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ABSTRACT OF THE DISSERTATION

UNDERSTANDING EVENT STRUCTURE IN TEXT

by

Mohammed Aldawsari

Florida International University, 2020

Miami, Florida

Professor Mark Finlayson, Major Professor

Stories often appear in textual form, for example, news stories are found in the form of

newspaper articles, blogs, broadcast transcripts, and so forth. These contain descriptions

of current, past, or future events. Automatically extracting knowledge from these events

descriptions is an important natural language processing (NLP) task, and understanding

event structure aids in this knowledge extraction. Event structure is the fact that events

may have relationships or internal structure, for example, they can be in a co-reference

relationship with another event mention, or composed of subevents.

Understanding event structure has received less attention in NLP than is due. This

work develops computational methods to automatically understand events found in nar-

rative text and reveal their structure. In particular, I address four problems related to

event structure understanding: (1) Detecting when one event is a subevent of another; (2)

Identifying foreground and background events as well as the general temporal position of

background events relative to the foreground period (past, present, future, and their com-

binations); (3) Leveraging foreground and background event knowledge to improve the

extraction of event relations, specifically subevent, co-reference, and discourse-level tem-

poral relations; and (4) Developing an event-based approach to solving the story fragment

stitching problem, i.e., aligning a set of story fragments into a full, ordered, end-to-end list

of story events. The latter problem is similar to the cross-document event co-reference

vi



relation task but is more challenging because the overall timeline of the story’s events

need to be preserved across all fragments.

For the first problem, I present a supervised machine learning model that outper-

forms prior models on this task and show the effectiveness of discourse and narrative

features in modeling subevent relations. For the second and third problem, I demonstrate

a featurized supervised model for detecting foreground and background events and il-

lustrate the usefulness of foreground and background knowledge in event relations tasks,

namely, subevent, co-reference, and discourse-level temporal relations. Lastly, I introduce

a graph-based unsupervised approach and apply an adapted model merging approach to

solve the story fragment stitching problem.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

An overwhelming number of stories, for example news articles and blogs, are increasingly

generated daily in an unstructured form. These unstructured texts contain descriptions of

current, past, or future events. An event is something that occurs (or may occur) in a cer-

tain place at a certain time (Pustejovsky et al., 2003b), described in detail in Section 1.3.

An event is sometimes associated with semantic information (a.k.a., arguments) such as

participants, locations, or times. If an event occurs, such as an attack, protest, natural

disaster, a stock split, or companies’ merger or acquisition, an overwhelming number of

unstructured texts are generated about that event. This amount of unstructured text makes

it arduous for humans to obtain all information related to a single event or topic. Also,

manually making use of these unstructured texts becomes tedious, labor intensive, and

time consuming. To overcome this difficulty, information extraction systems (IEs) have

been developed to automatically extract knowledge from unstructured texts and build rich

representations of its content that can be useful in various applications such as decision

making support tools (Wei and Lee, 2004) and monitoring systems (Kamijo et al., 2000).

Despite the importance of automatically extracting knowledge from unstructured texts,

understanding events and their relationship has received less attention in research on nat-

ural language processing (NLP). Understanding events and revealing their relations aids

in understanding text and capturing all information related to events. For example, if an

attack event occurred during a protest event, the attack might contain information about

the protest event due to the containment relation. Also, if the temporal relations (e.g.,

before and after) between events are captured, then this temporal information might be

helpful in various ways, e.g., useful in time-based decision systems. In general, revealing

1



the relationships between events in the text is helpful in representing the text in many

meaningful ways and useful in many downstream NLP tasks.

The current state-of-the-art systems for understanding events and their relations is still

far from the desired goal. The need for methods and models that can capture the structure

of events motivate me to study event structure in news narratives. Not only useful in

knowledge extraction, but understanding event structure will also undoubtedly have an

impact on several NLP subdomains and applications such as document summarization,

storyline generation, and question answering systems.

This dissertation focuses on tackling several problems in understanding events and

their structure in text. The rest of this chapter is an introduction to some terminology

and definitions related to events and their relationships, as well as an overview of the

dissertation.

1.2 What is a Story?

A story is defined as a sequence of events affected by characters and presented in a dis-

course. This is in accord with fairly standard definitions: for example, Forster (1927)

said that “A story is a narrative of events arranged in their time sequence.” Eisenberg and

Finlayson (2017) suggested that a story is “a discourse presenting a coherent sequence

of events which are causally related and purposely related, concern specific characters

and times, and overall displays a level of organization beyond the commonsense coher-

ence of the events themselves.” Most importantly, these definitions point out the separa-

tion between the plot (a.k.a., the fabula)—which is the actual, time-ordered sequence of

events—and the story itself—which is the discourse presentation of the plot.
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1.3 What is an Event?

Verb meanings and their internal and temporal structure go back to the philosophical lit-

erature, precisely Aristotle’s typology of events (cf. Aristotle’s Metaphysics) (Ross et al.,

1924; Ryle, 1949; Vesey, 1964). These matters find their way to the linguistic literature

by way of Vendler’s influential paper (Vendler, 1957). Vendler classifies verbs based on

temporal properties such as termination, duration, and internal temporal structure. The

four classes are states, activities, accomplishments, and achievements. States are verbs

that do not have internal structure and do not change during the time which they are true

(e.g., John loves Mary); whereas activities have internal structure and duration, but tem-

poral termination is unnecessary (e.g., John walked on Ocean Drive). Accomplishments

are events that have duration and temporal termination (e.g., John consumed 3 bottles of

water); whereas achievements have an endpoint but no duration (e.g., John arrived in

Miami).

Vendler’s classes have been organized and subgrouped by various researchers includ-

ing the works of Mourelatos (1978); Carlson (1981), and Bach (1986); statives and non-

statives is the most basic distinction. Bach (1986) introduced the “eventualities” term that

includes all aspectual types both stative and eventive. Bach (1986) defined three classes:

states, processes, and events. States are changeless (i.e., there is no perceptible change)

such as John knows Mary, whereas processes and events differ in terms of telicity. Pro-

cesses are atelic activities (i.e., have no particular end) such as John ran. Events are telic

activities (i.e., have a culmination) such as John builds a bookcase.

Bach’s eventuality has been adopted and covered by the term “event” in the compu-

tational semantics community (Briscoe et al., 1990; James, 1995). In the information

extraction (IE) community, for example, the definition of an event is adopted, including

non-verb events, and extended with more fine grained elements. Examples of prior works
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Argument Definition

Agent Causer of the event
Patient Affected by the event
Time Time of the event
Location Location of the event

Table 1.1: Definition of event argument.

in the IE community includes, but is not limited to, TimeML (Pustejovsky et al., 2003b)

and the Automatic Content Extraction (ACE) program (Doddington et al., 2004).

TimeML is a markup language for events, times, and their temporal relation. An

event in the TimeML schema is defined as a situation that happened or occurred as well

as any predicate describing a state or circumstance in which something obtains or holds

true. Similar to the TimeML schema, the ACE annotation guidelines defines an event as

something that happens or occurs involving participants and can also be described as a

change of state.

These two models are designed for different purposes; therefor events are tagged dif-

ferently. In both schema, events can be verbs, nominalizations, adjectives, predicative

clauses, or prepositional phrases and both schema consider the basic features of events

(i.e., aspect, tense, modality, and polarity). TimeML tags all events, except generic

events, times, and their temporal relations. In contrast, ACE only tags events from spe-

cific domain types (i.e., life, movement, transaction, business, conflict, contact, personnel,

and justice) along with other information such as event type, subtype, and event partic-

ipants/attributes (a.k.a., event arguments). As defined by the ACE program, an event

argument is any entity or attribute that has a certain role (e.g., time and location) in the

event, described in Table 1.1.

Figure 1.1 shows in bold the event of interest, and the involved arguments are under-

lined. Beyond the scope of this thesis but important to note is that other definitions of

events in computational linguistics exist. For example, in topic detection and tracking
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[The militantsagent] killed [4 womenpatient] [on Fridaytime] in
[ Kashmirlocation].

Figure 1.1: Example text showing an event in bold and its arguments are underlined.

(TDT), an event can be seen as a collection of documents (e.g., news articles) that are

related by a certain seminal real-world event (Allan et al., 1998).

1.3.1 Prior Work on Event Extraction

There is a voluminous amount of prior work on event extraction. Early approaches used

rule-based or pattern matching algorithms for event extraction, which rely on predefined

expressions or rules generated by expert knowledge (Li et al., 2002; Wei and Lee, 2004;

Grishman et al., 2005). Grishman et al. (2005) presented a baseline system called Java

Extraction Toolkit1 (JET), which uses a rule-based algorithm on the training data and

applies it on the test data for event extraction.

Due to the fact that rule-based approaches require expert knowledge and effort to

generate rules, a substantial amount of prior work used data-driven methods by using

supervised token-level classifiers powered by several token-level features such as word’s

lemma, surface form, and part of speech. These classifiers usually employ a pipeline ap-

proach that first determines whether or not a word is an event, following the assumption

that the vast majority of events consists of a single word, and then determines the event ar-

guments. Ahn (2006) and Hardy et al. (2006) presented logistic regression models trained

to determine whether or not a word is an event and achieved a 0.60 F1 score, which is a

measure for evaluating accuracy, on the ACE 2005 test set and a 0.59 F1 score on the topic

of weapons of mass destruction, respectively. Subsequent works followed Ahn (2006) and

Hardy et al. (2006) by using different models (e.g., support vector machines (SVMs)) or

1http://cs.nyu.edu/grishman/jet/jet.html
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a different set of features (e.g., document-level features and cluster-level statistical infor-

mation) (Ji and Grishman, 2008; Liao and Grishman, 2010; Hong et al., 2011). To avoid

error propagation in the pipeline approach, Li et al. (2013) presented a joint model to ex-

tract events and arguments that co-occur in the same sentence using structured perceptron

with beam search. Inspired by the work of Li et al. (2013), Yang and Mitchell (2016)

used a similar model and a larger set of features to extract events and entities within a

document context.

In recent years, neural network approaches have become popular in NLP and have

shown effective results in many NLP tasks. Researchers have explored both recurrent

neural networks and convolutional neural networks for event extraction (Nguyen et al.,

2016; Feng et al., 2016; Liu et al., 2017; Yang et al., 2018, 2019; Tong et al., 2020).

These works and specifically supervised methods suffer from the long tail issue (i.e.,

trigger words with frequency less than 5 account for 78.2% in the ACE 2005 corpus

(Tong et al., 2020)). To overcome this issue, Tong et al. (2020) used open-domain trigger

knowledge to pre-train a teacher-student model for event extraction that achieved a 78.6

F1 score. Tong et al.’s model is the state-of-the-art for event extraction on the ACE 2005

corpus.

1.4 Overview of Event Relation Tasks in NLP

In this section, I introduce an overview of relations that may exist between events. In

particular, I focus on describing event co-reference resolution, subevent structure, and

temporal relations. Also, I demonstrate and compare the existing corpora annotated with

these relations. Even though these corpora may contain useful annotated information such

as the relation between entities in text, the focus is only on events and their relations.
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John married Mary on May 10. It was a wonderful event.

Figure 1.2: Example text showing in bold coreferring events.

1.4.1 Event Co-reference

Event co-reference is a linguistic phenomenon where two events are considered corefer-

ent if both events refer to the same real-world event. That is, an event mention can be

substituted/replaced by the other event and result in no semantic changes except syntax

changes to preserve grammatical rules. In comparison with entity co-reference, event

co-reference detection is less studied and arguably more challenging (Lu and Ng, 2018).

Figure 1.2 shows an example in which bolded words (married, It and event) are corefer-

ential events that refer to the same real-world event: the marriage event. As can be seen

in the figure, all bolded words have different surface form and part of speech but are con-

sidered coreferential. There are two main tasks in event co-reference: within-document

event co-reference (WDEC) and cross-document event co-reference (CDEC). The goal of

the within-document task is to group coreferential events in the same document, whereas

in the cross-document task the goal is to group coreferential events cross documents. Re-

searchers have introduced several corpora annotated with event co-reference relations but

with a different perspective of when to call two events coreferential. I list below some of

the well-known corpora for event co-reference.

ACE 2005 The ACE 2005 corpus2 (Walker et al., 2006) was introduced by the ACE

program and consists of 599 texts with 5349 event triggers drawn from five different

categories (i.e., newswire, broadcast news, broadcast conversation, weblog, and conver-

sational telephone speech). An event in ACE 2005 is tagged with the event’s arguments

and several attributes (i.e., type, subtype, modality, polarity, genericity, and tense). This

2https://catalog.ldc.upenn.edu/LDC2006T06
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corpus follows a strict definition that two events are coreferent if their arguments are

compatible (i.e., they have exactly the same agent, patient, time, and location). Example

1.3 shows two coreferent events, but the argument compatibility constraint is violated;

thus, and corresponding to the ACE 2005 annotation guideline, the two events should not

be tagged as coreferent. The reason is that the patient “John Smith and his wife” of the

“shote1” event is not compatible with the patient “Smith” of the “attacke2” event (i.e., it

only refers to a part of the “shote1” event patient argument). However, many events can

be coreferent and violate the compatibility constraint, as shown in the example. Thus, this

restricted constraint was one of the reasons that led to the development of other corpora

such as TAC KBP corpora. Table 1.2 shows the statistics of the ACE 2005 corpus.

The killer shote1 John Smith and his wife . . . The attacke2

against Smith.

Figure 1.3: Example text showing two coreferring events with incompatible arguments.

# Documents 599
# Sentences 18162
# Event mentions 5349
# Event co-reference clusters 4090

Table 1.2: The ACE 2005 statistics.

TAC KBP 2017 corpus The Text Analysis Conference (TAC) Knowledge Base Popu-

lation (KBP) 2017 corpus3 is a part of the TAC KBP Event track, which was a shared task

for the years of 2015, 2016, and 2017. The TAC KBP 2017 corpus is a closed-domain

event corpus similar to the ACE 2005 and annotated with events and event co-reference

relations as well as event arguments. Unlike ACE 2005, the TAC KBP 2017 corpus in-

cludes additional attributes and relaxed the compatibility constraint (i.e., two events are

3https://tac.nist.gov//2017/KBP/Event/index.html
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coreferent even if their arguments are non-coreferential or conflicting such as 10 peo-

ple killed versus many people killed and 4 women on Friday versus 4 women last week).

Moreover, the TAC KBP corpus introduced the notion of event nugget. The event nugget

notion allows discontinuous words to be tagged as an event, unlike previous work where

an event could be only a single word or continuous words. For instance, consider the

underlined phrase in this sentence: The crash left 40 people dead. TimeML and ACE

models tag the head word “left” of the phrase as the event, whereas TAC KBPs considers

both words “left” and “dead”. Table 1.3 shows statistics of the TAC KBP 2017 corpus.

# Documents 167
# Event mentions 4375
# Event co-reference clusters 2963

Table 1.3: The TAC KBP 2017 statistics.

ECB+ corpus The ECB+ corpus4 (Cybulska and Vossen, 2014) is an extension to

the EventCorefBank (ECB) corpus (Bejan and Harabagiu, 2010) and one of the largest

datasets that includes both within and cross events and entities co-reference annotation.

The ECB+ corpus consists of news articles collected from Google News and clustered

into topics. Each topic consists of documents discussing the same event. The exten-

sion of ECB includes annotating more documents and increasing the level of difficulty

by adding documents into a topic that discusses a different event of the same type. For

example, adding documents about “The Sudan Armed forces attack on the refugee camp”

into the topic that has documents related to “The Israeli attack on the Fakhora school”.

Table 1.4 shows the statistics of the ECB+ corpus. I used this corpus in Section 2.7.

4http://www.newsreader-project.eu/results/data/the-ecb-corpus/
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# Topics 43
# Sub-topics 86
# Documents 976
# Sentences 1840
# Entity mentions 8289
# Entity co-reference clusters 2224
# Event mentions 6833
# Event co-reference clusters 2741

Table 1.4: The ECB+ statistics.

IC and HiEve corpora The Intelligence Community (IC) corpus5 (Hovy et al., 2013)

contains 100 news articles in the Violent Event domain (attacks, killings, wars, etc.). The

HiEve corpus6 (Glavaš et al., 2014) is an open domain corpus that also contains 100

news articles. Both corpora are annotated with both co-reference and subevent relations

(discussed in the next Section). I used and described both corpora in details in Section 2.4.

1.4.2 Subevent Relation

Events are not atomic entities: they often have a complex internal structure that can be

expressed in a variety of ways (Huttunen et al., 2002; Hovy et al., 2013). The subevent

relation is one of these complex structures in which an event can be a subevent of an-

other in discourse. An event ej is a subevent of another event ei if both events occur at

more or less the same location and time and, more importantly, ei acts as a collection of

events, and ej is one of them. As shown in example 1.4, the killede3 event is spatiotem-

porally contained by the attackede4 event; thus, we call the relation between these two

events a subevent relation. I provide a formal definition of subevent relation in Section

5This corpus is not publicly available, but I obtained it via private communication with the

author.

6http://takelab.fer.hr/hievents.rar
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2.1. Despite the importance and usefulness of detecting subevent relations for many NLP

downstream applications, there is a very little work on this task, and thus fewer annotated

corpora.

To the best of my knowledge, there are only three English corpora annotated with

subevent relations, namely, IC, HiEve, and Richer Event Description (RED) corpora,

excluding biomedical related corpora. The IC and HiEve corpora are discussed earlier

and explained in details in Section 2.4. The RED corpus consists of over 95 English

newswire, discussion forum, and narrative text documents that are annotated with several

event relations such as temporal, causal, and subevent relations. The RED corpus is not

publicly available and only available via LDC7.

Egyptian police have said that five protesters were killede3

when they were attackede4 by an armed group near the De-
fense Ministry building in Cairo.

Figure 1.4: Example text showing subevent relation.

1.4.3 Temporal Relation

News articles and narrative texts mostly use events to describe something that happened

or will happen at a certain time. The relevant temporal information for events (e.g., the

temporal order of events) is usually inferred by humans either via explicit or implicit time

cues. Automatically extracting temporally relevant information is a very important aspect

of many NLP downstream tasks such as question answering, information retrieval, and

narrative generation and understanding.

The extraction of temporal information can be viewed as building a graph from text,

where nodes are events or temporal expressions (a.k.a., timex), and edges are the tem-

7https://catalog.ldc.upenn.edu/LDC2016T23
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poral relation between the nodes. Timex is a text expression that expresses the time of

something that happened or how long it lasts (e.g., Tuesday and three months). Among

other links, TimeML introduced a specification (TLINK) to temporally link events and

temporal expression. TLINK is a specification for linking event and event (EE), event

and timex (ET), and timex and timex (TT). The focus in this dissertation, specifically in

Section 4.4, is on the temporal relation between events (EE).

The TimeML TLINK specification is based on Allen’s interval algebra between two

intervals (Allen, 1983). Figure 1.5 shows the maps between the relation types existing in

Allen’s interval logic and the TimeML TLINK types.

Allen’s Relation Illustration TimeML Relation

X < Y , Y > X X BEFORE Y , Y AFTER X

X m Y , Y m-1 X X IBEFORE Y , Y IAFTER X

X o Y , Y o-1 X X OVERLAPS Y

X s Y , Y s-1 X X BEGINS Y , Y BEGUN_BY X

X d Y , Y d-1 X X DURING Y , Y DURING_INV X
(IS_INCLUDED, INCLUDES)

X f Y , Y f -1 X X ENDS Y , Y ENDED_BY X 

X = Y , Y = X X SIMULTANEOUS Y

x y
x y
x y
x
y
x

y

y x

x
y

Figure 1.5: Allen’s atomic relations, their illustration, and their corresponding TimeML
TLINK type.

Several corpora, English and non-English, have been annotated with temporal infor-

mation based on the TimeML specification such as the TimeBank 1.2 corpus (Pustejovsky

et al., 2006), the TimeBank-Dense corpus (Cassidy et al., 2014) and the TDDiscourse cor-

pus (Naik et al., 2019). The TimeBank corpus contains 183 news articles annotated with
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Dataset # documents # Event mentions # E-E

TimeBank 183 7935 3450
TimeBank-Dense 36 1729 8130
TDD-Man 36 1729 6150
TDD-Auto 36 1729 38302

Table 1.5: Statistics of Corpora annotated with temporal information. E-E denotes event-
event temporal relations, and TDD denotes TDDiscourse corpus.

events, timex, and their temporal relations. Due to the fact that TimeBank only focuses

on the most salient event in a sentence, thus annotating small portions of relations, the

TimeBank-Dense corpus extended TimeBank and produced 10 times more relations per

document than TimeBank (Cassidy et al., 2014). TimeBank-Dense only contains 36 doc-

uments and made a clear distinction between almost overlapped relation (e.g., before and

immediately before), by reducing the relations to six, namely before, after, includes, is-

included, simultaneous, and vague. The argument of reducing and making coarse-grained

relations is that this fine-grained distinction (e.g., distinguishing between before and im-

mediately before) may complicate an already difficult task, and there is no clear bene-

fit of the fine-grained distinction yet. TDDiscourse, a recent and augmented dataset of

TimeBank-Dense, focused on discourse-level temporal ordering (instead of neighboring

sentences) and used the same set of temporal relations as TimeBank-Dense. I used TD-

Discourse and discuss it in Section 4.4. Table 1.5 shows statistics of the aforementioned

corpora.

1.4.4 Other Event Relations

Several relations can be found between events such as causal and membership relations.

A causal relation is defined as when an event causes another event. For example, in this

sentence “The man was arrested because he killed his neighbor”, the arrested event
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The Al-Qaeda linked group which said it carried out the deadly
attacke5 against US soldiers in the Iraqi . . . The operatione6 is
one of the heaviest blowse7 in the city of Mosul.

Figure 1.6: Example text showing membership relation.

occurred because of the killed event, thus there is a causality relation between these two

events. The membership relation holds between two events when one event is a part of

the other but not necessarily at the same time and location, and both events have the same

type. For instance, the attacke5 and operatione6 events, in Figure 1.6, are members of

the blowse7 event.

Unfortunately, unlike other relations, causal and membership relations have received

less attention in the NLP community. Until the work of Mirza and Tonelli (2016), a few

resources have been introduced for causal relations such as the PropBank (Bonial et al.,

2010) and causal discourse relations in the Penn Discourse Treebank (Prasad et al., 2008).

However, these resources do not cover all aspects of causality (Mirza and Tonelli, 2016).

Mirza and Tonelli (2016) presented an annotation guideline for annotating causality in

text and introduced the Causal-TimeBank corpus by annotating TimeBank with causal

relations.

For membership relations, Hovy et al. (2013) introduced the IC corpus, which con-

tains membership relations. Despite this useful attempt, the annotator agreement for

membership relations in IC corpus is very low (0.21 Fleiss’s kappa), which is not reli-

able given the small number of instances in the IC corpus (Hovy et al., 2013).

1.5 Overview of the Dissertation

The central goal of this dissertation is to computationally advance the understanding of

events and their structure in text. To achieve this goal, I have addressed four problems:
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• Subevent Structure Detection (Chapter §2). Despite the importance of detecting

subevent relations in text, this problem has received less attention even though it is

useful in knowledge extraction and many NLP tasks. This chapter advocates a novel

approach to tackle this problem by leveraging discourse and narrative features. My

approach outperforms prior work on this problem.

• Foreground and Background Event Detection (Chapter §3). Understanding the

role of events and why an event is mentioned in text is a very important aspect of

understanding the text as whole. One of the error sources in my subevent model

(Chapter §2) is the lack of distinguishing between foreground and background

events. Therefore, I introduce the task of distinguishing between foreground and

background events in news articles as well as identifying the general temporal posi-

tion of background events relative to the foreground. Due to the lack of corpora for

this problem, I also provided a corpus annotated with foreground and background

events and built a system that can distinguish between these events.

• Integrating Foreground and Background Events into Event Relation Detec-

tion (Chapter §4). While detecting foreground and background event properties is

useful for subevent detection, it is also useful for other tasks. I demonstrate the

effectiveness of foreground and background information in modeling and improv-

ing pairwise event co-reference, subevent detection, and discourse-level temporal

relation extraction.

• Event Based Fragmented Story Stitching (Chapter §5). Finally, understanding

subevents and the foreground/background event distinction are together potentially

useful in new NLP tasks. In this chapter, I introduce a challenging new task, namely,

stitching a fragmented story into one coherent narrative. Stories are found through-

out our daily lives (e.g., news) but also a single story can be found across different

media and sometimes in a fragmented way (i.e., misses/includes certain events).
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This task is similar to the cross-document event co-reference but the events timeline

is considered among all fragments. I provided an annotated dataset and proposed a

graph-based unsupervised approach for solving this problem.
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CHAPTER 2

SUBEVENT DETECTION

Recognizing the internal structure of events is a challenging language processing task

of great importance for text understanding. One of the unsolved problems related to event

understanding is the detection of subevents, also referred to as event hierarchy construc-

tion.

2.1 Subevent Structure

There have been efforts that have focused on detecting temporal and spatial subevent

containment individually. However, it is clear that subevent detection requires both si-

multaneously. The subevent relationship is defined in terms of (ei; ej), where ei and ej

are events: event ej is a subevent of event ei if ej is spatiotemporally contained by ei.

More precisely, we say that an event ei is a parent event of event ej , and ej is a child

event of ei if (1) ei is a collector event that contains a complex sequence of activities;

(2) ej is one of these activities; and (3) ej is spatially and temporally contained within

ei (i.e., ej occur at the same time and same place as ei) (Hovy et al., 2013; Glavaš and

Šnajder, 2014). This subevent relationship is independent of other types of relationships,

e.g., causal relationship between the events.

Egyptian police have said that five protesters were killede8 when they
were attackede9 by an armed group near the Defense Ministry build-
ing in Cairo. The statement said that early this morning, the armed
group attackede10 the demonstrators who have for days been staging
their proteste11 against the military government. . . . Police said that the
attacke12 on Wednesday woundede13 at least 50 protesters.

Figure 2.1: Excerpt from the HiEve corpus (Glavaš et al., 2014). Events are in bold, and
the identified events are gold annotations, but for clarity, not all annotations are included.

17



Figure 2.1 illustrates a text expression of a complex event hierarchy. Figure 2.2 shows

a corresponding graphical representation of the hierarchy. In Figure 2.2, we see that

killede8 and woundede13 are explicitly annotated as subevents of attackede10, while that

event, in turn, is a subevent of proteste11. Events attackede9 and attacke12 are explicitly

indicated as coreferent with attackede10. These relationships induce the implicit subevent

relations shown by dashed lines.

proteste11

attackede9
attacke12attackede10

killede8 woundede13

Figure 2.2: The corresponding event hierarchy of Figure 2.1. Bolded arrows indicate
subevent relationships, and bolded lines indicate event co-reference relationships when
they are explicitly indicated in the HiEve annotations. Dashed lines indicate an implicit
subevent relationship.

2.2 Related Work

There are two pieces of prior work that are most related to my work. Araki et al. (2014)

proposed a logistic regression model to classify pairs of events into four classes: co-

reference, subevent, sister, and no relation. They then used sister relations and their par-

ents to improve the system performance. Their model was trained and tested on 65 articles

from the IC corpus developed by Hovy et al. (2013). Similarly, Glavaš and Šnajder (2014)

used a logistic regression model to classify pairs of events into three classes: subevent re-

lations (SuperSub and SubSuper) and no relation. They enforced structural coherence,

which improved the extracted subevent relations by a 7.6% F1 score. They trained and
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tested their approach on the HiEve corpus developed by Glavaš et al. (2014). Both ap-

proaches were evaluated using different evaluation metrics. Araki et al. evaluated their

model using the BLANC evaluation metric (Recasens and Hovy, 2011) whereas Glavaš

and Šnajder evaluated their model using the standard F1 evaluation metric. Both works

introduced a variety of features. The main contribution of my work is to note that the

subevent detection task requires a better understanding of the discourse. Thus in this

chapter, I describe a supervised machine learning approach for detecting subevent rela-

tions in text. That is, I introduce a logistic regression model using several new features,

including discourse and narrative structure, and demonstrate why these features are effec-

tive in detecting subevent relations.

2.3 Features

In this section, I explain the features used in my model. As discussed in Section 1.4.2,

the HiEve and IC corpora are annotated with both subevent and event co-reference rela-

tionships. I compute features over all pairs of events (ei; ej) where ei precedes ej in the

text. Each pair of events is either related by a forward-pointing parent-child relationship

(PC), a backward-pointing parent-child relationship (CP), or no relation (NoRel). The

features can be divided into five sets, as shown in Table 2.2. In the following sections, I

first illustrate the features I directly obtained from prior work (§2.3.1); next, I explain the

features that were inspired by prior work but that I modified significantly (§2.3.2); and

finally, I introduce my new discourse and narrative features (§2.3.3). I pre-processed texts

using the spaCy1 NLP tool (Honnibal and Montani, 2017). The pre-processing task is as

follows:

1https://spacy.io/
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• Segmentation The process of breaking text into sentences.

• Tokenization The process of breaking a sentence into lists of words and meaningful

segments called tokens.

• Lemmatization The process of finding the lemma of a word by converting a word

into its base/dictionary form, e.g., happier or happiest to happy.

• Part of speech (POS) The process of assigning the most probable major and de-

tailed part of speech tag to each token based on the Universal POS schema2, e.g.,

NOUN, VERB, and DET.

• Syntactic dependency The process of showing which words depend on (modify

or are arguments of) other words. Figure 2.3 shows an example of the dependency

relation between tokens/words in this sentence: “The police killed the terrorist.”

In Figure 2.3, the head of the sentence is the word killed, and both words (police

and terrorist) depend on (a.k.a., are arguments of) the word killed, whereas the

determiner The modifies the word police and the second determiner, the, modifies

the word terrorist.

The     police      killed      the      terrorist 
DET NOUN VERB DET NOUN

dobj
det

nsubjdet

Figure 2.3: The dependency relation between words. The arc label describes the type of
syntactic relation that connects a child to its head corresponding to the Universal depen-
dency relations schema.

2https://universaldependencies.org/u/pos
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before when after later then until
once during as soon as already within subsequent
since prior to subsequently during and after meanwhile at least until

previously prior still earlier followed by immediately
pending while following at the same time ending shortly

Table 2.1: Temporal signals list.

2.3.1 Prior Features

I obtained most of the lexical and syntactic features, and several of the semantic features,

directly from prior work on subevent detection (Araki et al., 2014; Glavaš and Šnajder,

2014). The lexical and syntactic features, as well as other features, are shown in Table 2.2.

I used the spaCy (Honnibal and Montani, 2017) tool to compute lexical and syntactic

features.

2.3.2 Modified Features

Five of my features were inspired by those in prior work, but I modified them for my

system. Below I explain each feature and its representation.

Temporal Signals I observed that if a sentence mentions two events from different

event hierarchies, then a temporal signal often exists between them (e.g., after and since).

This is illustrated in Figure 2.4, where a temporal signal (i.e., since) exists between two

events that have subevent relation. To capture this, I used Derczynski and Gaizauskas

(2010) temporal signals list to find intervening temporal signal words between events and

encoded this as a bag of temporal signals. Table 2.3 shows the signal list used in my

experiment.
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Feature Set or Feature Representation Description

Lexical
Event Expression Bag-of-Events The surface form of ei and ej .
Same Lemma Binary Whether ei and ej have the same lemma.
Temporal Signals* Bag-of-Signals The temporal signals between ei and ej .
Event String Similarity Numeric The string similarity between surface forms of ei and ej using

a Levenshtein measure.

Syntactic
Major POS One-hot The POS of ei and ej (e.g., Noun and Verb).
Same Major POS Binary Whether ei and ej have the same Major POS.
POS Tag One-hot The POS Tag of ei and ej .
Same POS Tag Binary Whether ei and ej have the same POS tag.
Syntactic Dependency* One-hot The ancestor event of the other event in the dependency tree.
Determiner Binary Whether each event has a determiner.

Semantic
Semantic Frame Binary Whether ei and ej have the same semantic frame.
Event Type* One-hot The event type of ei and ej extracted from the mapping from

frames to event types.
Same Event Type Binary Whether event types of ei and ej are the same.
VerbOcean Score Numeric The VerbOcean score (Chklovski and Pantel, 2004) between

ei and ej .
Semantic Similarity* Numeric The cosine similarity between ei and ej .
Ontology* One-hot Which event is most likely to be a parent of the other event.
WordNet Similarity Numeric The WordNet Similarity using (Lin, 1998; Wu and Palmer,

1994) similarity measures.

Arguments
Co-refering Event Arguments* One-hot Whether the arguments of ei and ej corefer.
# of Coreferring Args Numeric The number of coreferring arguments between ei and ej .
Event in the Other’s Args One-hot Whether one event is mentioned in one of the other event’s

arguments.

Discourse & Narrative
Sentence Distance Numeric The number of sentences between ei and ej .
Event Distance Numeric The number of events between ei and ej .
Same Sentence Binary Whether ei and ej are in the same sentence.
Reported Speech Binary Whether an event mention is mentioned in a direct speech.
Non Major Mention Binary Whether the sentences, in which the events are mentioned,

share co-referential non major mentions (see Section 2.3.3).
RST-DTs Relation One-hot The discourse relation between elementary discourse units

(EDUs) (see Section 2.3.3).

Table 2.2: Features used in my model. Novel features are underlined. Features modified
from prior work are marked with an asterisk.
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Over 90 Palestinians and one Israeli soldier have been killede14 since
Israel launchede15 a massive air . . .

Figure 2.4: An example text showing the temporal signal since between two events that
have a subevent relation.

Syntactic Dependency Both prior systems encoded a feature that captured whether

one event in a pair was an immediate child (i.e., governed) of the other. I expand that to

checking for ancestry more generally. This is encoded as a one-hot vector.

Event Type I identified the event type of each event corresponding to the 33 ACE 2005

event types shown in Table 2.3. Technically, Liu et al. (2016) identified a possible map-

ping from frames to the 33 ACE event types. FrameNet (Fillmore et al., 2003) is a lex-

ical resource of manually identified semantic frames. FrameNet has over 1000 different

frames, and each frame consists of lemmas with POS that can evoke the frame. For ex-

ample, both strike.NOUN and bomb.VERB lemmas belong to the Attack frame. I used the

SEMAFOR tool (Das et al., 2010) to extract the event frame and used Liu et al.’s mapping

to identify the event type of each event. This feature is encoded as a one-hot vector.

be-born marry divorce injure die
transport transfer-ownership transfer-money start-org merge-org

declare-bankruptcy end-org attack demonstrate meet
phone-write start-position end-position nominate elect

arrest-jail release-parole trial-hearing charge-indict sue
convict sentence fine execute extradite
acquit appeal pardon

Table 2.3: The 33 ACE 2005 event types.

Semantic Similarity A popular idea in NLP is representing words by vectors (a.k.a.,

Word2Vec or word embeddings). Word2Vec is a two-layer neural model that processes

text to capture the semantic meaning of words by grouping similar words together in

vector space. Technically, the Word2Vec model takes as input a large corpus of text and
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outputs a set of vectors that represent words in that corpus. These vectors can then be used

as features in many NLP downstream tasks. FastText3 (Mikolov et al., 2018) is one of

the tools that can be used to train a Word2Vec model on a large text. The intuition behind

using the word embeddings as a feature is that if there is a subevent relation between two

events then their semantics might be similar; thus, their corresponding vectors are close

to each other in the vector space. Therefore, to capture the semantic similarity between

a pair of events, I used the cosine similarity measure between the pairs vectors. I used

one of the FastText pre-trained models (i.e., wiki-news-300d-1M) to compute events

vectors. This feature is encoded as a numeric feature.

Most Likely Parent Event For this feature and similar to Araki et al. (2014), I count

the number of times in the training data that a particular event lemma and POS pair is

observed as a parent of another event lemma/POS pair. For a pair (ei and ej), if the

lemma and POS of ei is more often found as a parent of ej , this is encoded as the vector

(1,0,0); if the opposite is true, this is encoded as (0,1,0). If there were no observations,

this is encoded as (0,0,1). Prior work did not take into account the part of speech or the

direction of the subevent relationship.

Co-referring Event Arguments To extract event arguments, I used two models, namely,

Allennlp4 semantic role labeling (SRL) (Gardner et al., 2018; He et al., 2017) for verbs,

and the SEMAFOR tool (Das et al., 2010) for non-verb events. Allennlp’s SRL is trained

and evaluated on OntoNotes5.0 (Weischedel et al., 2011), whereas SEMAFOR is trained

and evaluated on the FrameNet corpus (Fillmore et al., 2003). OntoNotes5.0 is training

data for training semantic role labeling systems (i.e., answering the question of who did

3https://fasttext.cc/docs/en/english-vectors.html

4https://github.com/allenai/allennlp
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Label Description Label Description

ARG0 Agent, operator ARG1 Thing operated
ARG2 Explicit patient ARG3 Explicit argument
ARG4 Explicit instrument ARGM-LOC Locative

ARGM-TMP Temporal ARGM-MNR Manner
ARGM-DIR Direction ARGM-DIS Discourse
ARGM-EXT Extent ARGM-PRP Purpose
ARGM-NEG Negation ARGM-MOD Modal
ARGM-REC Reciprocals ARGM-PRD Secondary Predication

ARGM Bare ArgM ARGM-ADV Adverbials

Table 2.4: Argument labels and their descriptions.

what to whom?). The OntoNotes5.0 dataset is annotated with verbal propositions and

their arguments. Each verb (a.k.a., predicate) is marked with several possible arguments,

defined in Table 2.4. Text in Figure 2.5 shows a predicate, build, and its arguments. Un-

like OntoNotes5.0, which only focuses on verbs, a predicate in FrameNet can be a verb,

noun, adjective, or adverb. Each frame in FrameNet is associated with a set of roles

called frame elements such as Agent, Patient, and Time. In this feature, for measuring ar-

guments’ co-reference between a pair of events, I only considered ARG0, ARG1, ARGM-

TMP and ARGM-LOC from the Allennlp SRL model and Agent, Patient, Time and

Location from SEMAFOR model. When measuring arguments’ co-reference, I allowed

ARG0/Agent to match ARG0/Agent or ARG1/Patient and vice versa, and I also exam-

ined LOC/Location and ARGM-TMP/Time modifying arguments. I used the Allennlp

co-reference model (Lee et al., 2017) to resolve the arguments. This feature is encoded

as a six-place binary vector.

However, voters decided that [if the stadium was such a good idea
ARGM−ADV ] [someone ARG0] [would ARGM−MOD] [build predicate] [it
ARG1] [himself ARGM−REC], and rejected it 59% to 41%.

Figure 2.5: An example text showing a predicate and its arguments. Other predicates such
as decided and rejected are not considered in this example for clarification.
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2.3.3 New Features

The new features are divided into three types: two discourse features, one narrative fea-

ture, and two semantic features.

• Discourse Features I investigate the importance of discourse features for detecting

subevents. I introduced two new features: rhetorical structure and reported speech.

1. Rhetorical Structure Rhetorical Structure Theory (RST) (Mann and Thomp-

son, 1988) is a hierarchical model that aims to identify the discourse structure

of a text. The text is first segmented into Elementary Discourse Units (EDUs)

which in turn are linked in binary or multi-way discourse relations (see Carl-

son and Marcu, 2001). Rhetorical analysis is beneficial in many NLP tasks, in-

cluding sentiment analysis (Somasundaran, 2010; Lazaridou et al., 2013; Bha-

tia et al., 2015), text generation (Prasad et al., 2005), information extraction

(Maslennikov and Chua, 2007), question answering (Verberne et al., 2007)

and co-reference resolution (Cristea et al., 1998; Joty et al., 2015). Therefore I

hypothesized that discourse structure could be useful to the subevent detection

task. For example, Figure 2.6 shows the discourse relation of type explanation

between two EDUs in which a pair of events are found and have a subevent

relation. I employ the CODRA5 discourse parser (COmplete probabilisticDis-

criminative framework for performing Rhetorical Analysis; Joty et al., 2015)

to build a discourse tree of each text. I use Neumann (2015)’s implemen-

tation6 for post-processing the CODRA output to build a graph representing

the result. I then extract the rhetorical relation between event mentions using

5http://alt.qcri.org/tools/discourse-parser/

6https://github.com/arne-cl/discoursegraphs
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the rhetorical relation between the EDUs in which the events are found. The

feature is encoded as a one-hot vector covering all 16 main relation classes.

 Army of Ansar al-Sunna
 claimed responsibility
 Tuesday for a car bomb
 attack 

which killed four Iraqi 
guardsmen north of 
Baghdad Monday

Explanation

Figure 2.6: An example showing the discourse relation between two EDUs in which the
target events are found.

Consider Figure 2.7. When applied to this text, the discourse parser identifies

the relation between raide18 and killede19 as an Elaboration relation. Further-

more, the parser also captures a Topic-Change relation between offensivee21

and each of killede16, woundede17 , raide18, killede19, and injurede20.

One Palestinian was killede16 and at least four others were woundede17

in an Israeli air raide18 near the southern Gaza town of Rafah on Sun-
day, Palestinian security sources said. . . . Palestinian security sources
said that one Palestinian bystander was killede19 and at least four oth-
ers were injurede20. . . . Israeli troops continued a massive ground and
air offensivee21 in the Gaza Strip on Sunday.

Figure 2.7: Excerpt from the IC corpus. Events relevant to explaining the discourse
features are bolded. Mentions relevant to explaining the narrative feature are underlined.
Note that, for clarity, not all events marked in the corpus are bolded here (e.g., Reporting
events such as said).

Although the discourse parser is useful primarily for providing information

about inter-sentential relationships between events, it can also give useful in-

formation about intra-sentential relationships. Consider Figure 2.8. For this

text, the discourse parser finds the Background relation between abductione22

and each of killede23 and rescuede24.
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Mahsud, a former prisoner at Guantanamo Bay, is being hunted for
the abductione22 of two Chinese engineers, which ended last Thursday
when commandos killede23 five kidnappers and rescuede24 one Chinese.

Figure 2.8: A sentence where intra-sentential discourse relations are useful for discover-
ing subevent relations.

2. Reported Speech I also observed that subevents are often reported in direct

and indirect speech. Direct speech is speech set off with quotes, while indirect

speech is speech reported without quotes. I only considered direct speech in

this work, primarily because it is easy to detect; however, subevents are also

likely to be reported in indirect speech as can be seen in Figure 2.7 where

killede19, and injurede20 (which are subevents of raide18) are mentioned in

indirect speech.

• Narrative Feature

1. Non-Major Mentions Similar to the event co-reference resolution task, the

entity co-reference resolution task aims to group or cluster expressions in text

that refer to the same entity. Consider the text in Figure 2.9. The entity co-

reference task is to build a system that can identify that Mahsud, Mahsud,

Mahsud, his, his, Mahsud, his, he, he, and He mentions, shown in red in the

figure, refer to the same entity and both The military and the military mentions,

shown in blue in the figure, refer to the same entity. The entity co-reference

resolution has been a very critical component in many NLP downstream tasks

such as information extraction and named entity linking (Durrett and Klein,

2014; Ji et al., 2014).

I introduced what I am calling a narrative feature that I found informative in

detecting subevent relations. This feature recognizes that other entities men-

tioned in a sentence in addition to those in the event arguments can be useful
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in subevent detection. This feature is narrative in the sense that it takes into

account whether an entity is central to the story in the text.

In particular, I observed that many sentences that share an event hierarchy also

share some coreferring non-major mentions in addition to event arguments.

Despite this, certain entities are so central to the text that they are mentioned

nearly everywhere and are thus not especially informative, e.g., the mention

Mahsud and its referring expressions that are shown in red in Figure 2.9.

On Tuesday militants believed to be Mahsud loyalists attacked an army
convoy, killing five soldiers and wounding seven. Initial reports put the
toll at three soldiers dead and five injured. Mahsud, a former prisoner
at Guantanamo Bay, is being hunted for the abduction of two Chinese
engineers, which ended last Thursday when commandos killed five kid-
nappers and rescued one Chinese. The military has launched several
previous operations in the wild South Waziristan region against hun-
dreds of militants, including foreigners, who are believed to be hiding
there with local help. Mahsud became commander of Al-Qaeda-linked
militants after the military killed his predecessor Nek Mohammad in a
missile strike in June on his hideout near Wana, the main town in the
district. Mahsud returned to his rugged homeland after he was released
in March from the US Guantanamo Bay detention center in Cuba. Pak-
istan authorities have said he was not on the list of Pakistanis released
from the center and might have returned via Afghanistan. He was cap-
tured there in late 2001 after the US-led invasion ousted the Taliban
regime.

Figure 2.9: A news article showing one of the major mentions in red and one of the
non-major mentions in blue.

Therefore I filter out these major mentions and encode as a binary feature

whether or not the sentences that contain the pair of interest share a non-major

mention such as the military mention, shown in blue in Figure 2.9.

The trick, of course, is defining what is a major mention. A simple and ef-

fective way of filtering out major mentions is to measure the distribution of

co-reference chain lengths (normalized to the number of the corresponding ar-
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ticle’s chains), and discard all chains with a length above a certain threshold.

This threshold can be tuned to the data. In my experiment, I estimated the

mean and standard deviation of the distribution of co-reference chains in each

text and filtered out chains that were longer than a single standard deviation

above the mean. In Figure 2.9, the threshold of the corresponding article is

2, thus the military, which is mentioned only twice, is not considered a major

mention. Also, Figure 2.7 shows two sentences that share a non-major men-

tions (i.e., Palestinian security sources) and two events that have a subevent

relation (raide18 and killede19).

• Semantic Features

1. Event in the Other’s Arguments I observed that if an event hierarchy is ex-

pressed within a sentence, one of the events is often mentioned as part of the

other event’s arguments, as can be seen in Figure 2.10, where the attacke25

event appears as ARG0 of killede26. Although this feature is related to the

Syntactic Dependency feature, an event’s arguments are not always syntacti-

cally dependent on the event head, so it adds useful information. I also include

the number of coreferring event arguments as a numeric feature.

The Al-Qaeda linked Army of Ansar al-Sunna claimed responsibility on
Tuesday for a car bomb attacke25 which killede26 four Iraqi guardsmen.

Figure 2.10: A sentence where one event appears inside the argument for another event.

2.4 Corpora

I used two corpora, the IC corpus (Hovy et al., 2013) and the HiEve corpus (Glavaš et al.,

2014) to train and test my model. The IC corpus contains 100 news articles in the Violent
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IC HiEve

# of sentences 1,973 1,377
# of tokens 48,737 34,917
# PC relations, original 472 609
# PC relations, transitive closure 1632 1802
# CP relations, original 257 351
# CP relations, transitive closure 1665 1846
# NoRel relations 48567 42094
Avg # of sents. per article 19.7 13.7
Avg # of sents. in an event boundary 6.2 8.3
Avg # of events per article 30.5 26.0
Avg # of events in each hierarchy 5.2 7.0
Avg # of hierarchies per article 3.29 2.19

Table 2.5: Statistics of the IC and HiEve corpora.

Event domain (attacks, killings, wars, etc.). The HiEve corpus is an open domain corpus

that also contains 100 news articles. Both corpora are annotated with both co-reference

and subevent relations. The inter-annotator agreement for the IC corpus is 0.467 Fleiss’s

kappa for subevent relations. The approach proposed for temporal relations by UzZaman

and Allen (2011) was used to measure the inter-annotator agreement in HiEve, resulting

in 0.69 F1. There is a small conceptual difference between the annotation of subevent

relations in the two corpora. The annotation of subevents in the IC corpus follows Hovy

et al. (2013), where they argued that the event identity can be divided into three categories:

fully identical, quasi-identical (a.k.a., partial co-reference), and fully independent (not

identical). Quasi-identity, in turn, appears in two ways: membership or subevent. As

mentioned in Section 1.4.4, membership is defined as when an event is a set of multiple

instances of the same type of event, and the other event is one of the instances. In contrast,

the HiEve corpus considers the membership relation as a subevent relation. When training

on the IC corpus, I considered only the subevent relations, and ignored the membership

relations.
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For both corpora, I extend the annotations by computing the transitive closure of both

co-reference and subevent relations according to the following rules in Figure 2.11, where

ei, ej , and ek are event mentions, ≡ indicates event co-reference, ei > ej indicates ei is

a parent of ej , and ei < ej indicates ei is a child of ej . All of these rules are taken from

work by Glavaš et al. (2014). I confirmed that this closure produces a consistent graph,

and thus is insensitive to the order of computation of the closure. Table 2.5 shows the

statistics of both corpora.

1. (ei ≡ ej) & (ej ≡ ek)⇒ (ei ≡ ek)

2. (ei > ej) & (ej > ek)⇒ (ei > ek)

3. (ei < ej) & (ej < ek)⇒ (ei < ek)

4. (ei > ej) & (ej ≡ ek)⇒ (ei > ek)

5. (ei > ej) & (ei ≡ ek)⇒ (ek > ej)

6. (ei < ej) & (ej ≡ ek)⇒ (ei < ek)

7. (ei < ej) & (ei ≡ ek)⇒ (ek < ej)

Figure 2.11: The transitive closure rules.

2.5 Experiment

In this section, I describe the experiment and the evaluation metrics used to measure the

performance of my model. Then I compare the performance of my model with previous

models, specifically those of Araki et al. (2014) and Glavaš and Šnajder (2014).
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IC corpus HiEve corpus
Training Test Total Training Test Total

# articles 80 20 100 80 20 100
# PC (avg.) 1299.2 332.8 1632 1484 318 1802
# CP (avg.) 1317.8 347.2 1665 1456.4 389.6 1846
# NoRel (avg.) 39469 9098 48567 35621.2 6472.8 42094

Table 2.6: Average statistics of the folds. PC stands for parent-child relation. CP stands
for child-parent relation. NoRel stands for no relation.

2.5.1 Experimental Setup

I use the Linear SVM classifier from scikit-learn library7 for classification over

the gold annotated event mentions. Linear SVM can handle multi-class classification

using a one-vs-rest scheme (Pedregosa et al., 2011). Most of the parameters are default

parameters8, but to address the issue of the data imbalance as shown in Table 2.6, I use the

parameter class weight=balanced to assign a higher misclassification penalty on

the minority class (PC and CP). I conducted 5-fold cross-validation for the experiment.

Average fold statistics are shown in Table 2.6.

2.5.2 Evaluation and Result

I use the same evaluation metrics used in previous models. Araki et al. (2014) evaluated

their model using the BLANC evaluation metric (Recasens and Hovy, 2011), whereas

Glavaš and Šnajder (2014) evaluated their model using the standard F1 evaluation metric.

The BLANC metric computes the F1 score for two separate links (i.e., positive (pos) and

negative (neg) links). When applying BLANC to the system output of the three classes,

7https://scikit-learn.org/stable/

8penalty=l2,C=0.01, random state=0, max iter=1000,

class weight=balanced, multi class=ovr.
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the 3x3 confusion matrix is converted to a 2x2 confusion matrix as a binary decision of

the system to each class. Precision and recall of positive and negative links are computed

as follows:

Precisionpos =
tp

tp+ fp

Recallpos =
tp

tp+ fn

Precisionneg =
tn

tn+ fn

Recallneg =
tn

tn+ fp

and the BLANC metric is computed as follow:

BLANC =
F1pos + F1neg

2

where F1pos =
Precisionpos ∗Recallpos
Precisionpos +Recallpos

and F1neg =
Precisionneg ∗Recallneg
Precisionneg +Recallneg

The results of the performance averaged across all five folds on the three classes (PC,

CP, and NoRel) are shown in Table 2.7 using both evaluation metrics on both corpora.

Table 2.8 shows the comparison between my model and previous models. Although it is

not clear to me how Araki et al. handled the direction of the subevent relation, I take the

average of my model classes (PC and CP) and compare it with the subevent class in Araki

et al.’s work. For Glavaš and Šnajder (2014), I consider only their coherent model, which

is the best model that does not use the gold co-reference relations. Therefore, in Table 2.8,

the reported result of all models is the average of both classes (PC and CP). As can be

34



Evaluation Metrics
F1 Score BLANC

Pos Links Neg Links Avg
Corpus Relation P R F1 P R P R F1

HiEve
PC 0.576 0.807 0.67 0.661 0.832 0.989 0.973 0.857
CP 0.661 0.832 0.733 0.576 0.807 0.990 0.971 0.825
NoRel 0.98 0.945 0.962 0.980 0.945 0.625 0.830 0.836

IC
PC 0.469 0.564 0.506 0.455 0.549 0.982 0.973 0.735
CP 0.454 0.550 0.492 0.468 0.564 0.983 0.975 0.743
NoRel 0.966 0.905 0.958 0.966 0.949 0.461 0.557 0.729

Table 2.7: My model result on the IC corpus and HiEve corpus using BLANC and F1

standard evaluation metrics. PC stands for parent-child relation. CP stands for child-
parent relation.

shown in Table 2.8, my model outperforms both prior models by 15 and 5 percentage

points. Also, the table shows that the precision is lower than the recall, which indicates

that the subevent detection task is still a difficult and complex task that needs more work.

2.5.3 Discussion

As shown in Table 2.7, my model performs worse on the IC corpus than on HiEve. This is

not surprising given the large difference in annotation agreement between IC and HiEve

as well as the removal of membership relations in the IC corpus (see Section 2.4). In

addition to its lower annotation agreement, the IC corpus is also domain-specific, with

events only related to the intelligence community. This makes general resources and

tools (e.g., VerbOcean, WordNet) less effective.

I investigated the importance of each of the five feature sets (Table 2.2) to my model

by retraining it while leaving out one set at a time. In order of importance, they are (1)

Syntactic, (2) Semantic, (3) Discourse & Narrative, (4) Lexical, and (5) Arguments. The

importance of the syntactic features derived from the fact that children events are most

often mentioned in the same sentence as their parent events. The three most important
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F1 Score BLANC
Pos Links Neg Links Avg

Corpus Model P R F1 P R P R F1

IC
Araki et al.
(2014)

- - - 0.144 0.333 0.993 0.981 0.594

Araki et al. Re-
Impl.

0.242 0.285 0.262 - - - - -

My model 0.461 0.557 0.499 0.461 0.557 0.983 0.974 0.739

HiEve
Glavaš and
Šnajder (2014)

0.766 0.565 0.65 - - - - -

Glavaš and
Šnajder Re-Impl.

- - - 0.562 0.750 0.983 0.971 0.813

My model 0.618 0.82 0.701 0.618 0.82 0.99 0.972 0.841

Table 2.8: My model performance compared to previous models. Each row represents
the average of both classes parent-child (PC) and child-parent (CP). Because the prior
systems did not report both metrics, I approximated the metrics for those systems by
reimplementing them.

features among the Semantic features are Most Likely Parent Event, Event Type, and Se-

mantic Frame. For the Lexical feature set, the Event Feature and Temporal Signals are

the most important.

2.6 Error Analysis

Inspection of the results revealed several types of errors, aside from the usual noise in-

troduced by the various sub-components, such as the discourse parser or co-reference

systems. I cluster the errors into three types: (1) an event pair that should be classified as

PC but is classified as CP and vice versa (about 28%); (2) an event pair wrongly classified

as NoRel (missed subevent relation; about 12%); (3) an event pair that is actually NoRel

that is wrongly classified as subevent (PC or CP; about 60% of the errors).

Type 1: PC as CP or vice versa About a third of the model errors were this type.

Most of the errors are a result of an incorrect Event Type feature. This feature plays a

major role in capturing the direction of the subevent relation. For example, if an event ei
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with event type Die occurs in the text before an event ej with event type Attack, then the

direction of the relation is mostly child-parent relation. But if ej occurs before ei, then

the direction of the relation is mostly parent-child. If the event type is unknown for one

of the event mentions, my model commonly fails to capture the direction.

Type 2: Incorrect NoRel Most of the type 2 errors occur when an event is far away

from its related event in terms of the number of intervening sentences. The larger the

distance between events, the more likely that the model makes this error. For this type of

error, I calculated the average number of sentences and the average number of events inter-

vening between a missed pair of events, for which the model should capture its subevent

relation, and found that when the distance is greater than 9 sentences and the number

of events is greater than 14, it is more likely that the model would conduct this error.

Subevents tend to be close to their parents in the text, as shown in Table 2.5. Moreover,

I observed that the Non-Major Mention and Discourse Relation features (described in

Section 2.3.3) were less useful the larger the distance between the events.

Type 3: False Positive PC or CP Most of the errors were of this type. There

were a variety of causes, but the most common was when a sentence contained multi-

ple event hierarchies. Consider Figure 2.12 in which the sentence contains two different

event hierarchies, namely, one hierarchy containing offensivee29 and another containing

abductione30.

Over 90 Palestinians and one Israeli soldier have been killede27 since
Israel launchede28 a massive air and ground offensivee29 into the Gaza
Strip on June 28, three days after the abductione30 of one Israeli soldier
by Palestinian militants in a cross-border raide31.

Figure 2.12: Excerpt from the IC corpus (Hovy et al., 2013) showing a passage that results
in an error of Type 3.

In Figure 2.12, killede27 and launchede28 are subevents of offensivee29, whereas

abductione30 is a subevent of raide31. When processing this example, the discourse
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parser failed to capture the discourse relation between offensivee29 and abductione30 be-

cause both events are in the same EDU. Moreover, even though I introduced features

such as temporal signals (after, since, etc.) to capture the subevent relation between intra-

sentential events, this error can still occur if the intra-sentential events are syntactically

related (i.e., killede27 syntactically dominates abductione30, or there is a causal relation

between events).

Based on this observation, I ran an experiment on the IC corpus to examine the impact

on subevent detection of having two different events in the same sentence. I constructed

a subset of the IC corpus (58 articles), which excluded all articles that contain at least

one sentence with two different event hierarchies, and re-ran my main experiment. Under

these conditions, the model performance increased by 6 and 4.6 points F1 on PC and CP

classes, respectively (because of the smaller set, I used 3 folds instead of 5). Returning

to the original corpus, I observed that two different event hierarchies are mostly found

in compound and complex sentences, and one of them is usually a background event.

This observation indicates that splitting compound or complex sentences into two simple

sentences in advance might be useful in detecting subevents. Even though the discourse

parser does this splitting automatically, this split is not currently propagated to the other

features.

2.7 Improving Event Co-reference using Subevent Relation

In this section, I investigate the importance of detecting subevent relations for event co-

reference improvement. The event co-reference task aims to identify clusters of core-

ferring events that exist in a document. The goal of this experiment is to measure the

performance of an event co-reference classifier before and after including the subevent

relation as a feature. For this experiment, I used the ECB+ corpus, described in Section
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Train Validation Test Total

# of documents 527 190 198 915
# of coreferring pairs 877 314 545 1736
# of non-coreferring pairs 14544 4371 10206 29121
# of event mentions 3659 1239 1772 6670
Related topics 1–36 2,5,12,18,21,23,34,35 36–46

Table 2.9: The ECB+ WDEC statistics. The number of documents does not match the
number of documents mentioned in Table 1.4 because some of the documents do not have
within-document co-reference chains.

1.4.1, which is annotated with both within and cross-document event co-reference. I only

consider the task of within-document event co-reference (WDEC) because my subevent

detection model is limited to detecting within-document subevent relations. The statistic

of the annotation of WDEC relations in the ECB+ corpus is shown in Table 2.9.

2.7.1 Related Work

Different assumptions and definitions of event co-reference have led to the creation of

several corpora, e.g., ACE 2005, TAC KBP, IC and ECB+, explained in Section 1.4.1.

Many researchers have worked and conducted experiments on ACE 2005 (Chen and Ji,

2009; Chen and Ng, 2015), TAC KBP (Lu et al., 2016; Peng et al., 2016; Lu and Ng,

2017), IC (Hovy et al., 2013; Liu et al., 2014), and ECB+ (Lee et al., 2012; Cybulska

and Vossen, 2014; Kenyon-Dean et al., 2018). In my experiment, I compared my model

to the recent work of WDEC (Kenyon-Dean et al., 2018) reported on the ECB+ corpus.

Kenyon-Dean et al. (2018) is the most recent work on the ECB+ corpus for detecting

WDEC relations. Kenyon-Dean et al. (2018) introduced a neural network-based model

that clusters event mentions based on the vector representation of the event mention and

its context, e.g., all of the five tokens following the event mention. Kenyon-Dean et al.

(2018) trained and evaluated their model on the ECB+ corpus’s split, shown in Table 2.9.
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2.7.2 Model and Features

I built a pairwise logistic regression model that detects whether a pair of events (ei and

ej) corefer. I used scikit-learn implementation of logistic regression with param-

eters9 chosen by conducting a grid search technique using scikit-learn’s Grid-

SearchCV10 method over the training and validation sets combined. Over the result of the

pairwise model on the test set, I employed a transitive closure approach to group all events

that belong to the same cluster. That is, for each document’s pairs, the classifier confi-

dence scores are sorted (from highest to lowest), and the transitivity rule is applied over all

the document’s pairs (i.e., if ei corefers with ej and ej corefers with ek, then ei corefers

with ek). Following previous work on ECB+ (Kenyon-Dean et al., 2018), I trained the

classifier on the ECB+ training and validation sets, topics are shown in Table 2.9, using

the following features:

• Lexical and Syntactic I used a binary feature to determine whether ei and ej share

the same lemma. Syntactically, I used three features, namely, the major POS, POS

tag, and the dependency relation between the target pairs (ei and ej). Each feature

is encoded as a one-hot vector, a process of converting categorical variable into a

numeric vector that machine learning algorithms can understand. I used the spaCy

tool (Honnibal and Montani, 2017) to compute both lexical and syntactic features.

• Event as an Entity Some nominal events can be resolved by any of the avail-

able entity co-reference resolution systems; thus, I used a binary feature to indicate

whether the two events ei and ej corefer using the Allennlp neural model (Lee

et al., 2017).

9penalty=l2,C=0.0001,solver=liblinear,multi class=ovr,random state=0,class weight=balanced,

max iter=2000

10cv=3, scoring=f1 macro
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• Semantic Similarity I calculated the cosine similarity between ei and ej embed-

dings using the FastText (Mikolov et al., 2018) pre-trained model (wiki-news-

300d-1M). This feature is encoded as a numeric feature.

• Verb Class VerbNet (VN) (Kipper et al., 2008) is the largest online verb lexi-

con that organizes verbs in classes based on Levin’s verb classification [1993] that

groups verbs according to shared syntactic behaviors. VerbNet extended Levin’s

classes and organized verbs into hierarchical classes where each class is described

by frames, thematic roles, and selectional restrictions on the arguments, ensuring

that members of a class are syntactically and semantically coherent. For example,

in VN, eat, chew, gobble, and devour belong to the class verbs of ingesting. I used

a binary feature to indicate whether the two events ei and ej belong to the same VN

class. For non-verb events, I employed a simple heuristic approach to convert a non-

verb event to a verb event based on the concept of the derivationally related form

in WordNet, a database of English words linked by semantic relations including

synonyms, hyponyms, and meronyms (Miller, 1995). The concept of derivationally

related forms is defined in WordNet as those terms with different POS but have the

same root form and that are semantically related (Miller, 1995). Algorithm 1 shows

the approach of converting a non-verb event into a verb event using the NLTK

WordNet Interface (Bird and Loper, 2004). Note that if the algorithm returns None,

then the assumption is that the two events ei and ej do not belong to the same VN

class.

• Co-referring Event Arguments I used a binary feature to indicate whether any

of the arguments (i.e., ARG0, ARG1, TMP, and LOC) of the two events ei and ej

corefer. I used the Allennlp SRL model (Gardner et al., 2018; He et al., 2017)

to extract arguments and the Allennlp co-reference model (Lee et al., 2017) to

resolve the arguments.
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Algorithm 1: Algorithm for converting a non-verb event to a verb event
Input: Non-verb event
Output: Verb event

1 Function convertToVerbEvent(event):
// synsets() function from NLTK WordNet Interface

2 sysnsets← synsets(event, pos = event.pos)
3 if ¬ sysnsets is empty then
4 relatedVerbs← empty list
5 foreach synset ∈ sysnsets do

// lemmas() function from NLTK WordNet Interface
6 foreach lemma ∈ synset.lemmas() do
7 if lemma.pos == event.pos then

// derivationally related forms() function from NLTK
WordNet Interface

8 foreach form ∈ lemma.derivationally related forms() do
9 if form.pos == V ERB then

10 relatedV erbs.add(form)
11 end
12 end
13 end
14 end
15 end
16 if ¬ relatedVerbs is empty then
17 return findMostFrequentV erb(relatedV erbs)
18 end
19 return None

20 end
21 return None

22 End Function

• Subevent Relation I used my subevent model prediction, described in Section 2.1,

on the ECB+ corpus as feature.Specifically, I used the type of the subevent relation

(i.e., parent-child, child-parent, or no-relation) between the two events ei and ej as

a feature.
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2.7.3 Evaluation and Result

For training and testing my model on the ECB+ corpus, I followed Kenyon-Dean et al.

(2018) setup split shown in Table 2.9. For evaluation, I used the official CoNLL scorer11

(Pradhan et al., 2014) and report the average of the five standard metrics, namely, MUC

(Vilain et al., 1995), B3 (Bagga and Baldwin, 1998), CEAF-e (Luo, 2005), CEAF-m

(Luo, 2005) and BLANC (Luo et al., 2014). Below I describe each score. Let K be the

set of gold clusters, and R be the set of system clusters.

MUC The recall is computed based on the minimum number of links that need to be

added to the system clusters to obtain the gold clusters. Precision is switching the role of

gold and system clusters. The recall is defined as follows:∑
(|ki| − p (ki))∑

(|ki|)− 1
(2.1)

where ki ∈ K and p(ki) is the set of partitions that is generated by intersecting ki with the

corresponding system cluster.

B3 This score is a mention-based metric that computes the overall precision and recall

based on each individual mention’s recall and precision. The recall for each mention is

computed as the fraction of the correct mentions that are included in the system cluster.

The Recall is defined as follows:

∑∑ |ki ∩ rj|2

|ki|
(2.2)

where ki ∈ K and rj ∈ R. Similar to MUC, precision is switching the role of gold and

system clusters.

11https://conll.github.io/reference-coreference-scorers/
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CEAF-e and CEAF-m The assumption of the CEAF metric is that each gold cluster

should only be mapped to one system cluster, and vice versa. It uses a similarity measure

(i.e., the Kuhn-Munkres algorithm) to compute an optimal alignment (g∗) between the

gold clusters and the system clusters. The alignment can be defined as a one-to-one

mapping function g whose score Φ (g) is defined as follows:

Φ (g) =
∑

θ (ki, g(ki)) (2.3)

where ki ∈ K and θ is a function that computes the similarity between a gold cluster

and a system cluster. Given the optimal alignment (g∗), whose Φ value is the largest

among all possible alignments, the recall and the precision of CEAF are computed as

follows:

Recall =
Φ (g∗)∑|k|

i=1 θ(ki, ki)
(2.4)

Precision =
Φ (g∗)∑|R|

j=1 θ(rj, rj)
(2.5)

Luo (2005) defines two similarity functions θ3 and θ4 that result in mention-based

CEAF-m and entity-based CEAF-e, respectively.

θ3 (ki, ri) = |ki ∩ ri| (2.6)

θ4 (ki, ri) =
2 |ki ∩ ri|
|ki|+ |ri|

(2.7)

There is no agreement in the literature on the best evaluation metric for event co-

reference tasks. Thus and for a fair comparison with the state-of-the-art model (Kenyon-

Dean et al., 2018), I reported the aforementioned evaluation metrics and the mean of

MUC, B3, and CEAF-e (a.k.a., CoNLL). Even though the goal of this experiment is to

measure the performance of the classifier with and without the subevent relation feature,
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MUC B3 CM CE BLANC CoNLL PW
Model R P F R P F F R P F F F F

KD2018 57 69 63 90 94 92 86 90 86 88 75 81 -
My model 62 83 71 91 97 94 89 94 88 91 79 85 53
My model+ 63 86 73 91 97 94 90 94 88 91 80 86 54

Table 2.10: My model’s performance compared to the state-of-the-art model (Kenyon-
Dean et al., 2018) on ECB+ WDEC task. KD2018 denotes Kenyon-Dean et al.’s work.
PW stands for pairwise.

my model outperforms the state-of-the-art model on the ECB+ WDEC task, shown in

Table 2.10. It is clear that the model performance increases slightly when I include the

subevent relation feature. However, it has been shown in the literature that the transitivity

rule propagates errors when clustering corefering pairs based on the classifier pairwise

decision. Therefore and to accurately measure the impact of the subevent relation feature,

I included the classifier performance on the pairwise decision using the standard F1 score,

shown in Table 2.10. As result, it is clear from the table that the subevent relation feature

has a slight impact on the classifier performance by increasing the performance by 1 point.
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CHAPTER 3

FOREGROUND AND BACKGROUND EVENT DETECTION

One of the error sources in my subevent model reported in Chapter 2 is the lack

of distinguishing between foreground and background events. Therefore, I hypothesize

that determining whether an event in a news article is a foreground or background event

would be useful not only in subevent detection, but also in other event relations such as

temporal relation extraction and event co-reference detection. In this chapter, I introduce

the task of distinguishing between foreground and background events in news articles

as well as identifying the general temporal position of background events relative to the

foreground period (past, present, future, and their combinations). Identifying the general

temporal position is a coarser analog to detailed, pairwise temporal relation extraction,

and provides an intermediate step to ease the integration of discourse information into

temporal understanding of the text. Chapter 4 shows the importance of using foreground

and background knowledge in modeling event relations.

3.1 Definition

Grimes et al. (1975) defined foreground events as the events that form the skeleton of a

story, whereas background events add supporting information. Following Grimes et al.

(1975), I define foreground events as those that comprise the main topic of a news article,

as indicated by the headline. In contrast, background events add supporting or contextual

information. Figure 3.1 shows a snippet of text with foreground events in red and back-

ground events in other colors, divided into six general temporal position categories, as

illustrated in Figure 3.2 and defined in Table 3.1. Note that while the document creation

time (DCT) usually occurs after the foreground period, there is no reason why the DCT

could not appear within or before it.
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A car bombe32 damagede33 half a city block in Istanbul Tuesday while
the Prime Minister attendede34 a peace conferencee35, which is sched-
uled from Monday to Wednesday. No casualtiese36 were reportede37.
The terrorist group behind the attacke38 has been on the rune39 from
the military since the first major bombinge40 in 1998. The group
promisede41 more bombingse42 soon, while the military saide43 that spe-
cial security measures have been implementede44 and would remain in
place for the foreseeable future.

Figure 3.1: An example text with foreground events marked in red, and background events
in other colors, as defined in Figure 3.2.

Background Future

DCT

Foreground
DCT = Document Creation Time

Background Past
Background Past Present
Background Present
Background Past Present Future

Background Present Future

Figure 3.2: An illustration of the relative temporal position of foreground events in rela-
tion to background event categories. The document creation time (DCT) is assumed to
occur after the foreground events, but this is not strictly necessary.

Background Past (BPast) events end before the foreground events begin.
Background Past Present (BPastPres) events start before and continues during
the foreground period.
Background Present (BPres) events happen within the foreground event period.
Background Present Future (BPresFut) events begin during the foreground
period and continue in the future.
Background Future (BFut) events begin after the foreground event period.
Background Past Present Future (BAll) events begin in the past, continue dur-
ing the foreground period, and into the future.

Table 3.1: Background Event Categories, which are distinguished by their temporal posi-
tion relative to the foreground period.

3.2 Task

The ability to automatically extract foreground and background events could guide docu-

ment understanding and potentially be helpful in many natural language processing tasks
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Unidentified gunmen have shot deade45 the eldest son of Yemeni Trans-
port Minister Ahmed Mussaed Hussein in the capital Sanaa, police
sources in Yemen tolde46 AFP on Friday. . . . Ahmed Mussaed Hussein
was namede47 transport minister in 1994 after the civil ware48.

Figure 3.3: Excerpt from the IC corpus (Glavaš et al., 2014) showing Foreground, Back-
ground, and Other classes. The namede47 and civil ware48 events are annotated as Back-
ground events, tolde46 as an Other event, whereas shot deade45 as a Foreground event.

such as temporal relation extraction (Naik et al., 2019), summarization (Zhang et al.,

2018), and storyline generation (Zhou et al., 2018). The task is distinguishing between

foreground and background events, as well as identifying the general temporal position of

background events relative to the foreground period. More precisely, the task is to classify

an event as Foreground, Background, or Other, and additionally assign background events

to one of the six possible general temporal positions relative to the foreground period, de-

fined in Table 3.1 and illustrated in Figure 3.2. I assume events are provided through

some other process. The Other category includes events that are neither foreground nor

background, such as generics or reporting events (e.g., reportede37 in Figure 3.1). For

example, in Figure 3.3, the headline of the news article, from which the excerpt is ex-

tracted, is “Yemeni minister’s son assassinated” (i.e., this article was written to report the

assassination of the Yemeni minister’s son). Given this example, a model should clas-

sify shot deade45 as a Foreground event, tolde46 as an Other event, and both namede47

and civil ware48 as Background events (more precisely BPast). Both events are classified

as Background events because they add some background information of certain entities

(e.g., the Yemeni transport minister) that is not the reason this article was written. Ad-

ditionally, both events are classified as BPast because they ended before the foreground

events began.
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3.3 Prior Work

Both Upadhyay et al. (2016) and Choubey et al. (2018) demonstrated approaches for iden-

tifying the central event in news articles. Upadhyay et al. (2016) proposed a rule-based

system to identify the central event in a human-generated document summary. They eval-

uated their system on human-generated summaries from the New York Times Corpus

(Sandhaus, 2008), where the central event had been identified. Similarly, Choubey et al.

(2018) used several rule-based systems and statistical classifiers to identify the most im-

portant event in a news article. They trained and evaluated their systems on 30 news

articles from the RED corpus (Mitamura et al., 2015) and 74 news articles from the KBP

2015 corpus (O’Gorman et al., 2016). Both were focused only on identifying a single

central event, whereas I seek to label all events in a document as either Foreground, Back-

ground, or Other.

Huang et al. (2016) demonstrated an approach to placing events in news articles into

three coarse temporal categories: Past events that have already occurred; On-Going events

that are currently happening; and Future events that may happen. In that work, the tem-

poral category was relative to the document creation time (DCT) and did not distinguish

between foreground and background events. In contrast, my work seeks to mark the gen-

eral temporal position of all background events relative to the foreground period.

3.4 Corpus

Due to the lack of annotated corpora, two annotators1 and I worked on the annotation of

foreground and background events. We annotated 99 news articles from the Intelligence

1two members of the Cognac laboratory (Deya Banisakher, Ph.D., and Adrian Perez, under-

graduate student)
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Community (IC) corpus (Hovy et al., 2013). The IC corpus contains 100 news articles,

but one article was merely a list of events rather than being a narrative. We used the gold

event mentions that had been annotated on the corpus. The definition of event in Hovy et

al. follows that of TimeML (Pustejovsky et al., 2003a; Sauri et al., 2006), which has been

well studied and shown to be reliably annotatable:

We mean both events and states when we say ‘event’. A state refers to a

fixed, or regularly changing, configuration of entities in the world, such as ‘it

is hot’ or ‘he is running’. An event occurs when there is a change of state in

the world, such as ‘he stops running’ or ‘the plane took off’. (Hovy et al.,

2013, p. 21)

Figure 3.4: A working example of the annotation of foreground and background events
including the temporal position of background events.

3.4.1 Annotation Process

Two of the annotators labeled each event in the IC corpus with one of eight categories:

Foreground, Other, or six varieties of Background (listed in Table 3.1). The annotators
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were educated and given several working examples (one of these examples is shown in

Figure 3.4) with the following definitions:

• Background Past (BPast): Event that is not central to the topic of the news arti-

cle and has started and ended before the foreground events. Below (1 and 2) are

examples of the background past category, and the target events are underlined:

1. “Somalia has been without a government since the overthrow (BPast) of dic-

tator Mohamed Siad Barre in January 1991.” The title of the article where

this example is found is “Heavy fighting reported in breakaway Somaliland.”

2. “But Turkey has launched previous raids (BPast ) into Iraq, notably in 1992,

when 20,000 troops were sent in to flush (BPast) rebels from their mountain

bases and 2,500 rebels were killed (BPast).” The title of the article where

this example is found is “Turkey Attacks Kurdish Rebels in Northern Iraq

(Ankara).”

• Background Past Present (BPastPres): Event that is not central to the topic and

had started before foreground events but is still ongoing (i.e., it still overlaps with

foreground events). Below (1 and 2) are examples of the background past present

category.

1. “Barzani, leader of a feudal family which has fought (BPastPresent) Baghdad

for decades.” The title of the article where this example is found is “Bloodshed

shows up failure of Kurdish self-rule by Patrick Rahir.”

2. “the two Iraqi groups that have set up a de facto government in northern Iraq

under cover of Provide Comfort, have been fighting (BPastPresent) intermit-

tently since April.” The title of the article where this example is found is

“Turkey Attacks Kurdish Rebels in Northern Iraq (Ankara).”
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• Background Present (BPres): Event that is not central to the topic and overlaps

with foreground events, and there is no indication that the event started before the

foreground events. Below is an examples of the background present category.

1. “Al-Alaami is an offshoot of Harkatul Mujahideen , which is battling (BPre-

sent) Indian rule in the divided Himalayan region of Kashmir.” The title of the

article where this example is found is “Pakistani militant held over Musharraf

death plot.”

• Background Present Future (BPresFut): Event that begins during the foreground

period and continues in the future. Event implementede44, in Figure 3.1, is an

example of background present future.

• Background Future (BFut): Event that begins after the foreground event period.

Event bombingse42, in Figure 3.1, is an example of background future.

• Background Past Present Future (BAll): Event that begins in the past, continues

during the foreground period, and into the future. Event conferencee35, in Fig-

ure 3.1, is an example of background past present future.

• Foreground (F): Event that is central to the topic that prompted the author to write

the news article. Below (1 and 2) are examples of foreground events.

1. “One Palestinian was killed (F) and at east four Others were wounded (F) in

an Israeli air raid (F).” Note that killed, wounded, and raid are all foreground

events because they are all central to the topic of the article even though killed

and wounded are in past tense.

2. “The metro workers’ strike (F) in Bucharest has entered the fifth day.”
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• Other (O): The other category includes any other events not belonging to any of

the aforementioned categories (e.g., Other may include, generic (1), hypothetical

(2), or reporting events (3).

1. “Jews are prohibited from killing (O) one another.” Or “Protests (O) are often

facilitated by...”

2. “If the Israelis strike (O), the US will surely be dragged (O) into a larger

conflict.”

3. “The operation will be of limited duration and the forces involved will be

withdrawn immediately following the elimination of the targets, a government

statement said (O).”

The annotators were provided with some guidelines. Below is some of this informa-

tion:

• Given a news article text (xml file from the IC corpus) along with a CSV file con-

taining the targeted events of the article, write next to each event its correspond-

ing category (Foreground, Background, or Other) and additionally assign the back-

ground events to one of the six possible general temporal positions relative to the

foreground period, defined in Table 3.1.

• Always remember the reason why this article was written to distinguish between

foreground and background events in general.

• In case of ambiguity, make use of the previous annotation of event co-reference and

subevents in the IC corpus, i.e., if you cannot determine the temporal position of an

event, refer to its coreferring events (if any) to better understand the event.

• Take advantage of the previously annotated subevent relations because parent-child

events always have the same main category (Foreground and Background), but not

53



always the same temporal position (i.e., BPast, BPastPres, BPres, BPresFut, BFut,

and BAll).

Disagreement between the two annotators was adjudicated by the third annotator. The

overall agreement was 0.69 Cohen’s κ (Landis and Koch, 1977). Cohen’s Kappa metric is

used to calculate the agreement between annotators. The value of Cohen’s Kappa metric

has a range of -1 to 1, where 1 denotes the ideal value of Cohen’s Kappa. Table 3.2 shows

the value of Cohen’s Kappa and the corresponding agreement.

Cohen’s Kappa value agreement

Below 0 no agreement
Between 0 and 0.2 slight agreement
Between 0.2 and 0.4 fair agreement
Between 0.4 and 0.6 moderate agreement
Between 0.6 and 0.8 substantial agreement
Between 0.8 and 0.1 almost perfect agreement

Table 3.2: The value of Cohen’s Kappa (Landis and Koch, 1977).

Table 3.3 shows agreements for individual classes as well as the statistics of the cor-

pus. Note that in the corpus BAll only occurred 5 times, and BPresFut not at all. Table 3.3

shows the characteristics of the corpus and label counts.

3.5 Model

I built a featurized logistic regression classifier powered by several features divided into

five categories: Lexical, Syntactic, Semantic, Discourse, and Time. I used a logistic

regression classifier from the scikit-learn library (Pedregosa et al., 2011) for clas-

sification over the gold annotated event mentions. The classifier handles multi-class clas-

sification using a one-vs-rest scheme. Most of the parameters were left at their default set-
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Articles 99
Sentences 1,955
Tokens 48,737
Event Mentions 4,086

Avg. Sentences / article 19.7
Avg. Tokens / article 487.4
Avg. Events / article 30 κ

Foreground 1,501 0.66
Background Past (BPast) 851 0.66
Background Past-Present (BPastPres) 365 0.61
Background Present (BPres) 89 0.21
Background Present-Future (BPresFut) 0 -
Background Future (BFut) 160 0.43
Background Past-Present-Future (BAll) 5 0.66
Other 1,115 0.90

Overall Markings / Agreement 4,086 0.69

Table 3.3: Corpus Statistics.

tings 2. I addressed data imbalance (shown in Table 3.3) by using the class weight=balanced

parameter to assign a higher mis-classification penalty to the minority class. I conducted

5-fold cross-validation for the experiment.

3.6 Features

Lexical and Syntactic Temporal signals (e.g., after and before) often occur before

background events. I used the temporal signals list collected by Derczynski and Gaizauskas

(2010). This feature is encoded as a bag of signals capturing whether a temporal signal

is present in the text between the target event and the immediately preceding event. For

syntactic features, I use the major part of speech (POS), tense, and aspect, all encoded as

2penalty=l2,C=0.1,random state=42, max iter=1000

class weight=balanced, solver=liblinear, multi class=ovr.
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a one-hot vector. I used spaCy (Honnibal and Montani, 2017) to compute both lexical

and syntactic features.

Semantic BERT (Bidirectional Encoder Representations from Transformers) is a deep

learning model (Devlin et al., 2018) that has given state-of-the-art results on a verity

of NLP downstream tasks. BERT is a multi-layer bidirectional transformer trained on

plain text for masked word prediction (i.e., predicting the next word given a sequence of

words) and next sentence prediction tasks (i.e., whether the second sentence is the actual

next sentence of the first sentence when given a pair of sentences). The BERT model

can be fine-tuned for NLP downstream tasks or used as a fixed feature extractor (i.e.,

getting an encoded representation of a sentence). In my experiment, I computed an event

contextualized representation using (Akbik et al., 2018)’s implementation of BERT model

bert-base-uncased (Devlin et al., 2019) to capture the semantics of an event. The vector

for an event is defined as the weighted sum of all subword embeddings extracted from

BERT’s last layer. I also captured the semantic frame of the event using the SEMAFOR

tool (Das et al., 2010), encoded as a one-hot vector.

Discourse I employed two discourse features: RST discourse relation and the position

of the event’s sentence in the text. As mentioned earlier in Section 2.3.3, Rhetorical

Structure Theory (RST) (Mann and Thompson, 1988) is useful for many NLP tasks, in-

cluding sentiment analysis (Bhatia et al., 2015) and information extraction (Maslennikov

and Chua, 2007). I used the Feng-Hirst discourse parser (Feng and Hirst, 2014) to

build a discourse tree of each text, and post-processed the output to build a graph us-

ing Neumann (2015) library. For events after the first, I extracted the rhetorical relation

between the target event mention and the immediately preceding event. This feature is

encoded as a one-hot vector covering all 16 main relation classes. We also captured the
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Fine-grained Coarse-grained

Model Class Prec. Rec. F1 Class Prec. Rec. F1

My Model

Foreground 0.75 0.71 0.73 Foreground 0.73 0.74 0.73
BPast 0.66 0.64 0.65

 Background 0.72 0.72 0.72
BPastPres 0.52 0.62 0.56
BPres 0.19 0.18 0.19
BFuture 0.34 0.46 0.39
Other 0.94 0.92 0.93 Other 0.94 0.92 0.93

macroavg 0.57 0.59 0.57 macroavg 0.80 0.79 0.79
microavg 0.72 0.72 0.72 microavg 0.78 0.78 0.78

Baseline (MFC) macroavg 0.17 0.06 0.09 macroavg 0.33 0.12 0.18
microavg 0.37 0.37 0.37 microavg 0.37 0.37 0.37

Baseline (Coref) macroavg 0.21 0.14 0.15 macroavg 0.42 0.34 0.35
microavg 0.34 0.34 0.34 microavg 0.46 0.46 0.46

Table 3.4: My model’s performance on all classes. Background is abbreviated as (B).

position of the event’s sentence in the discourse. This was encoded as a real number,

normalized to a value between 0 and 1 by the number of sentences in the article.

Time I compute the difference, in days, between the date of the event mention and the

date in the first sentence. If there is no date in the first sentence, I use the document

creation time. The date of the event mention is taken to be any date used as an argument

to the event, or otherwise the nearest date that appears in the sentence; if the event has

neither, I assume the difference is zero. I normalized both dates to a calendar value using

the HeidelTime utility (Strötgen and Gertz, 2013). The difference is then encoded as

a one-hot vector feature with three possible values: negative, zero, or positive.

3.7 Experiment

I discuss in this section the design of the experiment (§3.7.1), baselines (§3.7.2), the

performance of my model (§3.7.3), and the importance of the four feature sets (§3.7.4).
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3.7.1 Experiment Setup

I conducted two experiments: in the first (the fine-grained condition), I used all classes

from Table 3.3 except for two (BAll and BPresFut). Note that I merged the BAll class with

the BPres class due to the small number of examples, and BPresFut had no examples

in the corpus. In the second experiment (the coarse-grained condition) I collapsed all

background classes into one.

3.7.2 Baselines

In addition to a most frequent class (MFC) baseline, I designed a strong baseline inspired

by the observation that the central event of a document usually has many co-referential

event mentions (Choubey et al., 2018). This baseline operates as follows: (1) Mark an

event as Foreground if it is part of an event co-reference chain and the length of that chain

is longer than or equal to the average of the lengths of event co-reference chains for each

article (the event co-reference chains are identified based on the IC gold annotation); (2)

Mark an event as Other if it is a reporting event corresponding to the IC gold annotation;

(3) Otherwise, mark the event as BPast for the fine-grained condition (the most frequent

Background class), or Background for the coarse-grained condition.

3.7.3 Evaluation and Result

I evaluated my model performance using both the macro and micro F1 metric. Table 3.4

shows my model’s performance under both conditions (the fine-grained condition and the

coarse-grained condition). As shown in bold in Table 3.4, my model outperforms all

baselines under both conditions. It achieves a reasonable performance of %0.72 F1 micro

and %0.57 F1 macro under the fine-grained condition and %0.78 F1 micro and %0.79 F1

macro under the coarse-grained condition.
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3.7.4 Discussion

As shown in Table 3.4 the model performance in the fine-grained condition is lower com-

pared to the coarse-grained performance, which is not surprising given the increased

number of classes (and thus reduced data) and general difficulty of detecting temporal

relationships.

I investigated the importance of each of the four feature sets to my model under the

fine-grained condition by retraining while leaving out one set at a time. In order of im-

portance, they are semantic (35% performance loss), discourse (4%), time (2%),and syn-

tactic and lexical (2%). Apparently, the most important feature set is semantic features.

The BERT vector is the most important feature for all classes, but the frame feature con-

tributed more to the Other class. This is because most of the events in this class are re-

porting events and were captured by the Statement frame. In the discourse set, the event’s

sentence position and discourse relation contributed equally to the model. The time fea-

ture contributed most to the BPast class because the BPast events were mostly associated

with past temporal dates. The syntactic and lexical features were the least contributing

features to the model. I realized that when I dropped the contextualized embedding, the

syntactic features contributed the most to the model. By replacing BERT embeddings

with ELMo (Peters et al., 2018) and Fasttext (Bojanowski et al., 2017) embeddings un-

der the fine-grained condition, the performance decreases by 4% and 13%, respectively.

Therefore, in this setting, I hypothesize that the syntactic features were mostly captured

by the contextualized embeddings.

3.8 Error Analysis

Upon detailed inspection, I was able to discern several error classes aside from the usual

noise introduced by the various sub-components. I observe that the model wrongly classi-
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Foreground BPast BPastPresent BPresent BFuture Other
Foreground - 22% 44% 5% 20% 9%

BPast 59% - 22% 9% 4% 6%
BPastPresent 48% 32% - 4% 12% 4%

BPresent 60% 21% 9% - 4% 6%
BFuture 53% 15% 22% 6% - 4%

Other 31% 24% 18% 2% 25% -

Table 3.5: Fine-grained labeling error percentage between actual labels (rows) and pre-
dicted labels (columns).

fies Foreground events as Background if the event appears towards the end of the article.

In the analysis, I also observe that this mislabeling occurs when the event is referred to

in conjunction with some sort of temporal reference. For example, in an article regarding

the capture of two people, in the sentence, “The captured bomb-maker, Sami Muhammad

Ali Said al-Jaaf , was seizede49 in Baghdad on Jan. 15”, the word seizede49 is labeled as a

Background event even though it is directly tied to the foreground. As shown in Table 3.5,

this mislabeling constitutes 91% of the foreground event labeling error. Similarly, Back-

ground events that appear early in the article are often mistaken for Foreground events.

My model mistaking Background events as Foreground comprises 91% of the model’s

background labeling error. The model also wrongly classifies foreground events as Other

(9% of the foreground labeling error) if the event mention looks like a reporting event due

to the missing sense (e.g., claimed is used in the construction claimed lives, but can be

mistaken for a reporting event). Another common error was the lack of explicit discourse

or temporal information (e.g., a date) for identifying background events.

Within the fine-grained labeling of background events, I see that errors occur mainly

in making the distinction between events that are BPast and BPastPresent. Of the fine-

grained error, the mislabeling of BPast as BPastPresent was 22% of the error (see Ta-

ble 3.5); the labeling of BPastPresent as BPast constituted 32%. This being the largest

error in the sub-classification task makes sense given that the two classes are quite similar.
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Consider the the text shown in Figure 3.5. In this example, the operationse50 event is a

BPast event incorrectly labeled as BPastPresent. I believe this is due to the model not

being sensitive to the precursory descriptors like the word suspended. For without that

descriptor it would imply that the operationse50 event is still ongoing.

Israeli security forces have been on high alert to guard against possible
terror attacks by Hamas, which has suspended operationse50 against
Israel since its spiritual leader and founder Sheikh Ahmed Yassin was
released from Israeli jail last October.

Figure 3.5: Text showing an event that is subject to the common mislabeling of BPastP-
resent for BPast.

With regard to general temporal position, changes of tense related to the document cre-

ation time (i.e., an event is in the past relative to the DCT, but in the future relative to the

foreground period) caused difficulties in distinguishing between BFut and BPast. Though

this error did not occur frequently, the failure to distinguish between the two classes com-

prises 19% of the overall fine-grained Background error, as shown in Table 3.5. I see the

model struggle with examples such as “Another cell was uncovered last falle51 , when the

police carried out an operation against a group of Algerian and Moroccan radicals who

were believed to be planninge52 an attack on Madrid ’s High Court and perhaps other

targets.” Difficulties in distinguishing between background classes, in general, were often

the result of the writer assuming some commonsense or world knowledge on the part of

the reader to infer the temporal relationship.
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CHAPTER 4

INTEGRATING FOREGROUND AND BACKGROUND EVENTS INTO EVENT

RELATION DETECTION

This chapter aims to investigate the impact of integrating foreground and background

knowledge into three NLP tasks. The goal is to demonstrate the importance of using

foreground and background knowledge as features in modeling event relations, namely,

subevent detection, event co-reference resolution, and temporal relation extraction.

4.1 Introduction

To validate the importance of capturing background and foreground events as well as the

temporal position of background events relative to the foreground events, I experimented

with incorporating this feature into three different NLP tasks, namely, subevent detection,

event co-reference resolution, and temporal relation extraction. The goal of this experi-

ment is to measure the performance with and without including Foreground/Background

fine-grained classes as features. Even though some of the experiments I developed along

the way outperform the state of the art, the emphasis here is on the contribution of these

features in these tasks. All experiments were performed under the fine-grained condition,

demonstrated in Section 3.7.1.

4.2 Subevent Detection Task

As explained in Section 2.1, the subevent detection is the process of identifying when one

event is a subevent of another. That is, a pair of events is classified into one of the three

classes: parent-child, child-parent, or no relation (NoRel), corresponding to the direction

in the discourse flow. For the subevent experiment, I used my model demonstrated in

Section 2.1, which is the state of the art in modeling subevent relation. In addition to
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the features explained in Section 2.3, I integrated the gold annotation of background and

foreground events as features into the model and re-trained it with the new features. That

is, for each event of a pair of events, I included the Foreground/Background fine-grained

features as a one-hot vector.

Model Prec. Rec. F1

Subevent Model (Section 2.1) 0.45 0.56 0.50
+Fine-grained Labels 0.50 0.61 0.55

Table 4.1: Subevent experiment result.

Using the same evaluation metrics BLANC and F1, Table 4.1 shows an increase

in the performance by 5% after including the Foreground/Background fine-grained fea-

tures. This shows that these features are beneficial in modeling subevent relations. I

performed an analysis of the increase and found that these features helped the model

to distinguish between pairs with complex structures. For example, in Figure 4.1, both

felle54 and woundede55 events were previously classified as subevents of fatalitye53, but

after including the fine-grained labels, the model learned that the subevent class between

fatalitye53 and both felle54 and woundede55 is NoRel since the latter events are BPast

events.

In another fatalitye53, a Spanish military adviser, Gonzalo Perez Gar-
cia, who felle54 into a coma after being seriously woundede55 in a
shootout last month died Wednesday, the Spanish Defense Ministry said.

Figure 4.1: Example of a text in which the relationship between one event and two other
events is mis-classified without the fine-grained Foreground/Background feature.

4.3 Event Co-reference Task

Event co-reference is the task of determining whether two events refer to the same event

in the real world. That is, given a pair of events, a system should determine whether the
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two events corefer. For this experiment, I trained a pairwise logistic regression model

over the features shown in Table 4.2.

Feature Representation Description

Major POS One-hot The major POS of ei and ej .
Tense One-hot The tense of ei and ej .
Aspect One-hot The aspect of ei and ej .
Semantic Frame One-hot The semantic frame of ei and ej using SE-

MAFOR (Das et al., 2010).
Discourse Relation One-hot The discourse relation between elementary dis-

course units (EDUs), where ei or ej are men-
tioned in using the Feng-Hirst discourse parser
(Feng and Hirst, 2014) as explained earlier in
Section 3.6.

Semantic Similarity Numeric The semantic similarity between ei and ej us-
ing BERT model bert-base-uncased (Devlin
et al., 2019) and following the same procedure
described in Section 3.6.

Co-referring Event Argu-
ments

One-hot Whether the arguments of ei and ej corefer.
The arguments are extracted and resolved us-
ing AllenNLP SRL (Lee et al., 2017) and co-
reference resolution systems (Gardner et al.,
2018).

Table 4.2: Features used in event co-reference experiment. ei and ej represent the target
pair.

hyper-parameters

Task multi class solver C

Subevent ovr liblinear 0.01
Event coref. multinomial lbfgs 0.1
Temporal ovr liblinear 0.0001

Table 4.3: The hyper-parameters used in all experiments corresponding to the scikit-
learn’s implementation of logistic regression.

I trained a pairwise logistic regression classifier from scikit-learn over the fea-

tures using parameters shown in Table 4.3. I used the IC corpus and conducted 5-fold

cross-validation for the experiment. As shown in Table 4.4, the pairwise performance

increases by 2% after including the Foreground/Background fine-grained features. The
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first column in the table shows the performance of Liu et al. (2014) pairwise model on

65 documents of the IC corpus, which I use as a baseline. A shallow error analysis after

including Foreground/Background fine-grained features reveals that almost all corrected

cases were false negative, and the events involved are foreground events. This obser-

vation indicates that detecting foreground events could be a useful intermediate step for

event co-reference improvement.

Model Prec. Rec. F1

Liu et al. (2014) 0.48 0.59 0.53

My System 0.52 0.84 0.65
+Fine-grained Labels 0.55 0.85 0.67

Table 4.4: Event co-reference experiment result.

4.4 Temporal Relation Extraction Task

Extracting temporal information from text is a challenging but important task in NLP. In

this experiment, I target the extraction of the temporal relation between events, which is

one of the fundamental tasks in temporal processing as identified in the series TempEval

(TE) workshops (Verhagen et al., 2007, 2010; UzZaman et al., 2013) and the work of

Cassidy et al. (2014). Cassidy et al. (2014) reduced the temporal relations from fourteen

fine-grained relations (described in Section 1.4.3) to five coarse-grained relations (i.e.,

before, after, includes, is-included, and simultaneous). The argument for reducing and

making coarse-grained relations is that this fine-grained distinction may complicate an

already difficult task, and there is no clear benefit of the fine-grained distinction yet.

These five coarse-grained relations are described with examples below:

• Before

– An event is before the other event in time
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– Ex: She vomited shortly before surgery.

– vomited BEFORE surgery

• After

– The inverse of Before relation

• Includes

– An event temporally includes the other event

– Ex: During the surgery, a butterfly in Kashmir flapped its wings three times.

– surgery INCLUDES flapped

• Is-included

– The inverse of Includes relation

• Simultaneous

– The two events have the same temporal boundaries and extent

– Ex: She listened to music during her whole drive home.

– listened SIMULTANEOUS drive

These partial temporal orderings can be then used to construct a complete temporal

graph. Notably, Includes and Is-included relations are more general cases of the subevent

relation introduced in Section 2.1. That is, my model introduced in Section 2.1 classifies

a pair of events as subevent if one event is spatiotemporally contained by the other. For

example, in this sentence: During the surgerye56, most of the tumor was excisede57, the

excisede57 event is a subevent of the surgerye56 event. However, in this sentence: During

the surgerye58, a butterfly in Kashmir flappede59 its wings three times, the flappede59

event is not a subevent of the surgerye58 event.
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For this experiment, I used the recently published dataset TDDiscourse (Naik et al.,

2019), an augmented dataset of TimeBank-Dense (Cassidy et al., 2014) focused on discourse-

level temporal ordering and using the same set of temporal relations as TimeBank-Dense

(i.e., before, after, includes, is-included, and simultaneous). This dataset focused on

global discourse-level temporal ordering, which is suitable to measure the effectiveness of

foreground and background events knowledge in modeling the discourse-level temporal

relation extraction. The annotation of the TDDiscourse corpus consists of two sets: Man-

ual annotation (TDD-Man) and Automatic inference (TDD-Auto) as shown in Table 4.5.

I experiment on both.

Kalashnikov designed the AK-47 automatic rifle… Seventy-five million copies of the rifle have been built since it…

0.32 0.61 0.95 … POS Tense Aspect 0.11 0.47 0.22 … POS Tense Aspect

event embedding event embedding

One vector 

Figure 4.2: Concatenating pair’s BERT embedding, POS, Tense, and Aspect as one vec-
tor.

Dataset Train Dev Test

TDD-Man 4000 650 1500
TDD-Auto 32609 1435 4258

Table 4.5: TDDiscourse corpus Statistics. These numbers are copied from Naik et al.’s
(2019) work.

I designed a simple and effective approach by concatenating pair’s BERT embedding1,

POS, tense, and aspect as one vector, shown in Figure 4.2. I trained a logistic regression

1Event embedding is extracted the same way discussed in Section 3.6, Semantics.
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classifier over these features using hyper-parameters shown in Table 4.3. I followed Naik

et al. (2019) split setup of train, validation, and test sets and compared the performance of

my model to all models reported on the corpus. Similar to my previous experiments, I add

Foreground/Background fine-grained features to the model and measure the performance

with and without these features.

TDD-Auto TDD-Man

Model Pre. Rec. F1 Pre. Rec. F1

MAJOR 34.2 32.3 33.2 37.8 36.3 37.1
CAEVO 61.1 32.6 42.5 32.3 10.7 16.1
BiLSTM 55.7 48.3 51.8 24.9 23.8 24.3
Ning et al. (2017) 46.4 45.9 46.1 23.9 23.8 23.8

My System 60.6 60.6 60.6 42.4 42.4 42.4
+Fine-grained Labels 61.2 61.2 61.2 42.9 42.9 42.9

Table 4.6: The first four models are an adaptation of state-of-the-art temporal models on
TDD-Auto and TDD-Man reported by (Naik et al., 2019). The last two rows show my
model without and with Foreground/Background fine-grained features, respectively.

As shown in Table 4.6, my approach, in general, outperforms all models on both TDD-

auto and TDD-man by 9% and 5%, respectively. The reason behind the low performance

of the other models has been addressed by Naik et al. (2019) and is out of scope for this

thesis. With regard to my model, as shown in Table 4.6, adding Foreground/Background

fine-grained features did not help much in improving the model performance. This is

expected due to the fact that the fine-grained model was trained on a closed-domain (i.e.,

Intelligence Community (IC) news articles), which is a small fraction—55% are IC news

articles, and 40% of these are broadcast news—in the TDDiscourse corpus test set.
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CHAPTER 5

EVENT BASED FRAGMENTED STORY STITCHING

Understanding subevents and the distinction between foreground/background events

are together potentially useful in new NLP tasks. In this chapter, I introduce the task of

story fragment stitching, which is the process of automatically aligning and merging event

sequences of partial tellings of a story (i.e., story fragments). This task is similar to the

cross-document event co-reference relation task but more challenging because the overall

timeline of the story’s events need to be preserved across all fragments. For this problem,

I introduce a graph-based unsupervised approach to align a set of story fragments into a

full, ordered, end-to-end list of story events.

5.1 Introduction

Events are the building blocks for stories. Stories are found throughout our daily lives,

e.g., in news, entertainment, education, religion, and many other domains. Understanding

stories is a long-term goal of the field of artificial intelligence and NLP. (Charniak, 1972;

Schank and Abelson, 1977; Wilensky, 1978; Dyer, 1983; Riloff, 1999; Frank et al., 2003;

Mueller, 2007; Winston, 2014). Automatically understanding stories is beneficial in many

NLP tasks, and more information can be extracted from stories, including concrete facts

about events and people (Eisenberg and Finlayson, 2017).

One interesting and challenging task that relates to event relation extraction tasks and

has not yet been solved is what I call story fragment stitching. In this task, I seek to merge

partial tellings of a story—where each partial telling contains part of the sequence of

events of a story, perhaps from different points of view, and may be found across different

sources or media—into one coherent narrative, which may then be used as the basis for

further processing. Conceptually, this task is similar to both cross-document event co-

reference (CDEC) and event ordering in NLP. However, story fragment stitching, as I
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define it, presents a more challenging problem for at least two reasons. First, and unlike

event co-reference, the overall timeline of the story’s events needs to be preserved across

all fragments. Second, and unlike event ordering, which targets only events related to a

single entity, my work considers all events across all fragments.

I proposed an unsupervised approach to solving the problem of stitching a fragmented

story. I apply this approach to a concrete example of this problem, namely, the story of

the prophet Moses as found in the Quran, the Islamic holy book. The story of Moses is

not found in one single telling in the Quran; rather, it is found in eight fragments spread

across six different chapters (the chapters of the Quran are called suras), with the story

comprising 7,931 total words across 283 verses that range from 2 to 94 words in length.

5.2 Task

I define the goal of story fragment stitching as aligning a set of story fragments into a full,

ordered, end-to-end list of story events. I assume that the events in the story are presented

in the chronological order in which the events of the story take place (i.e., the fabula time

order) (Bordwell, 2007). That is, the story fragments are ordered lists of events, where the

order is that of the fabula, namely the order of events as they happen in the story world. In

many stories, the fabula order is different from the discourse order, but I do not consider

this case here; I leave the problem of extracting the chronological order of events to other

work.

I also assume that each fragment shares at least one event with another fragment. The

output of the system is an ordered list of nodes, where each node is a collection of event

mentions (corefering events) that all describe one particular event, and these nodes are in

the same order as the overall fabula.
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5.3 Related Work

The problems most closely related to story stitching are the problem of cross-document

event co-reference (CDEC) and cross-document event ordering. In CDEC systems, the

goal is to group expressions that refer to the same event across multiple documents (Bagga

and Baldwin, 1999; Lee et al., 2012; Goyal et al., 2013; Saquete and Navarro-Colorado,

2017; Kenyon-Dean et al., 2018; Barhom et al., 2019).

Bagga and Baldwin (1999) proposed the first approach to this task; for each docu-

ment, their system built a summary with respect to the entity of interest by selecting all

sentences in which that entity appeared and computed that summary’s similarity to sum-

maries extracted from other documents. Pairs of summaries having similarity above a

certain threshold were considered to be about the same event. Lee et al. (2012) sought to

model entities and events jointly by using a linear regression model’s decision to merge

clusters of entities with each other and clusters of events with others, allowing information

to be shared between the clusters through modeling semantic role dependencies.

In contrast, Goyal et al. (2013) used knowledge extracted via a syntax-based distri-

butional semantic approach to detect event co-reference. They used extracted relations

between words from Wikipedia articles. The assumption was that two mentions generally

refer to the same event when their semantic information (i.e., actions, agents, patients,

locations, and times) are (almost) the same. Therefore, when the semantic role labeling

system fails to determine the event’s roles, the system can fall back to the knowledge ex-

tracted from Wikipedia. Recently and similar to Lee et al.’s work, Barhom et al. (2019)

proposed a neural network-based model that models entities and events jointly.

For the event ordering task, which was introduced in SemEval-2015 (Minard et al.,

2015), the goal is to order cross-document events that involve a specific target entity.
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That is, a system should produce a timeline for a specific target entity that consists of

the ordered list of the events in which that entity participates.

Saquete and Navarro-Colorado (2017) proposed an approach to align the timelines

of events between documents. They used the Temporal Information Processing System

(TIPSem) to first extract temporal relationships between events at the document level and

then cluster temporally compatible events between documents. They used two different

distributional semantic models, LDA and Word2Vec embeddings, to measure the seman-

tic compatibility between events.

Similar to the event ordering task, the within-document event sequence detection task,

which was introduced in the TAC KBP 2017 event track (Mitamura et al., 2017), aims to

identify the event sequence (i.e., after links) that occurs in a script (Schank and Abelson,

1977). Liu et al. (2018) proposed a graph-based approach to capture the order of events

that occur in a script.

Despite this very interesting and useful prior work, all aforementioned systems are

not directly applicable to the task of story fragment stitching as I define it. In particular,

CDEC systems ignore the timeline of the story’s events (i.e., the overall timeline of the

story’s events is not guaranteed to be preserved across all fragments), while event ordering

systems only order certain events related to a specific target.

Researchers have explored several ways of assessing the similarity between stories

(Schank and Abelson, 1975; Roth and Frank, 2012; Finlayson, 2012; Iyyer et al., 2016;

Nikolentzos et al., 2017; Chaturvedi et al., 2018). These works provided valuable ways

to capture the similarity between stories. However, the story similarity task is not di-

rectly applicable to the task of stitching fragmented stories, where the goal is to order

events across multiple stories (fragments), except in the simple baseline multiple se-

quence alignment approach (Reiter, 2014). Multiple sequence alignment was built upon

simpler two-sequence alignment approaches, of which the Needleman-Wunsch algorithm
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(Needleman and Wunsch, 1970) is the prototypical approach, and involves a linear-time

dynamic programming solution. The Needleman-Wunsch algorithm relies on a gap cost

and a similarity function and works on two input sequences to produce a global align-

ment in which each element in both sequences is either linked or skipped. I considered

the multiple sequence alignment approach (Reiter, 2014) as a baseline for this work.

5.4 Approach

I present an unsupervised approach to the story fragment stitching problem inspired by

Finlayson (2016), which is in turn based on model merging, a regular grammar learning

algorithm (Stolcke and Omohundro, 1993). My approach consists of two main compo-

nents: model formulation (§5.4.1), and the graph merge to align fragments events into a

full, ordered, end-to-end list of story events (§5.4.2).

e1:1 e1:2 e1: n

e2:1 e2:2 e2: n

en:1 en:2 en: n

end...
start

Figure 5.1: The initial model constructed using the Moses story fragments. Each node
represents an event’s vector. Each fragment generates its own linear branch running from
the start node to the end node where i in ei:j represents the fragment’s number, and j
represents the event’s number.

5.4.1 Model Formulation

The first step of my approach is model initialization, which is shown in Algorithm 2 lines

4–8. Using the function constructLinearBranch, I convert each fragment’s list
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Algorithm 2:
1 F : set of text fragments f
2 E : map of f to sets ef of gold event annotations
// Create initial model

3 G← ∅
4 foreach f ∈ F do
5 g← constructLinearBranch(f, E.get(f ))
6 G.add(g)
7 end
8 model← linkGraphs(G)

// Merging process
1010 α← computeTFIDFAvgSim(F)
1212 nodesSim← computeNodesSim(model)
1414 (maxPairSim,pairs)← findMostSim(nodesSim)
15 repeat
16 if ¬ pairsIntroduceCycle(model, pairs) then
17 model← merge(pairs)
1919 nodesSim← updateNodesSim(model,nodesSim)
20 else
21 nodesSim← setSimToZero(pairs,nodesSim)
22 end
23 (maxPairSim,pairs)← findMostSim(nodesSim)
24 until maxPairSim < α;
25 bestPath← findBestPath(model)

of events into a linear directed graph (linear branch) in which each node contains only a

single event.

Each event is represented by a vector that is a concatenation of the event contextu-

alized embedding from the BERT model and tf-idf weights of the event lemma and its

semantic arguments. The tf-idf is the standard term weighting approach to reflect how

important a word is in a document in comparison to the rest of the documents (Salton and

McGill, 1986). Using the function linkGraphs, I link all linear branches to a start and

an end node, resulting in one directed graph of the whole set of fragments, as shown in

Figure 5.1.
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This initial model will be used to generate possible solutions by merging different

nodes on the basis of a similarity measure, discussed below. When two nodes A and B

are merged, the new node C should contain an average vector of both A and B. In the

next section, I introduce the merge approach.

5.4.2 Graph Merge

The second step of my approach is model merging, shown in Algorithm 2 lines 10–25.

I first compute a threshold α using the computeTFIDFAvgSim function, which takes

the average of the highest and lowest cosine similarity values between all fragments using

tf-idf weights. α sets the minimum similarity required to merge two nodes; for our data

α was 0.39. Next, using a cosine similarity measure, the computeNodesSim function

computes the full set of similarity scores between all pairs of nodes. Then the algorithm

starts by searching for the most similar nodes using the findMostSim function, lines

14 and 23, and merges the most similar nodes using the merge function. Because the

fragments are assumed to be already in fabula time order, the pairsIntroduceCycle

boolean function disallows merges that would introduce cycles, ignoring (and removing)

self-loops (the no-cycles constraint), and thereby preserves the overall order of the events.

Note that disallowing cycles also prevents merges of non-neighboring nodes within the

same fragment. The new merged node then contains a weighted average vector of the old

nodes’ vectors, and nodes’ similarity are updated using the updateNodesSim func-

tion. The algorithm continues to merge nodes until the similarity measure drops below

α. Because the final resulting graph is not guaranteed to contain only one path from start

to end, by using the bestPath function, the path with the maximum number of merged

nodes (based on the number of events) is considered to be the final output of the model.
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# of # of # of Moses # of Event
Sura Verses Verses Event Mentions Event Mentions Categories

2. Al-Baqarah 50–60,
63–73,
92–93

13 (11+2) 36 (25+11) 9 (6+3) 6

7. Al-A’raf 103–161 59 149 99 23
10. Yunus 75–92 18 36 12 6
20. Ta-Ha 9–98 90 195 78 28
26. Ash-Shuara 10–67 58 63 37 8
28. Al-Qasas 7–40 34 94 66 14

Total 283 272 573 301

Table 5.1: Number of verses (inclusive ranges), event mentions, and events of the Moses
story in each fragment. Listed are the total number of non-Reporting Event mentions, the
total number of event mentions labeled as an event from the Moses timeline, and the total
number of distinct labels found in that fragment. The first fragment (Al-Baqarah verses
50–60) is omitted from the data because it violated the linear time order constraint.

5.5 Data

Moses was an important figure whose story is central to the major Abrahamic religions,

including Judaism, Christianity, and Islam. Moses’ story is found in fragmentary form

throughout the holy books of these religions, with some parts repeated, but in different

contexts and sometimes from different perspectives. In the Quran, the holy book of Islam,

the story of Moses appears in eight different fragments across six different chapters (suras)

comprising 283 verses. Thus the story of Moses serves as an excellent example for the

evaluation of my approach to story fragment stitching. The relevant suras and verses

are listed in Table 5.1, along with the number of events present in the fragments of each

chapter.

The annotation of the data is part of Asgari’s thesis (Asgari, 2014). Three annotators

annotated verses based on a comparative analysis of Moses’ story in the Old Testament

and the Quran by (Ghanbari and Ghanbari, 2008). The Ghanbari study breaks Moses’

story into 43 event categories, shown in Table 5.2 in chronological order. The annotators
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labeled each verse with its single relevant event and reported an agreement of 0.76 Fleiss’

kappa, which represents excellent agreement. The annotation was originally done on the

Arabic version of the Quran, but they transferred the annotations to an English translation

(Ali, 1973) for the remainder of the study.

I excluded one fragment (Sura 2 [Al-Baqarah], verses 50–60) from the analysis be-

cause its timeline is quite different from the fabula order. I manually extracted 708 total

event mentions from the remaining seven fragments. My annotation procedure followed

the standards outlined for events in the TimeML standard (Saurı et al., 2006). I omitted

135 Reporting mentions (e.g., say, reply, etc.) because these usually are just indicators of

direct speech and do not correspond to plot events. This resulted in 573 event mentions

relevant to the plot, which I labeled as to which specific event it referred in the Moses

timeline (Table 5.2). Of these, 301 mentions were labeled with an event described in the

timeline, while 272 were not relevant.

Event # frags. # event F1

Moses’s Birth

1. Moses’ Birth and left in the Nile. 2 6 0.33

Moses is Rescued from the Nile

2. Moses is rescued from the Nile. 2 4 0.45

3. Moses’ sister kept an eye on him. 2 4 0.55

4. Moses brought back to his mother. 2 2 0.34

5. Moses after infancy and through maturity. 1 2 0.68

Moses kills the Egyptian

6. Moses beats and kills the Egyptian. 2 10 0.85

Moses flees to the Madyan

7. Moses ran away to the Madyan. 1 1 0.74

Continued on next page
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Table 5.2 – continued from previous page

Event # frags. # event F1

Moses’ Marriage

8. Moses protected Shu’ayb’s daughters. 1 20 0.53

9. Moses traveled with his family. 2 3 0.50

Moses is Chosen to be a Prophet

10. Moses saw the fire from the distance. 2 12 0.60

11. Moses talked to God through the burning bush. 2 4 0.89

God Shows Moses the Miracles

12. God changed the wand to the snake. 2 11 0.69

13. God illuminated Moses’ hand. 2 5 0.63

God Sends Moses to the Pharaoh

14. God commanded Moses to meet the Pharaoh. 2 9 0.55

Moses Speaks with the Pharaoh

15. Moses and Aaron went to the Pharaoh with miracles. 4 8 0.47

16. Moses showed the Pharaoh the signs. 3 10 0.56

17. The Pharaoh refused their message. 3 4 0.55

18. The Pharaoh accused Moses. 4 5 0.80

19. The Pharaoh requested a competition with Moses. 3 8 0.68

20. Competition between Moses and the magicians. 4 34 0.63

21. Magicians believed in Moses’s message. 3 8 0.88

22. Magicians are threatened by the Pharaoh. 3 6 0.72

23. The Pharaoh’s cruelty to the believers. 1 6 0.28

God Sends Calamities to Egypt

24. Calamities are sent to the Egyptians and the Pharaoh. 1 6 0.58

Continued on next page
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Table 5.2 – continued from previous page

Event # frags. # event F1

25. God withdraws the punishment. 1 1 0.65

26. God commanded Moses to travel with his people. 3 6 0.31

27. The Pharaoh and his army followed Moses and his people. 3 6 0.63

Parting of the Red Sea

28. Separation of the Sea and drowning of the Pharaoh. 5 14 0.49

29. God saved Moses and his people. 3 5 0

Going to Mt. Sinai to Receive the Commandments

30. Moses went to Sinai for 40 nights. 3 6 0.47

31. God sent down food and brings forth water. 1 4 0.73

32. Moses met God who appeared on the mountain. 2 15 0.43

33. Moses delivered the commands and the stone tablets. 3 3 0

The People Betray God

34. Worshipping the Calf in the Absence of Moses. 2 14 0.19

35. Moses returned to his people. 1 3 0.29

36. Samiri explained to Moses what he saw. 2 3 0

37. Moses blamed his brother. 1 10 0

38. Moses returned to God. 1 3 0

39. Moses stroked the stone. 1 9 0

Wandering in the Desert

40. Israelites are commanded to take over the holy region. 1 5 0

41. The disobedient Israelites won’t enter the holy region. 2 4 0

42. God punished them. 2 1 0

Continued on next page
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Table 5.2 – continued from previous page

Event # frags. # event F1

43. Sacrifice of a heifer. 1 1 0

Table 5.2: The 43 events in the Moses timeline. The second column refers to the number

of fragments in which the corresponding event appears. The third column refers to the

number of mentions of the event across all fragments. The last column is the standard F1

measure for the extraction of the corresponding event, compared to the gold standard.

5.6 Experiment

I evaluate my approach against a gold-standard annotation of Moses’ story from the

Quran. I first demonstrate the experiment setup (§5.6.1) and the evaluation (§5.6.2). Then

I report the performance of my approach (§5.6.4). Finally, I discuss the error analysis of

the performance of my system (§5.7).

5.6.1 Experimental Setup

I used the netwrokx library (Hagberg et al., 2008) for graph operations. I extracted

event contextualized embedding using the flair implementation (Akbik et al., 2018) of

the BERT model with the default parameters1. The tf-idf weights for the lemmas of all to-

kens excluding stop words are computed using spaCy (Honnibal and Montani, 2017) and

scikit-learn libraries (Pedregosa et al., 2011). The event arguments are extracted

and resolved using AllenNLP SRL and co-reference systems (Gardner et al., 2018; He

et al., 2017; Lee et al., 2017).

1bert base uncased, layers=-1, pooling operation=first
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5.6.2 Evaluation

For the evaluation, I used the temporal awareness measure (UzZaman et al., 2013) used

in both event ordering task SemEval-2015 (Minard et al., 2015) and event sequence task

TAC-KBP-2017 (Mitamura et al., 2017). The temporal awareness metric calculates pre-

cision and recall values based on the closure and reduction graphs. For a directed graph,

a reduced graph is derived from the original graph by having the fewest possible edges

that have the same reachability relation as the original graph (Liu et al., 2018). In this

work, the final directed path of nodes in the final model represents the reduced graph. For

example, consider the final directed path of nodes in the final model to be the following:

start→ n1 → n2 → n3 → end

where, for example, events e1, e2 ∈ n1, e3 ∈ n2, and e4, e5 ∈ n3. The reduced graph (G−)

is represented as the following edges: 〈(e1, e3), (e2, e3), (e3, e4), (e3, e5)〉 and the transi-

tive closure graph (G+) is represented as the following edges: 〈(e1, e3), (e2, e3), (e1, e4), (e1, e5),

(e2, e4), (e2, e5), (e3, e4), (e3, e5)〉, where the relation between (ei, ej) is defined as the be-

fore relation. The temporal awareness metric calculates the precision and recall as fol-

lows:

precision =
|System− ∩Reference+|

|System−|
(5.1)

recall =
|Reference− ∩ System+|

|Reference−|
(5.2)

,where System and Reference are the proposed approach and the gold standard, re-

spectively. The final F1 score is the harmonic mean of the precision and recall values.
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Model Prec. Recall F1

Needleman-Wunsch 0.41 0.70 0.52
tf-idf 0.43 0.40 0.42

BERT 0.77 0.50 0.61

Concat 0.81 0.51 0.63

Table 5.3: Results on the Moses data using the F1 temporal awareness metric. Concat is
the proposed model as described in 5.4.1, whereas tf-idf and BERT are variant models of
the proposed model when tested alone.

5.6.3 Baseline

I used the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970), a well-known

global alignment algorithm used in bioinformatics, as a baseline. Using dynamic pro-

gramming, this algorithm searches for the optimal alignment of multiple sequences (the

events lemma in my case) by using a scoring function that penalizes the dissimilarities

and the insertion of gaps. I used the default implementation2 developed by Dekker and

Middell (2011), which follows the group of progressive alignment algorithms where two

sequences are aligned, and then the result is aligned to the next sequence. It repeats the

procedure until all sequences are aligned.

5.6.4 Result

Table 5.3 shows my model results compared to the baseline. In the table, I compare three

models: the proposed model Concat, tf-idf, and BERT, the latter two are sub-models of

the proposed model when considered alone for graph’s nodes vector representation as

described in Section 5.4.1. As shown in bold in Table 5.3, the Concat approach achieves

2https://github.com/interedition/collatex
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0.63 F1 which outperforms the baseline by 11 points and both tf-idf and BERT alone by

21 and 2 points, respectively. Also, the table shows that concatenating both tf-idf and

BERT produced the best result even though tf-idf alone underperformed the baseline. It is

also clear that BERT contextualized embeddings play a major role in the model merging

approach for nodes’ vector representation when assessing similarity between nodes.

5.7 Error Analysis and Discussion

Inspection of the results revealed several sources of errors, aside from the usual noise in-

troduced by the various sub-components, such as the SRL or co-reference systems. Some

peculiarities of Quranic language cause errors. For example, the word We is usually

present as an event’s argument when God is speaking of himself. This causes problems

for the co-reference resolution system in that it does not pair we with mentions such as

Lord and God, and thus introduces additional errors into the system. Some events also

have the same event mention and arguments but happened at different points in the time-

line. Example 5.2 shows text from different parts of the story: the first is when God shows

Moses one of the signs, whereas the second is when Moses shows the Pharaoh the sign.

Notably, the two events have the same event triggers (showed in bold) and the same argu-

ments (underlined).

(20:19–20) “Throw it down, O Moses,” said (the Voice). So he threw
it down, and lo, it became a running serpent.

(7:106–107) He said: “If you have brought a sign then display
it, if what you say is true.” At this Moses threw down his staff, and lo,
it became a live serpent.

Figure 5.2: An example of two events at different points in the timeline.
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Further, my approach is sensitive to the order of merges. If an incorrect merge is

performed early, this can eliminate correct merges later on account of the no-cycles con-

straint. Therefore performing only the highest confidence merges first is critical, and

errors in that process degrade other distance parts of the model.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, I addressed four problems with state-of-the-art approaches to under-

standing events and their relations (§2, §3, and §4), and proposed a novel solution to the

problem of stitching story fragments (§5). Below I list the conclusion of this thesis.

• Subevent Detection (Chapter §2). I presented a model to detect subevent relations

in news articles that outperforms two prior approaches to this task. My model in-

volves several novel discourse and narrative features, as well as a number of feature

modifications. Also, I performed an extensive error analysis, e.g., I showed that

having two event hierarchies in the same sentence is a major problem, as well as

having a significant separation between parent and child events.

• Foreground and Background Event Detection (Chapter §3). I presented a novel

task: distinguishing between foreground and background events, as well as mark-

ing the general temporal position of background events relative to the foreground

period. I provided an annotated dataset and built a featurised logistic regression

model that performs well on this task and that relies heavily on discourse under-

standing. I showed that while my model’s performance is reasonable, there is still

room for improvement by the introduction of commonsense or world knowledge to

aid in reasoning.

• Integrating Foreground and Background Events into Event Relation Detec-

tion (Chapter §4). I showed the effectiveness of using foreground and background

events knowledge in modeling event relations, namely, subevent detection, event

co-reference, and discourse-level temporal relation extraction. That is, for each

task, I built a system with including the foreground and background events knowl-

edge, produced by my system in Chapter 3, as a feature. The result of this inte-
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gration shows that detecting foreground and background events is very useful in

modeling event relations.

• Event-Based Fragmented Story Stitching (Chapter §5). I introduced the story

fragment stitching problem: the task of merging partial tellings of a story into a

unified whole. I introduced a novel approach that models the story’s fragments in a

graph and applies an adapted model merging approach to merge similar nodes and

produce an ordered, end-to-end list of story events.

For future work, there is still room for improvement of all of my previous models.

More precisely, in modeling subevent relations, one can incorporate domain knowledge

or lexical resources such as an ontology that captures certain relations between events.

For example, the Rich Event Ontology (Brown et al., 2017) is one of the ontologies that

identified the hasSubevent relation between some events such as the verdict event that al-

ways happens within a trial event. For the foreground and background events model, one

can improve it by incorporating commonsense knowledge or external databases that con-

tain information about certain events such as the Gulf War. This can be useful in various

ways, e.g., retrieving some information about an event such as where or when the event

happened because writers sometimes assume these are known by readers. Moreover, the

foreground and background model can also be used to improve other event relations such

as causal relations. Furthermore, I have developed a baseline model for temporally align-

ing cross-fragment events that can be used in a more generalized setting. That is, the

stitching fragment model can be adopted and generalized on fragmented news articles

such as the news articles about the Egyptian revolution of 2011; both subevent and fore-

ground and background events models can be useful in this regard. This will be included

in future work.
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