber, Germain Forestier, and Michel Hassenforder. Towards a
semantic search engine for scientific articles. In International Conference on Theory

and Practice of Digital Libraries, pages 608-611. Springer, 2017.

Ankita Malve and PM Chawan. A comparative study of keyword and semantic based
search engine. International Journal of Innovative Research in Science, Engineering

and Technology, 4(11):11156-11161, 2015.

Alberto Martin-Martin, Enrique Orduna-Malea, Juan M Ayllén, and Emilio Delgado
Lopez-Cozar. Back to the past: on the shoulders of an academic search engine giant.
Scientometrics, 107(3):14T7-1487, 2016.

Péter Jacso. Google scholar revisited. Online information review, 32(1):102-114, 2008.

Enrique Ordufia-Malea, Alberto Martin-Martin, Juan M. Ayllon, and Emilio Delgado
Lopez-Cozar. The silent fading of an academic search engine: the case of microsoft

academic search. Online Information Review, 38(7):936-953, 2014.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank cita-
tion ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999a.
Fathi Mahmoud Fathi Al-Hattab. An efficient ranking algorithm for scientific research

papers. Zarga University-Jordan, 2016.

Amy N Langville and Carl D Meyer. Google's PageRank and beyond: The science of

search engine rankings. Princeton University Press, 2011.

188


https://www.bloomberg.com/news/articles/2019-03-08/tesla-bull-left-shares-photo-of-what-he-says-is-the-new-model-s
https://www.bloomberg.com/news/articles/2019-03-08/tesla-bull-left-shares-photo-of-what-he-says-is-the-new-model-s

Joeran Beel and Bela Gipp. Academic search engine spam and google scholar’s resilience

against it. Journal of electronic publishing, 13(3), 2010.

Hans-Michael Miiller, Eimear E Kenny, and Paul W Sternberg. Textpresso: An ontology-

based information retrieval and extraction system for biological literature. PLoS

Biology, 2(11):e3009, 2004.

Eric Brill. A simple rule-based part of speech tagger. In Proceedings of the third con-
ference on Applied natural language processing, pages 152-155. Association for

Computational Linguistics, 1992.

Philippe E Thomas, Johannes Starlinger, and Ulf Leser. Experiences from developing the
domain-specific entity search engine geneview. In BTW, pages 225-239, 2013.

Andreas Doms and Michael Schroeder. Gopubmed: exploring pubmed with the gene
ontology. Nucleic acids research, 33(suppl_2):W783-W786, 2005.

Heiko Dietze and Michael Schroeder. Goweb: a semantic search engine for the life

science web. BMC bioinformatics, 10(10):S7, 2009.

Jorg Hakenberg, Loic Royer, Conrad Plake, Hendrik Strobelt, and Michael Schroeder.
Me and my friends: gene mention normalization with background knowledge. In

Proc 2nd BioCreative Challenge Evaluation Workshop, pages 1-4, 2007.

Philippe Thomas, Johannes Starlinger, Alexander Vowinkel, Sebastian Arzt, and Ulf
Leser. Geneview: a comprehensive semantic search engine for pubmed. Nucleic

acids research, A00W 1):W585-W591, 2012.
Eneko Agirre. Word sense disambiguation. Text, Speech and Language Technology, 2006.

Roberto Navigli. Word sense disambiguation: A survey. ACM computing surveys
(CSUR), 41(2):10, 2009.

189



Roberto Navigli and Simone Paolo Ponzetto. BabelNet: The automatic construction, eval-

uation and application of a wide-coverage multilingual semantic network. Artificial

Intelligence, 193:217-250, 2012.

Maria Teresa Pazienza, Marco Pennacchiotti, and Fabio Massimo Zanzotto. Terminology
extraction: an analysis of linguistic and statistical approaches. In Knowledge mining,

pages 255-279. Springer, 2005.

Hassan H Alrehamy and Coral Walker. Semcluster: unsupervised automatic keyphrase
extraction using affinity propagation. In UK Workshop on Computational Intelli-

gence, pages 222-235. Springer, 2017.

Youngja Park, Roy J Byrd, and Branimir K Boguraev. Automatic glossary extraction:
beyond terminology identification. In COLING 2002: The 19th International Con-

ference on Computational Linguistics, 2002.

Juan Antonio Lossio-Ventura, Clement Jonquet, Mathieu Roche, and Maguelonne Teis-
seire. Biomedical term extraction: overview and a new methodology. Information

Retrieval Journal, 19(1-2):59-99, 2016a.

Irena Spasi¢, Bo Zhao, Christopher B Jones, and Kate Button. Kneetex: an ontology—
driven system for information extraction from mri reports. Journal of biomedical

semantics, 6(1):34, 2015.

Wilson Wong, Wei Liu, and Mohammed Bennamoun. Determining termhood for leaming
domain ontologies using domain prevalence and tendency. In Proceedings of the
sixth Australasian conference on Data mining and analytics-Volume 70, pages 47—

54. Australian Computer Society, Inc., 2007.

Juan Antonio Lossio-Ventura, Clement Jonquet, Mathieu Roche, and Maguelonne Teis-
seire. A way to automatically enrich biomedical ontologies. In EDBT: Extending
Database Technology, volume 1. ACM, 2016b.

190



Mark Alan Finlayson and Nidhi Kulkamni. Detecting multi-word expressions improves
word sense disambiguation. In Proceedings of the Workshop on Multiword Expres-
sions: from Parsing and Generation to the Real World, pages 20-24. Association for

Computational Linguistics, 2011.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schille. Regular

expressions for language engineering. Natural Language Engineering, 2(4):305—
328, 1996.

Christian Jacquemin, Judith L Klavans, and Evelyne Tzoukermann. Expansion of multi-
word terms for indexing and retrieval using morphology and syntax. In Proceedings
of the 35th Annual Meeting of the Association for Computational Linguistics and
Eighth Conference of the European Chapter of the Association for Computational

Linguistics, pages 24-31. Association for Computational Linguistics, 1997.

Ulrich Heid. A linguistic bootstrapping approach to the extraction of term candidates
from german text. Terminology. International Journal of Theoretical and Applied

Issues in Specialized Communication, 5(2):161-181, 1998.

Katerina T Frantzi, Sophia Ananiadou, and Junichi Tsujii. The c-value/nc-value method

of automatic recognition for multi-word terms. In International Conference on The-

ory and Practice of Digital Libraries, pages 585-604. Springer, 1998.

Katerina Frantzi, Sophia Ananiadou, and Hideki Mima. Automatic recognition of multi-

word terms:. the c-value/nc-value method. International journal on digital libraries,

3(2):115-130, 2000.

Nidhi Kulkarni and Mark Finlayson. jmwe: A java toolkit for detecting multi-word ex-
pressions. In Proceedings of the Workshop on Multiword Expressions: from Parsing
and Generation to the Real World, pages 122-124, 2011.

191



Antoni Oliver and Mercé Vazquez. Tbxtools: a free, fast and flexible tool for automatic
terminology extraction. In Proceedings of the International Conference Recent Ad-

vances in Natural Language Processing, pages 473-479, 2015.

Erik Faessler and Udo Hahn. Semedico: a comprehensive semantic search engine for the

life sciences. Proceedings of ACL 2017, System Demonstrations, pages 91-96, 2017.

Ralph Delfs, Andreas Doms, Alexander Kozlenkov, and Michael Schroeder. Gopubmed:

ontology-based literature search applied to gene ontology and pubmed. In German

Conference on Bioinformatics, volume 169, page 178, 2004.

Wei Hu, Honglei Qiu, Jiacheng Huang, and Michel Dumontier. Biosearch: a semantic

search engine for bio2rdf. Database, 2017, 2017.

Mark Steyvers and Tom Griffiths. Probabilistic topic models. Handbook of latent seman-
tic analysis, 427(7):424-440, 2007.

Jan Brophy and David Bawden. Is google enough? Comparison of an internet search
engine with academic library resources. In Aslib Proceedings, volume 57, pages

498-512. Emerald Group Publishing Limited, 2005.

Jie Tang, Ruoming Jin, and Jing Zhang. A topic modeling approach and its integration
into the random walk framework for academic search. In 2008 Eighth IEEE Inter-

national Conference on Data Mining, pages 1055-1060. IEEE, 2008a.

Yifeng Liu, Yongjie Liang, and David Wishart. Polysearch2: a significantly improved
text-mining system for discovering associations between human diseases, genes,
drugs, metabolites, toxins and more. Nucleic acids research, 43(W1):W535-W542,
2015.

Olga Vechtomova and Ying Wang. A study of the effect of term proximity on query
expansion. Journal of Information Science, 32(4):324-333, 2006.

192



Liana Ermakova, Josiane Mothe, and Elena Nikitina. Proximity relevance model for

query expansion. In Proceedings of the 31st Annual ACM Symposium on Applied
Computing, pages 1054-1059. ACM, 2016.

Jiran Beel and Bela Gipp. Google scholar’s ranking algorithm: an introductory overview.
In Proceedings of the 12th International Conference on Scientometrics and Informet-

rics (ISSI'09), volume 1, pages 230-241. Rio de Janeiro (Brazil), 2009.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank cita-
tion ranking: Bringing order to the web. Technical Report 1999-66, Stanford Info-
Lab, November 1999b. Previous number = SIDL-WP-1999-0120.

Mushtaq A Hasson, Song Feng Lu, and Basheer A Hassoon. Scientific research paper
ranking algorithm ptra: A tradeoff between time and citation network. In Applied

Mechanics and Materials, volume 551, pages 603-611. Trans Tech Publ, 2014.

Ronald Brisebois, Alain Abran, Apollinaire Nadembega, and Philippe N‘techobo. An
assisted literature review using machine learning models to identify and build a lit-

erature corpus. International Journal of Engineering Science Invention, 6(7):72-84,

2017.

Sabir Ribas, Berthier Ribeiro-Neto, Rodrygo LT Santos, Edmundo de Souza e Silva, Al-
berto Ueda, and Nivio Ziviani. Random walks on the reputation graph. In Pro-
ceedings of the 2015 international conference on the theory of information retrieval,

pages 181-190. ACM, 2015,

Dik L Lee, Huei Chuang, and Kent Seamons. Document ranking and the vector-space
model. IEEE software, 14(2):67-75, 1997.

Corinna Breitinger, Bela Gipp, and Stefan Langer. Research-paper recommender systems:

a literature survey. International Journal on Digital Libraries, 17(4):305-338, 2015.

193



Chenyan Xiong, Russell Power, and Jamie Callan. Explicit semantic ranking for academic
search via knowledge graph embedding. In Proceedings of the 26th international
conference on world wide web, pages 1271-1279. International World Wide Web

Conferences Steering Committee, 2017.

Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana. A dual embedding

space model for document ranking. arXiv preprint arXiv:1602.01137, 2016.

Jie Tang, Jing Zhang, Limin Yao, and Juanzi Li. Extraction and mining of an academic
social network. In Proceedings of the 17th international conference on World Wide
Web, pages 1193-1194. ACM, 2008b.

Jie Tang. Aminer: Toward understanding big scholar data. In Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining, pages 467-467.
ACM, 2016.

R Buckminster Fuller and Kiyoshi Kuromiya. Critical path. Macmillan, 1981.

David Russell Schilling. Knowledge doubling every 12 months, soon to be ev-
ery 12 hours, Apr 2013. URL http://www.industrytap.com/
knowledge—-doubling-every—-1Z2-months—scon-to-be—-every—12-hours/

3950.

P Coles, T Cox, C Mackey, and S Richardson. The toxic terabyte-how datadumping

threatens business efficiency. IBM Global Technical Services, 2006.

Dirk Lewandowski. Evaluating the retrieval effectiveness of web search engines using a
representative query sample. Journal of the Association for Information Science and

Technology, 66(9):1763-1775, 2015.

Laura Martinez-Sanahuja and David Sanchez. Evaluating the suitability of web search

engines as proxies for knowledge discovery from the web. Procedia Computer Sci-

ence, 96:169-178, 2016.

194


http://www.industrytap.com/knowledge-doubling-every-12-months-soon-to-be-every-12-hours/3950
http://www.industrytap.com/knowledge-doubling-every-12-months-soon-to-be-every-12-hours/3950
http://www.industrytap.com/knowledge-doubling-every-12-months-soon-to-be-every-12-hours/3950

Todd Leyba. Semantic search by means of word sense disambiguation using a lexicon,

Apr 19, 2016. US Patent 9,317,589.

Jingshan Huang, Fernando Gutierrez, Harrison J. Strachan, Dejing Dou, Weili Huang,
Barry Smith, Judith A. Blake, Karen Eilbeck, Darren A. Natale, Yu Lin, Bin Wu,
Nisansa de Silva, Xiaowei Wang, Zixing Liu, Glen M. Borchert, Ming Tan, and
Alan Ruttenberg. Omnisearch: A semantic search system based on the ontology for
microRNA target (OMIT) for microRNA-target gene interaction data. Journal of
Biomedical Semantics, 7(1):25, 2016.

Jlangbo Dang, Murat Kalender, Candemir Toklu, and Kenneth Hampel. Semantic search
tool for document tagging, indexing and search, Jun 20, 2017. US Patent 9,684,683.

Mehdi Allahyari, Krys J Kochut, and Maciej Janik. Ontology-based text classification
into dynamically defined topics. In Proceedings of the 2014 IEEE International
Conference on Semantic Computing (ICSC), pages 273-278, Newport Beach, CA,
2014.

Gridaphat Sriharee. An ontology-based approach to auto-tagging articles. Vietnam Jour-
nal of Computer Science, 2(2):85-94, 2015.

Daya C. Wimalasuriya and Dejing Dou. Ontology-based information extraction: An
introduction and a survey of current approaches. Journal of Information Science, 36

(3):306-323, 2010. doi: 10.1177/0165551509360123.

Han Jaiwei and Micheline Kamber. Data mining: concepts and techniques. Morgan
Kaufmann, San Francisco, 2006.

Rossitza Setchi and Qiao Tang. Concept indexing using ontology and supervised machine

leaming. Transactions on Engineering, Computing and Technology, 19:221-226,
2007.

195



Jon M Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S
Tomkins. The web as a graph: Measurements, models, and methods. In Proceedings

of the International Computing and Combinatorics Conference, pages 1-17, Tokyo,

Japan, 1999.

Slavko Zitnik, Marinka Zitnik, Blaz Zupan, and Marko Bajec. Sieve-based relation ex-

traction of gene regulatory networks from biological literature. BM C Bioinformatics,

16(16):51, 2015.

Harsha Gurulingappa, Abdul Mateen-Rajpu, and Luca Toldo. Extraction of potential

adverse drug events from medical case reports. Journal of Biomedical Semantics, 3

(1):15, 2012.

Marie-Francine Moens. Information extraction: Algorithms and prospects in a retrieval

context. Springer Netherlands, Dordrecht, The Netherlands, 2006.

Dawn Field, Linda Amaral-Zettler, Guy Cochrane, James R Cole, Peter Dawyndt,
George M Garrity, Jack Gilbert, Frank Oliver Glockner, Lynette Hirschman, and
llene Karsch-Mizrachi. The genomic standards consortium. PLoS Biology, 9(6):
el1001088, 2011.

Lynn M Schriml, Cesar Arze, Suvarna Nadendla, Anu Ganapathy, Victor Felix, Anup
Mahurkar, Katherine Phillippy, Aaron Gussman, Sam Angiuoli, Elodie Ghedin,
Owen White, and Neil Hall. GeMInA, genomic metadata for infectious agents, a
geospatial surveillance pathogen database. Nucleic Acids Research, 38, Suppl. I:
D754-D7e4, 2010.

NIH NAIDS. The national institute for allergy and infectious diseases (NI-
AID), microbiology and infectious diseases resources, DMID metadata

standards core sample. https://www.niaid.nih.gov/research/

196


https://www.niaid.nih.gov/research/dmid-metadata-standards-core-sample
https://www.niaid.nih.gov/research/dmid-metadata-standards-core-sample

dmid-metadata-standards—-core—-sample, 2017. Retrieved on Jun 19,
2018.

Steven Bird and Edward Loper. NLTK: the natural language toolkit. In Proceedings of

the ACL 2004 on Interactive Poster and Demonstration Sessions, page 31, Barcelona,

Spain, 2004.

Christiane Fellbaum, editor WordNet: An Electronic Lexical Database. MIT Press,
Cambridge, MA, 1998.

PubMed Help. Stopwords table. https://www.ncbi.nlm.nih.gov/
books/NBK3827/table/pubmedhelp.T.stopwords/, National Center

for Biotechnology Information, 2005. accessed on Jun 19, 2018.

Liling Tan. Pywsd: Python implementations of word sense disambiguation (WSD) tech-

nologies [software]. https://github.com/alvations/pywsd, 2014. accessed on Jun 19,
2018.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intel-
ligence Research, 16:321-357, 2002.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. CoRR, abs/1301.3781, 2013.

Andrew Trask, Phil Michalak, and John Liu. sense2vec — A fast and accurate method for
word sense disambiguation in neural word embeddings. arXiv Computing Research

Repository (CoRR), 2015. abs/1511.06388.

Explosion Al. SpaCy: A library for advanced natural language processing in python and

cython [software]. https://github.com/explosion/spaCy, 2015. accessed on Jun 19,
2018.

197


https://www.niaid.nih.gov/research/dmid-metadata-standards-core-sample
https://www.niaid.nih.gov/research/dmid-metadata-standards-core-sample
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/
https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/

Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Confer-
ence on Document Analysis and Recognition, volume 1, pages 278-282, Montreal,
Canada, 1995. doi: 10.1109/ICDAR.1995.598994.

James Franklin. The elements of statistical learning: Data mining, inference and predic-

tion. The Mathematical Intelligencer, 27(2):83-85, 2005.

Antonio Criminisi, Jamie Shotton, Ender Konukoglu, et al. Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and
semi-supervised learning. Foundations and Trends in Computer Graphics and Vi-
sion, 7(2-3):81-227, 2012.

E Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20
(3):273-297, 1995.

Wenwen Li, Michael F Goodchild, and Robert Raskin. Towards geospatial semantic
search: exploiting latent semantic relations in geospatial data. International Journal

of Digital Earth, 7(1):17-37, 2014.

Hannah Bast, Bjorn Buchhold, and Elmar Haussmann. Semantic Search on Text and
Knowledge Bases. Foundations and Trends in Information Retrieval, 10(2-3):119—
271, 2016.

Vikas Jindal, Seema Bawa, and Shalini Batra. A review of ranking approaches for seman-

tic search on web. Information Processing & Management, 50(2):416-425, 2014.

Deya Banisakher, Maria E Presa Reyes, Joshua D Eisengberg, Joshua Allen, Mark A

Finlayson, Rene Price, and Shu-Ching Chen. Ontology-based supervised concept

198



leamning for the biogeochemical literature. In 2018 IEEE International Conference

on Information Reuse and Integration (IRI), pages 402-410. IEEE, 2018b.

Naoaki Okazaki. Crfsuite: a fast implementation of conditional random fields (crfs).

2007. URL https://github. com/chokkan/crfsuite.

Bonnie Feldman, Ellen M Martin, and Tobi Skotnes. Big data in healthcare hype and
hope. Dr. Bonnie, 360:122-125, 2012.

199


https://github.com/chokkan/crfsuite

VITA

DEYA BANISAKHER

April 23, 1992 Born, Amman, Jordan

2014 B.S., Computer Engineering
Bethune-Cookman University
Daytona Beach, Florida

2014 B.S., Computer Science
Bethune-Cookman University
Daytona Beach, Florida

2019 M.S., Computer Science
Florida International University
Miami, Florida

PUBLICATIONS

Banisakher, D., Yarlott, W. V., Aldawsari, M., Rishe, N., Finlayson, M. A. (2020). Im-
proving the Identification of the Discourse Function of News Article Paragraphs. In Pro-
ceedings of the First Joint Workshop on Narrative Understanding, Storylines, and Events
(NUSE 2020).

Banisakher, D., Rishe, N., Finlayson, M. A. (2018). Automatically Detecting the Position
and Type of Psychiatric Evaluation Report Sections. In Proceedings of the Ninth Inter-
national Workshop on Health Text Mining and Information Analysis (LOUHI 2018), pp.
101-110. Brussels, Belgium.

Banisakher, D., Reyes, M. E. P, Eisenberg, I. D., Allen, J., Finlayson, M. A., Price, R.,
Chen, S. C. (2018). Ontology-Based Supervised Concept Learning for the Biogeochemi-
cal Literature. In Proceedings of the 2018 IEEE International Conference on Information
Reuse and Integration (IRI) pp. 402-410. Salt Lake City, UT.

Banisakher, D., Reyes, M. E. P, Eisenberg, I. D., Allen, J., Finlayson, M. A., Price, R.,
Chen, S. C. (2018). Ontology-Based Supervised Concept Learning for the Biogeochemi-
cal Literature. In Proceedings of the 2018 IEEE International Conference on Information
Reuse and Integration (IRI) pp. 402-410. Salt Lake City, UT.

Eisenberg, 1.D., Banisakher, D. M., Presa, M., Unthank, K., Finlayson, M.A., Price, R.,
Chen, S. (2017) Toward Semantic Search for the Biogeochemical Literature. In Proceed-

ings of the 18th IEEE International Conference on Information Reuse and Integration
(IRD), pp. 517-525. San Diego, CA.

200



Alexenko, T., Biondo, M., Banisakher, D. M., Skubic, M. (2013). Android-based Speech
Processing for Eldercare Robotics. In Proceedings of the Companion Publication of the
2013 International Conference on Intelligent User Interfaces (IUI), pp. 87-88. Los An-
geles, CA.

Cho, H. I., Ogashawara, 1., Mishra, D., White, J., Kamerosky, A., Morris, L., ... Ban-
isakher, D. M. (2014) Evaluating Hyperspectral Imager for the Coastal Ocean (HICO)
data for seagrass mapping in Indian River Lagoon, FL. GlScience Remote Sensing,
51(2), 120-138.

Aziz, H., Banisakher, D. M., Lee, S., Chen, L., Chinthavali, S., Duan, S., (2018) Stochas-
tic Graph Modeling for Large Heterogeneous Graphs— An unsupervised approach. Manuscript
submitted for publication to Journal of Transportation Health.

Banisakher, D., Rishe, N., Finlayson, M. A. (2019) Using Conditional Random Fields to
Automatically Identify Sections in Clinical Reports. Manuscript submitted for publication
to Journal of Biomedical Semantics.

201



	Automatic Learning of Document Section Structure for Ontology-based Semantic Search
	Recommended Citation

	INTRODUCTION
	Motivation
	Problem Statement and Research Components
	Dissertation Contributions
	Outline

	CORPORA AND ANNOTATION
	Corpus 1: Psychiatric Evaluation Reports
	Corpus 2: Radiology Reports
	Corpus 3: Hostpital Discharge Summaries
	Corpus 4: Patent Documents
	Corpus 5: Environmental Scientific Articles
	Corpus 6: News Articles
	Annotation Processes
	Corpora 1-4
	Corpus 5: Environmental Scientific Articles
	Corpus 6: News Articles

	Agreement Metrics
	Annotation Results
	Coprpora 1-4
	Corpus 5: Environmental Scientific Articles
	Corpus 6: News Articles


	AUTOMATIC SECTION STRUCTURE IDENTIFICATION
	Using Hierarchical Hidden Markov Models to Automatically Identify Sections in Psychiatric Reports
	Motivation
	Psychiatric Evaluation Reports
	Task Definition
	Approach
	Results and Discussion
	Related Work

	Using Conditional Random Fields to Automatically Identify Sections in Clinical Reports
	Background
	Data
	Methods
	Results and Discussion
	Future Directions
	Related Work

	Improving the Identification of the Discourse Function of News Article Paragraphs
	Introduction
	Van Dijk's Theory of News Discourse
	Dataset
	Identifying Discourse Labels
	Results and Discussion
	Related Work


	AUTOMATIC SECTION STRUCTURE CLUSTERING
	Introduction
	Data and Challenges
	Corpus 1: Psychiatric Evaluations
	Corpus 2: Radiology Reports
	Corpus 3: Discharge Summaries
	Corpus 4: Patent Documents
	Corpus 5: Environmental Scientific Articles
	Challenges in Section Type Discovery

	Task Definition
	Approach
	The Merge Operation
	Defining the Prior Over Linear Models
	The Similarity Function
	Searching the Merge Space

	Evaluation Methods and Metrics
	Results and Discussion
	Related Work
	Limitations and Future Work

	ONTOLOGICAL SEMANTIC SEARCH
	Survey of Academic Search Approaches
	Introduction
	History
	Keyword-based Search
	Semantic Search
	Academic Search Approaches
	Conclusion

	Ontology-Based Supervised Concept Learning for the Biogeochemical Literature
	Introduction
	Related Work
	Dataset
	Approach
	Experiments and Results

	Using Document Structure for Ontology-Based Concept Learning
	Introduction
	Dataset
	Approach
	Results and Discussion


	CONCLUSION
	BIBLIOGRAPHY
	VITA

