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Abstract

Animacy is the characteristic of being able
to independently carry out actions in a story
world (e.g., movement, communication). It
is a necessary property of characters in sto-
ries, and so detecting animacy is a useful step
in automatic story understanding. Prior ap-
proaches to animacy detection have conceived
of animacy as a word- or phrase-level property,
without explicitly connecting it to characters.
In this work we compute the animacy of refer-
ring expressions directly using a statistical ap-
proach incorporating useful features. We then
compute the animacy of coreference chains via
a majority vote of the animacy of the chain’s
constituent referring expressions. We also
reimplement prior approaches to word-level
animacy to compare performance. We demon-
strate these results on a small set of folktales
with gold-standard annotations for coreference
structure and animacy (15 Russian folktales
translated into English). We achieve an F1

measure 0.90 for the referring expression an-
imacy model, and 0.86 for the coreference
chain model.

1 Introduction

Characters are an indispensable element of narra-
tive. Most definitions of narrative acknowledge
the central role of character: Monika Fludernik,
as just one example of many, defines a narrative as
“a representation of a possible world . . . at whose
centre there are one or several protagonists of an
anthropomorphic nature . . . who (mostly) perform
goal-directed actions . . . ” (2009, p. 6). Thus, if
we are to achieve the long-term goal of automatic
story understanding, we need to identify a story’s
characters.

One subtask of character detection is animacy
detection, where animacy is the characteristic of
being able to independently carry out actions in a
story world (e.g., movement or communication).
All characters are necessarily animate—although

not all animate things are necessarily characters—
and so detecting animacy will immediately narrow
the set of possibilities for character detection.

Some theorists have proposed closed lists of lin-
guistic expressions that should be automatically
considered to indicate animate entities, such as ti-
tles, animals, or personal pronouns (e.g., Quirk
et al., 1985; Yamamoto, 1999). However, stories
can arbitrarily introduce characters that would not
be animate in real life, for example, walking stoves
or talking trees.

Prior work has conceived of animacy as a word-
level phenomenon, marking animacy as an in-
dependent feature on each individual word (e.g.,
Orǎsan and Evans, 2007; Bowman and Chopra,
2012; Karsdorp et al., 2015). However, charac-
ters and other entities are expressed in texts as
coreference chains made up of referring expres-
sions (Jurafsky and Martin, 2007), and so we need
some way of computing animacy on the chain
themselves. Here we take the approach of com-
puting animacy directly on referring expressions
themselves and then use majority vote of referring
expression-level animacy to compute animacy of
coreference chains.

2 Data

No prior data in English was readily available to
use for our work. Orǎsan and Evans (2007) did
their work in English but their data was not readily
available.

Our data was a small corpus of 15 Russian folk-
tales that we assembled in the context of other
work (Finlayson, 2017). The corpus contains
old-standard annotations for token and sentence
boundaries, parts of speech (Penn Treebank II
Tagset, Marcus et al., 1993), referring expressions,
and coreference chains (as well as other layers of
annotation).

We annotated these tales for coreference- and
word-level animacy. Agreement for the word-level



is 0.97 Cohen’s kappa (κ) and for the coreference-
level is 0.99 κ, which represents near-perfect over-
all agreement (Landis and Koch, 1977). The ani-
macy of referring expressions were directly calcu-
lated from the animacy of the coreference chains.

We also annotated every word in the corpus for
animacy directly. We marked as animate all nouns,
gendered pronouns and adjectives that would refer
to animate entities in real life (such humans or an-
imals, as discussed in Quirk et al., 1985). We also
marked as animate any words directly referring to
entities that acted animately in a story, regardless
of the default inanimacy of the words. Examples
of animate and inanimate expressions are given in
Table 1.

3 Experimental Setup

3.1 Features

1. Word Embeddings (WE): We computed word
embeddings in 300 dimensions for all the words
in the stories using the skip-gram architecture al-
gorithm (Mikolov et al., 2013) and DeepLearn-
ing4J library (Deeplearning4j Development Team,
2017). This is a vector feature drawn from Kars-
dorp et al. (2015), and is primarily relevant to clas-
sifying word-level animacy.

2. Word Embeddings on Ref. Exp. (WER):
We calculated word embeddings as a vector fea-
ture in 450 dimensions for just the words within
the referring expressions, again using the skip-
gram approach.

3. Composite Word Embedding (CWE): We
computed a composite word embedding for the
neighborhood of each word, adding together the
word embedding vectors for three words before
and three words after the target word (excluding
the target). This is also a vector feature, and is
again partially drawn from Karsdorp et al. (2015).
The idea of this feature is that it estimates the simi-
larities of the context among all animate words (or
all inanimate words).

4. Parts of Speech (POS): By analogy with
the other embeddings, we computed an embed-
ding over part of speech tags in 300 dimensions,
with the same settings as in feature #1 (WE). This
feature models the tendency of nouns, pronouns,
and adjectives to refer to animate entities.

5. Noun (N): We checked whether a given re-
ferring expression contained a noun, and encoded
this as a boolean feature. This feature explicitly
captures the tendency of nouns to refer to animate

entities.
6. Grammatical Subject (GS): Animate ref-

erences tend to appear as the grammatical sub-
jects of verbs (Ovrelid, 2005). We used depen-
dency parses generated by the Stanford depen-
dency parser (Manning et al., 2014) to check if a
given referring expression was used as a grammat-
ical subject relative to any verb in the sentence,
and encoded this as a boolean feature.

7. Semantic Subject (SS): We also computed
whether or not a referring expression appeared
as a semantic subject (ARG0) to a verb. We
used the semantic role labeler associated with
the Story Workbench annotation tool (Finlayson,
2008, 2011) to compute semantic roles for all the
verbs in the stories.

3.2 Classification Models

We implemented our classification models using
SVM (Chang and Lin, 2011), with a radial ba-
sis function kernel. We trained each model using
cross validation, and report macroaverages across
the performance on test folds.

We constructed three models for animacy: re-
ferring expressions, coreference chains, and a
reimplentation for words. For our referring
expression animacy model, we explored differ-
ent combinations of the features: word embed-
ding over referring expressions (WER), noun (N),
grammatical subject (GS), and semantic subject
(SS). We configured the SVM with γ = 1, C =
0.5 and p = 1. We measured the performance of
the classifier using 10-fold cross validation.

We calculated two baselines for referring ex-
pression animacy. The first is the majority class
baseline (inanimate is the majority class). The
second combines word-level animacy predictions
generated by our word animacy model (discussed
below) via a majority vote.

For the coreference chain animacy model, we
implemented two majority vote approaches for
combining the results of the referring expression
animacy model to obtain a coreference animacy
prediction. First, we computed the majority vote
considering all referring expressions in a corefer-
ence chain. Because short coreference chains were
responsible for much of the poor performance, we
also calculated the performance of majority voting
excluding chains of length four and below.

To compare with prior work, we also imple-
mented a word animacy model, adapting an exist-



Referring Expression Class Explanation

a princess, the dragon, the tsar Animate Normally animate entities
walking stove, talking tree Animate inanimate entities but are animate in context
Kiev, this world, every house Inanimate Normally inanimate objects

Word

princess, dragon, he, she Animate Nouns and pronouns denoting animate entities
kind [princess], stronger [dragon] Animate Adjectives that suggest animacy
it, that, this Inanimate Personal pronouns referring to inanimate objects

Table 1: Examples of annotation of coreference- and word-level animacy.

ing system with the best performance (Karsdorp
et al., 2015). That model used features based on
word N -grams, parts of speech, and word em-
beddings. Similarly, we implemented our clas-
sifier using word embeddings over words (WE),
combined word embeddings (CWE), and parts of
speech (POS). The SVM was configured with γ =
5, C = 5000 and p = 1, and we measured the
performance with 20-fold cross validation.

4 Results & Discussion

We obtained the best result (F1 of 0.90) for
our referring expression model using three fea-
tures: word embeddings over referring expres-
sions (WER), noun (N) and semantic subject (SS).
For the coreference animacy model, majority vote
does not work as well as expected, with an over-
all F1 of 0.61 when calculated over all chains but
we got F1 of 0.86 when we calculated over long
chains (those with more than four referring expres-
sions) only. This suggests that in future work we
need to concentrate our effort on solving the short
chain issue. Finally, our word model achieved F1

of 0.90 where the state of the art achieved F1 of
0.93.

5 Error Analysis & Future Work

Determining the animacy of short coreference
chains is apparently a challenging task for our sys-
tem. We believe one approach to solving this prob-
lem is more data. The second problem is that many
quotes are full of animate words. This will require
some rule-based processing to address. Finally,
in the folktales we see names whose surface form
are identical to inanimate entities. Addressing this
will requiring integrating named entity recognition
into the system.

6 Related Work

6.1 Animacy Detection in English

Evans and Orǎsan (2000) first explored animacy
classification as a means to improve anaphora res-
olution. They took this work forward by us-
ing a supervised machine learning (ML) method
to mark unseen WordNet senses by their an-
imacy (Orǎsan and Evans, 2001). They also
explored both rule-based and machine-learning-
based for animacy classification of nouns (Orǎsan
and Evans, 2007). Bowman and Chopra (2012)
conceived of animacy and inanimacy classification
as a multi-class problem applied directly to noun
phrases (NPs), using a maximum entropy classi-
fier to classify NPs as human, vehicle, time, ani-
mal, etc, with an overall accuracy of 85%.

6.2 Animacy Detection in Other Languages

Nøklestad (2009) implemented animacy detec-
tion for Norwegian nouns, levering this along
with Named Entity Recognition (NER) to improve
the performance of anaphora resolution. This
method achieves an accuracy of 93%. Bloem and
Bouma (2013) developed an automatic animacy
classifier for Dutch nouns, by dividing them into
Human, Nonhuman and Inanimate classes. Pre-
diction of the Human achieved 87% accuracy, and
the large inanimate class was predicted correctly
98% of the time. Karsdorp et al. (2015) developed
a word-level animacy model for Dutch, tested on
Dutch folktales.
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