US012293152B1

United States Patent

(12) ao) Patent No.: US 12,293,152 B1
Ocal et al. (45) Date of Patent: May 6, 2025
(54) SYSTEMS AND METHODS FOR 2011/0254664 Al1* 10/2011 Sadrccoooeveni. H04Q 9/00
PERFORMING TEMPORAL ANALYSIS 340/10.1
2017/0177740 A1* 6/2017 Abayac..ccc..... GOGF 16/22
. . L . 2018/0367414 Al1* 12/2018 Raghavendra H04Q 9/02
(71) Applicants:Mustafa Ocal, Miami, FL (US); Mark 2019/0287302 Al* 9/2019 Bhuruth ... GOGF 3/04847
Finlayson, Miami, FL (US) 2021/0194905 Al* 6/2021 Fong ... HO4L 63/1425
2022/0129749 Al1* 4/2022 MOTIitZcccovevennn GO6N 3/082
(72) Inventors: Mustafa Ocal, Miami, FL (US); Mark %8%%;843‘828% ﬁi: 12;28%3 ﬁlylamah . Hoéggll/fgt%é
: fami 2 cIntosh ...
Finlayson, Miami, FL (US) 2023/0025009 AL* 1/2023 Shah ... HO4N 23/631
. 2023/0033211 Al* 2/2023 Ferreira Lima GOG6F 40/295
(73) Assignee: The Florida Internatl.ona.l University 2023/0126708 Al* 4/2023 \;;fﬁll\r;a lma GO6N 20/20
Board of Trustees, Miami, FL, (US) 705/44
Continued
(*) Notice: Subject to any disclaimer, the term of this (Continued)
pron SZ’ES“S;dOf;a;‘SJ“Sted under 33 OTHER PUBLICATIONS
MOfiitt et al., Temporal Graph Algebra, booktitle={Proceedings of
(21) Appl. No.: 18/882,352 The 16th International Symposium on Database Programming Lan-
(22) Filed: Sep. 11, 2024 guages}, pp. ={1-12}, year={2017} (Year: 2017).*
’ P- 5 (Continued)
51) Imt. CL
G Gn06F 40730 (2020.01) Primary Examiner — Lamont M Spooner
GO6F 40205 (202001) (74) Atlorney, Agenl, or Firm — SALIWANCHIK,
GOGF 40/279 (2020.01) LLOYD & EISENSCHENK
(52) US. CL
CPC GOGF 40,279 (2020.01); GO6F 40/205 7 ABSTRACT
(2020.01) Systems and methods are provided for enabling users to
i i i work with TimeML annotations and perform advanced tem-
(58) Field of Classification Search p
CPC ... GO6F 40/211; GOGE 40/253; GOGF 40/268; poral analysis, offering a comprehensive suite of features.
GOG6T 40/284; GOGT 40/30 Systems and methods of embodiments allow users to parse
See application file for complete search history. TimeML annotations, construct TimeML graphs, and
execute the timeline extraction (TLEX) algorithm to effect
(56) References Cited complete timeline extraction. An algorithm can be incorpo-

ke

U.S. PATENT DOCUMENTS

rated for increasing connectivity in temporal graphs, which
identifies graph disconnectivity and recommends links
based on temporal reasoning, thereby enhancing the coher-

7412,643 B1* 8/2008 Fischer G06F7}gggf ence of the graph representation. Also, a built-in validation
7.870,562 B1* 1/2011 Hansen-Sturm ... GO6F 16/4387 algorithm can be included, ensuring compliance with
719/314 TimeML annotation guidelines.
11,170,303 B1* 11/2021 Ocal GO6N 7/01
11,830,527 B2* 11/2023 Silvestri G11B 27/036 20 Claims, 6 Drawing Sheets
T, e, ring, s
", & Y ra Fa 3
FE I * P { : \ £ ey %
(6) (7} fg) {3}
"*4.-@,.;-.-:-""'.,‘ ’x"'hi-"*j X""M;-;-.-v«"‘j)) e --"’K
E
'MODAL IDENTITY | EVIDENTIAL ENDED
’ ! BY
«""L"‘- P o ’W"'L“Vo 3 ey """‘L""'» g
£\ BEFORE /N BEFORE /7N N
0. = 2 s LA
1.&'“*-.«'-“’5. ¢ <IE&&"»‘—:.-.-.v-'-"''df‘ K""»-.w.v.«-""“ l R‘””"-»,._\.»"j}

US 12,293,152 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
2023/0344839 Al1* 10/2023 Miserendino HO4L 63/1433

2023/0386206 Al* 11/2023 Agam GO6V 20/44
2024/0005098 Al1* 1/2024 Choi GO6F 40/30

OTHER PUBLICATIONS

Blaskovic et al., title={Modeling Constraint Satisfaction Problem
With Model Checker.}, journal={ Annals of DAAAM & Proceed-
ings}, vol. ={29}, pp. 0445-0453, year={2018} (Year: 2018).*
Xu et al., title={Formal Modeling and Verification of Timed Con-
nectors in IoT with Z3}, booktitle={2023 Congress in Computer
Science, Computer Engineering, \& Applied Computing (CSCE)},
pp. ={2556-2563}, year={2023}, IEEE (Year: 2023).*

Ocal, Mustafa et al. “Holistic Evaluation of Automatic TimeML
Annotators.” Proceedings of the Thirteenth Language Resources
and Evaluation Conference. pp. 1444-1453, Jun. 2022.

Ocal, Mustafa et al. “A Comprehensive Evaluation and Correction
of the TimeBank Corpus.” Proceedings of the Thirteenth Language
Resources and Evaluation Conference. pp. 2919-2927, Jun. 2022.
Ocal, Mustafa et al.“jTLEX: a Java Library for TimeLine EXtrac-
tion.” Proceedings of the 17th Conference of the European Chapter
of the Association for Computational Linguistics: System Demon-
strations. pp. 27-34, May 2023.

* cited by examiner

U.S. Patent

BEFORE

May 6, 2025

. ,f”g} BEFORE

Sheet 1 of 6

0

%

%

i

1
U

| EVIDENTIAL

) j{
\‘«-...-y-"‘

F1G. 1

US 12,293,152 B1

U.S. Patent May 6, 2025 Sheet 2 of 6 US 12,293,152 Bl

FIG. 2

U.S. Patent May 6, 2025 Sheet 3 of 6 US 12,293,152 Bl

FI1G. 3

U.S. Patent May 6, 2025

nodet = TimeX {1,
eyt

noded =

linkt = bLink{1,
. noade?d
timeMl _nodes =
timeMl _nodes. s
time¥Ml _nodes. g
timeMi _links. s

timeMl _graph = Gra
timeMi_links)

m

3“”&¥

T obink: {ID = 1,

Urigin =

Fud

t13

b

nulll
b Ews
£1n

nulii™,
»}.ﬁbf?iﬂ}.

EYENT

in

Lt

LinkTag =
= "Y Temporal
null

Felated to time -
Type =
198%~18~38
Temporal Function
Quaniity =

nt Instance -
= asiidds,

= NONE

Polarity =
Cardinality =
= pull
eig = ai,
REPORTING , stem

Sheet 4 of 6

“FUTURE _REF",

S5,

ﬁpﬁnisﬁ\y 3
TimeX{d,

ETIR

next thursday®)

“FUTURE _REF "

FI1G. 4

aph . main_partitions
.subosrdination_partitions

FI1G. 5

DATE ,
Mod =

null,

Tense =

Part of Speech =
Modality = 7

POS

FIG. 6

FORE"

TLINK .,
Relation

Timeyw:

US 12,293,152 B1

p

Truae
¥

?rﬁﬁi

nodel

Syntax
= BEFORE

}zE}:

Yalue =

null,
trye ,

Fraguenoy =

Fyent Instancs:
437, Aspect

VERB,

Tmull?,

U.S. Patent May 6, 2025 Sheet 5 of 6 US 12,293,152 Bl

Main Timeline: {
giidds -~ =
eiiddss
giid4g~ =
eiidd4d~ =
egiiddds =
siiddB+ =

112~ =
13+ =
eiidds- =
- =
giigdds+ =
118+ =

i

£3F e A B8 far Pud e

R B
.t)
o W

£ 0 el il
A e

j’

dttanhment Polints: {eiiddt->eiid47?, 15
eiidd48-reiidds}

Subordinsted Timelinesn:

[eiidd47- = 1, eiidd7+

feiidd48~- = 1, eiidd4B+

16
17

18

it
Pad Pt e

Boed boocd
Lt e

i1

FIG. 7

partitions = partition_graph{zsraph)

links = graph.links

Connectivity_Increaser.
conpect_partitions{partitions, len{
ITinks))

FIG. 8

U.S. Patent May 6, 2025 Sheet 6 of 6 US 12,293,152 Bl

{Grapgh Type: Main Graph
Modes Count
Links copunt
TLinkType: 2
ALinkType: 8
SLinkType: @&
Nodes:
eiid?948, 157

binks: {Frem ~-» Ta)
{£5%7 BEFORE =ii4d2848)
{eiid2®48 BEFORE 1573
i

o
OB]

B O LR ofbe fad 3wt

b smd e RLH
Pad vk 853

FIG. 9

filepath = v JFpytlex_datal
TimeBankCorpus/wai_ 8585, tml”

Sanity_Check.sco_ALINK _rule{filepal

Sanity_Check. orphaned_node_rule{fi

%
’.‘f

h
pa

3-: th

FIG. 10

US 12,293,152 Bl

1
SYSTEMS AND METHODS FOR
PERFORMING TEMPORAL ANALYSIS

GOVERNMENT SUPPORT

This invention was made with government support under
HRO0011-21-C-0186 awarded by the Defense Advanced
Research Projects Agency. The government has certain
rights in the invention.

BACKGROUND

Temporal information plays a crucial role in natural
language processing and text analysis. TimeML, a standard
generalized markup language (SGML)-based markup lan-
guage, allows the annotation of temporal information in
texts, including events, temporal expressions, links, and
temporal signals (see also Pustejovsky et al., TimeML:
robust specification of event and temporal expressions in
text, In Fifth International Workshop on Computational
Semantics (IWCS-5), pages 1-11, 2023; which is hereby
incorporated herein by reference in its entirety). TimeML
annotations can be generated using automatic analyzers,
manual annotation, or some combination of the two.
TimeML annotations can be used to build temporal graphs,
where nodes are events and temporal expressions, and edges
are temporal relations. However, they provide only a partial
ordering of events and times. Meanwhile, the global order
(i.e., a timeline) is more useful for various natural language
processing (NLP) applications, including question-answer-
ing systems, text summarization, and text visualization.

BRIEF SUMMARY

Embodiments of the subject invention provide novel and
advantageous systems and methods for enabling users to
work with TimeML annotations and perform advanced tem-
poral analysis, offering a comprehensive suite of features.
Systems and methods of embodiments allow users to parse
TimeML annotations, construct TimeMIL. graphs, and
execute the timeline extraction (TLEX) algorithm to effect
complete timeline extraction. An algorithm can be incorpo-
rated for increasing connectivity in temporal graphs, which
identifies graph dysconnectivity and recommends links
based on temporal reasoning, thereby enhancing the coher-
ence of the graph representation. Also, a built-in validation
algorithm can be included, ensuring compliance with
TimeML annotation guidelines, which is essential for main-
taining data quality and reliability.

In an embodiment, a system for performing temporal
analysis on annotations of text can comprise: a processor;
and a machine-readable medium in operable communication
with the processor and having instructions stored thereon
that, when executed by the processor, perform the following
steps: 1) receiving data comprising text and annotations of
the text; i1) parsing the annotations; iii) constructing at least
one temporal graph from objects of the annotations; iv)
partitioning at least one temporal graph; v) transforming the
at least one temporal graph to at least one point algebra (PA)
graph; vi) solving the at least one PA graph to extract a
timeline; vii) identifying and fixing temporal inconsistencies
in the timeline; viii) calculating an indeterminacy in the
timeline; ix) detecting and fixing disconnectivity in the at
least one temporal graph and the timeline; x) performing
corpus validation of the annotations; and/or xi) visualizing
the at least one temporal graph and the timeline. The system
can further comprise a display in operable communication

10

20

30

40

45

2

with the processor and/or the machine-readable medium.
The visualizing of the at least one temporal graph and the
timeline can comprise displaying the at least one temporal
graph and the timeline on the display. The annotations can
be TimeML annotations, and/or the objects of the annota-
tions can be TimeML objects. The timeline can comprise a
trunk-and-branch timeline structure. The solving of the at
least one PA graph can comprise using a Z3 Python library.
The receiving of the data comprising text and annotations of
the text can comprise receiving at least one file comprising
the data (e.g., a .tml file, a JavaScript object notation
(JSON)-style encoding file, and/or a plain text file). The
parsing of the annotations can comprise using a Python-
based parser.

In another embodiment, a method for performing tempo-
ral analysis on annotations of text can comprise: i) receiving
(e.g., by a processor) data comprising text and annotations
of the text; ii) parsing (e.g., by the processor) the annota-
tions; iil) constructing (e.g., by the processor) at least one
temporal graph from objects of the annotations; iv) parti-
tioning (e.g., by the processor) at least one temporal graph;
v) transforming (e.g., by the processor) the at least one
temporal graph to at least one PA graph; vi) solving (e.g., by
the processor) the at least one PA graph to extract a timeline;
vii) identifying (e.g., by the processor) and fixing (e.g., by
the processor) temporal inconsistencies in the timeline; viii)
calculating (e.g., by the processor) an indeterminacy in the
timeline; ix) detecting (e.g., by the processor) and fixing
(e.g., by the processor) disconnectivity in the at least one
temporal graph and the timeline; x) performing (e.g., by the
processor) corpus validation of the annotations; and/or xi)
visualizing (e.g., by the processor) the at least one temporal
graph and the timeline. The visualizing of the at least one
temporal graph and the timeline can comprise displaying the
at least one temporal graph and the timeline on a display
(e.g., a display in operable communication with the proces-
sor). The annotations can be TimeML annotations, and/or
the objects of the annotations can be TimeML objects. The
timeline can comprise a trunk-and-branch timeline structure.
The solving of the at least one PA graph can comprise using
a 73 Python library. The receiving of the data comprising
text and annotations of the text can comprise receiving at
least one file comprising the data (e.g., a .tml file, a JSON-
style encoding file, and/or a plain text file). The parsing of
the annotations can comprise using a Python-based parser.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a visualization of a TimeML (time markup
language) graph for wsj_0555.tml from the TimeBank cor-
pus, according to an embodiment of the subject invention.
SLINKSs are given in dashed lines. The Python library for
timeline extraction (pyTLEX) system can partition the
TimeML graph into four temporally connected subgraphs.

FIG. 2 shows a visualization of the output of the trans-
forming temporally connected subgraphs in FIG. 1 into the
point algebra (PA) graph after the connectivity increaser
added the before link between 1 and 4.

FIG. 3 shows a visualization of the timeline of the
TimeML graph in FIG. 1. Grey regions indicate indetermi-
nate sections.

FIG. 4 shows a code snippet of a process of creating a
customized graph and adding two new nodes along with a
link, according to an embodiment of the subject invention.

FIG. 5 shows a code snippet of a process of accessing a
graph’s partitions, according to an embodiment of the sub-
ject invention.

US 12,293,152 Bl

3

FIG. 6 shows pyTLEX parser output for printing infor-
mation about a first link of a graph, according to an
embodiment of the subject invention.

FIG. 7 shows pyTLEX timeline output for a wsj_0555.tml
file, according to an embodiment of the subject invention.

FIG. 8 shows a code snippet for incorporating a suggested
link, thereby achieving a fully connected graph and, by
extension, a fully connected timeline, according to an
embodiment of the subject invention.

FIG. 9 shows pyTLEX inconsistent subgraph output for a
wsj_1011.tml file.,, according to an embodiment of the
subject invention.

FIG. 10 shows a code snippet for validating annotations,
according to an embodiment of the subject invention.

DETAILED DESCRIPTION

Embodiments of the subject invention provide novel and
advantageous systems and methods for enabling users to
work with TimeML annotations and perform advanced tem-
poral analysis, offering a comprehensive suite of features.
TimeML is a standardized markup language for temporal
information in text. Systems and methods of embodiments
allow users to parse TimeMIL annotations, construct
TimeML graphs, and execute the timeline extraction
(TLEX) algorithm to effect complete timeline extraction
(see also Finlayson et al., Extracting and aligning timelines,
In Computational Analysis of Storylines: Making Sense of
Events, page 87, Cambridge University Press, 2021; which
is hereby incorporated herein by reference in its entirety). In
contrast to related art implementations (i.e., jTLEX for
Java), embodiments of the subject invention are set apart by
a range of advanced features, including introducing a react-
based visualization system, enhancing the exploration of
temporal data, and the comprehension of temporal connec-
tions within textual information. Further, an algorithm can
be incorporated for increasing connectivity in temporal
graphs, which identifies graph disconnectivity and recom-
mends links based on temporal reasoning, thereby enhanc-
ing the coherence of the graph representation. Additionally,
a built-in validation algorithm can be included, ensuring
compliance with TimeMIL. annotation guidelines, which is
essential for maintaining data quality and reliability. Users
(e.g., researchers and developers) can be equipped with an
extensive toolkit for temporal analysis, and testing across
various datasets validates the accuracy and reliability of
embodiments of the subject invention. Systems and methods
of embodiments of the subject invention can be referred to
herein as pyTLEX (Python library for timeline extraction)
and can include implementation of the TLEX algorithm.

Embodiments of the subject invention can include any or
all of the following 10 techniques to analyze TimeML
annotations: (1) parsing TimeML annotations; (2) construct-
ing a graph from TimeML objects; (3) partitioning the
temporal graphs; (4) transforming the temporal graphs to
point algebra (PA) graphs; (5) solving the PA graphs to
extract a timeline; (6) identifying and fixing the temporal
inconsistencies; (7) calculating indeterminacy in timelines;
(8) detecting and fixing disconnectivity in graphs and time-
lines; (9) performing TimeML corpus validation; and/or (10)
visualizing graphs and timelines of the text.

In order to effect the extraction of timelines from TimeML
annotations, the TLEX algorithm can be used. TLEX is
based on constraint satisfaction problems (CSPs) and pro-
vides an exact solution to the problem (in contrast to
machine-learning-based approaches). TLEX converts
TimeML annotations into an exact timeline, and jTLEX is an

10

15

20

25

30

35

40

45

50

55

60

65

4

open-source Java library that implements the TLEX algo-
rithm (see also Ocal et al, jTLEX: a Java library for
TimeLine EXtraction. In Proceedings of the 17th Confer-
ence of the Furopean Chapter of the Association for Com-
putational Linguistics: System Demonstrations, pages
27-34, Dubrovnik, Croatia, Association for Computational
Linguistics, 2023; which is hereby incorporated herein by
reference in its entirety). JTLEX not only parses TimeML
annotations but also allows users to manipulate TimeML
graphs. As with jTLEX, pyTLEX also takes a TimeML
annotated file as input, and pyTLEX can then (1) parse the
annotations into TimeML objects, (2) build a TimeML
graph, (3) partition the TimeML graph into temporally
connected graphs to separate real-life events and subordi-
nated events, (4) transform the temporally connected graphs
into PA graphs, and (5) solve the PA graphs to extract a
timeline. If a timeline cannot be extracted, meaning the
graph is temporally inconsistent, py TLEX can (6) detect the
minimum inconsistent subgraph and return it to the anno-
tator to fix it. If the order of events and times are indeter-
minant (multiple possible ordering), pyTLEX can (7) cal-
culate the temporal indeterminacy.

Systems and methods of embodiments of the subject
invention go beyond jTLEX and introduce several new
features, including a React-based application for graph and
timeline visualization, making the exploration of temporal
data more intuitive and insightful. The library can incorpo-
rate an algorithm for automatically increasing connectivity,
which can detect graph disconnectivity and automatically
suggest temporal links. Additionally, pyTLEX can offer a
rule-based system for validating compliance with the anno-
tation guidelines.

Systems and methods of embodiments of the subject
invention offer comprehensive processing and manipulation
capabilities for all the data present within a TimeML anno-
tation. They accommodate various input sources, allowing
the incorporation of TimeML annotations from a .tml file, a
JavaScript object notation (JSON)-style TimeML encoding,
or plain text. Users can also create TimeML annotations
manually, adhering to the TimeML annotation guide, or
generate annotations automatically using advanced TimeML
annotators like TARSQI, ClearTK, CAEVO, or CATENA
(see also; Sauri et al., TimeML annotation guidelines, ver-
sion 1.2.1., catalog.ldc.upenn.edu/docs/LDC2006T08/
timeml_annguide_1.2.1.pdf, 2006; Verhagen et al., Auto-
mating temporal annotation with tarsqi, In ACL, pages
81-84, 2005; Bethard, Cleartk-timeml: A minimalist
approach to tempeval, In Second joint conference on lexical
and computational semantics (*SEM), volume 2: proceed-
ings of the seventh international workshop on semantic
evaluation (SemEval 2013), pages 10-14; Chambers et al.,
Dense event ordering with a multi-pass architecture, Trans-
actions of the Association for Computational Linguistics,
2:273-284, 2014; Mirza et al., Catena: Causal and temporal
relation extraction from natural language texts, In Proceed-
ings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages 64-75,
2016; all five of which are hereby incorporated by reference
herein in their entireties). Automatic TimeML annotation
tools, while efficient, may introduce limitations such as
information loss, temporal inconsistencies, and incorrect
annotations. One advantage of pyTLEX lies in its ability to
detect and rectify such issues, as described herein.

PyTLEX can include a TimeML parser (or TimeML
parser module) for transforming TimeML annotations into a
collection of TimeML objects or the raw text. PyTLEX can
also validate annotation compliance with the standard.

US 12,293,152 Bl

5

PyTLEX can include a graph constructure (or graph
constructor module). In a TimeML graph, nodes correspond
to events and times, and edges represent TimeML links, as
illustrated in FIG. 1. This graph encapsulates a wealth of
information that can be programmatically queried, including
sets of links and nodes, specific links by their identification
(ID), nodes by their ID, and lists of incoming or outgoing
links, among other properties. PyTLEX also allows users to
programmatically modify the TimeML graph. Users can
introduce or remove links and nodes within the graph,
allowing them to create custom graphs. The graph imple-
mentation can be exported as, for example, a JSON file,
which can later be used for visualization. An example of a
TimeML graph is shown in FIG. 1.

PyTLEX can include a partitioner (or a partitioner mod-
ule). There are three types of TimeML links: <TTLINK> and
<ALINK> signify temporal order between events and times,
while <SLINK> conveys modal, counterfactual, or condi-
tional relationships between two events, as in the example
“Tyler forgot to bring his wallet.” In this instance, a coun-
terfactual relationship exists between the events “forgot”
and “bring”. The event “bring” never transpired in the “real
world” described in the text. PyTLEX can partition a
TimeML graph into temporally connected subgraphs to
identify such distinctions. The subgraph(s) containing “real
world” events are called the main subgraph(s) and those
connected to the main subgraphs via subordination links as
subordinated subgraphs.

PyTLEX can include a transformer (or a transformer
module). As described in the TLEX algorithm, pyTLEX can
convert each temporally connected subgraph into a PA
graph, where nodes are time points, and edges are primitive
temporal constraints <, =. For example, if there are two
events (A and B) with A being BEFORE B, this relationship
can be translated into a PA graph as A—<A+<B-<B+, with
‘=’ and ‘+” marking the start and end time points of a node.
FIG. 2 shows the PA graph for the TimeML graph in FIG. 1.
The PA graph is necessary for the temporal constraint
satisfaction problem (TCSP) that is used to generate the
timeline, as discussed in the following paragraph.

PyTLEX can include a solver (or a solver module). Once
each temporally connected subgraph is transformed into a
PA graph, pyTLEX can use the Z3 Python library for CSPs
to assign integers to the time points within the graph. The
timeline can then be obtained by sorting these assigned
integers. The Z3 Python library is a theorem prover and
solver that is commonly used for solving complex math-
ematical and logical problems (see also, De Moura et al, Z3:
An efficient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, pages 337-340, Springer, 2008; which is hereby incor-
porated herein by reference in its entirety). By default,
pyTLEX generates the smallest solution where the first time
point is assigned “1” and each subsequent time point the
next lowest integer. When applied to all the PA graphs,
pyYTLEX can generate an exact trunk-and-branch timeline
structure, where the trunk corresponds to the main timeline
representing the main subgraph, and branches represent
subordinated timelines associated with the subordinated
subgraphs, as visualized in FIG. 3. Therefore, the main
timeline can convey the global order of “real world” events
and times, while subordinated branches capture subordi-
nated events. Users can extract various details from the
timeline, such as its length, the first and last time points, the
main timeline, subordinated branches, the count of subor-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

dinated branches, the number of time points, and/or the list
of attachment time points where subordinated branches
connect to the main timeline.

PyTLEX can include an inconsistency detector (or an
inconsistency detector module). The annotation must be
consistent for the solver to extract a timeline. pyTLEX can
incorporate an inconsistency detection mechanism designed
to identify inconsistent cycles in the TimeML graph. In such
cases, py [LEX can identify the specific links responsible for
the inconsistency, thereby enabling users to correct their
annotations.

PyTLEX can include an indeterminacy calculator (or an
indeterminacy calculator module). In many cases, natural
language texts lack sufficient information to establish a
unique ordering of events and times, resulting in multiple
possible global orderings. As illustrated in FIG. 2, there is no
information regarding the relative order between 1+ and 3-.
PyTLEX can employ the TLEX algorithm to quantify tem-
poral indeterminacy within a timeline. The algorithm can
explore and compare the shortest timeline with many (e.g.,
100, about 100, or at least 100) alternative timelines (ex-
haustive computation of all possible timelines is computa-
tionally burdensome). If two adjacent points in the shortest
timeline are not adjacent in all the other timelines, their
order is indeterminate, and such sections can be marked as
depicted in FIG. 3.

PyTLEX can include an increasing connectivity mecha-
nism (or an increasing connectivity module). During
TimeML annotation, it is not uncommon for annotators to
unintentionally overlook the annotation of temporal links.
Such omissions can lead to disconnectivity within the
TimeML graph, thereby disrupting the integrity of the time-
line. pyTLEX can integrate an algorithm to address this
problem (see also, Radas et al., A comprehensive evaluation
and correction of the timebank corpus, In Proceedings of the
Language Resources and Evaluation Conference, pages
2919-2927, Marseille, France, Furopean Language
Resources Association, 2022; which is hereby incorporated
herein by reference in its entirety). This algorithm can
leverage temporal reasoning to intelligently propose tempo-
ral links between two disconnected subgraphs. In essence, it
can undertake a comparison of the temporal expressions
within these subgraphs and, based on the evaluation of time
values, automatically recommend the addition of temporal
links. This not only streamlines the timeline generation
process but also ensures the coherence and connectivity of
temporal relationships within the annotated text. For
example, in FIG. 1, the TimeML graph is disconnected.
Using the time values of 1 and 4, pyTLEX can suggest that
1 is BEFORE 4; inserting such a link results in a connected
timeline, as shown in FIG. 3.

PyTLEX can include a validation mechanism (or a vali-
dation module). The TimeML annotation guide establishes a
set of rules governing the structure of TimeML annotations
(see also (Sauri et al., supra.). PyTLEX can incorporate
these as a rule-based system that can scrutinize TimeML
annotations and ensure compliance with those defined rules.
The validation mechanism can incorporate the algorithm
mentioned above to assess adherence to Rules 1 to 6 (see
also Radas et al., supra.). Further, pyTLEX can use another
algorithm to verify compliance with Rule 7 (see also,
Derczynski et al., Analysing temporally annotated corpora
with cavat, arXiv preprint arXiv: 1203.5051, 2012; which is
hereby incorporated herein by reference in its entirety). In
addition, pyTLEX can perform checks to identify instances
of repeating links within the TimeML graph (Rule 8),
reinforcing the integrity of the annotation.

US 12,293,152 Bl

7

PyTLEX can include a visualization mechanism (or a
visualization module). In order to visualize its JSON out-
puts, pyTLEX can provide a React-based application that
allows users to visually explore the TimeMIL graph, its
partitions, and/or the resulting timelines. Also, the visual-
ization application can harness the output from the incon-
sistency detector to highlight problematic links within the
graph. This visual aid can empower users to readily identify
issues and undertake necessary corrections. Further,
pyYTLEX can incorporate visual cues to highlight indeter-
minate sections of the timeline, making it a valuable
resource for narrative comprehension and understanding
(see also cognac.cs.fiu.edu/pytlex/).

Systems and methods of embodiments of the subject
invention can analyze TimeML annotated texts and can be
implemented in Python. Multiple different inputs can be
received (e.g., three different inputs, such as a .tml file, a
JSON-style TimeML encoding, and/or plain text). A Python-
based parser can be used to parse the document into
TimeML objects. The users can also create their own
TimeML objects, or manipulate existing TimeML objects.
Graphs can then be built using the TimeML objects. Using
the TLEX algorithm, the graph can be partitioned, the graph
can be transformed into a PA graph, the PA graph can be
solved and a timeline can be extracted, and the indetermi-
nacy score of the timeline can be calculated. If the annota-
tion includes inconsistencies, they can be detected and fixed
(e.g., using a solver, such as a Z3 solver). The algorithm can
detect disconnectivity in TimeML graphs and, using TIMEX
values of disconnected subgraphs, it can automatically fix
the disconnectivity. A rule-based system can also be imple-
mented to check seven strict TimeML rules in the annota-
tions for corpus validation. A React-based application can
also be used for TimeML graph and timeline visualization.

Related art systems and methods all have shortcomings.
In addition to related art TimeML tools, machine learning-
based techniques have been used by NLP researchers for
timeline extraction from TimeML annotations. These
approaches come with specific constraints, and none of them
address all temporal links, covering a maximum of six out
of'the 13 types. Additionally, they fail to distinguish between
real-life events and subordinated events, and they may not
effectively handle temporal indeterminacy within the anno-
tations.

In contrast to related art systems and methods, pyTLEX
provides an open-source implementation of TLEX, a tech-
nique for extracting exact timelines from TimeML annota-
tions. PyTLEX incorporates a TimeML parser and a graph
constructor. It distinguishes subordinated events from real-
world events, extracts the global order of events and times
in a trunk-and-branch timeline structure, automatically iden-
tifies and rectifies inconsistencies, and identifies and gauges
indeterminacy. However, pyTLEX has a number of
extended capabilities. It not only detects and resolves dis-
connectivities within both graphs and timelines but also
integrates a validation system for TimeML annotations.
Additionally, it offers a visualization system, enhancing
comprehension for users.

Embodiments of the subject invention provide Python
libraries (e.g., open-source Python libraries) that enable the
programmatic extraction of exact timelines from TimeMIL.-
annotated texts via a standard Python application program-
ming interface (API). PyTLEX provides several capabilities,
including TimeML parsing, graph extraction, timeline gen-
eration, inconsistency identification, temporal indetermi-
nacy assessment, disconnectivity detection and resolution,
corpus validation, and advanced visualization capabilities.

40

45

55

8

Embodiments of the subject invention provide several
advantages over the related art, including but not necessarily
limited to: providing the first-ever Python library for time-
line extraction; providing automatic TimeML corpus vali-
dation for the first time; detecting disconnectivity in tem-
poral graphs and also resolving them by automatically
suggesting links between disconnected parts; detecting
inconsistency in TimeML annotations and semi-automati-
cally fixing them; providing TimeML parsing and manipu-
lation; and providing the first-ever visualization system for
TimeML graphs and timelines.

Embodiments of the subject invention provide a focused
technical solution to the focused technical problem of how
to perform temporal analysis on TimeML annotations of
text. The solution is provided by parsing TimeML annota-
tions, constructing at least one temporal graph from
TimeML objects, partitioning the at least one temporal
graph, transforming the at least one temporal graph to at
least one PA graph, solving the at least one PA graph to
extract a timeline, identifying and fixing temporal inconsis-
tencies in the timeline, calculating an indeterminacy in the
timeline, detecting and fixing disconnectivity in the at least
one temporal graph and the timeline, performing TimeML
corpus validation, and/or visualizing the at least one tem-
poral graph and the timeline. Embodiments of the subject
invention can improve the computer system performing the
temporal analysis by efficiently performing the analysis
compared to related art systems (this can free up memory
and/or processor usage).

The methods and processes described herein can be
embodied as code and/or data. The software code and data
described herein can be stored on one or more machine-
readable media (e.g., computer-readable media), which may
include any device or medium that can store code and/or
data for use by a computer system. When a computer system
and/or processor reads and executes the code and/or data
stored on a computer-readable medium, the computer sys-
tem and/or processor performs the methods and processes
embodied as data structures and code stored within the
computer-readable storage medium.

It should be appreciated by those skilled in the art that
computer-readable media include removable and non-re-
movable structures/devices that can be used for storage of
information, such as computer-readable instructions, data
structures, program modules, and other data used by a
computing system/environment. A computer-readable
medium includes, but is not limited to, volatile memory such
as random access memories (RAM, DRAM, SRAM); and
non-volatile memory such as flash memory, various read-
only-memories (ROM, PROM, EPROM, EEPROM), mag-
netic and ferromagnetic/ferroelectric memories (MRAM,
FeRAM), and magnetic and optical storage devices (hard
drives, magnetic tape, CDs, DVDs); network devices; or
other media now known or later developed that are capable
of storing computer-readable information/data. Computer-
readable media should not be construed or interpreted to
include any propagating signals. A computer-readable
medium of embodiments of the subject invention can be, for
example, a compact disc (CD), digital video disc (DVD),
flash memory device, volatile memory, or a hard disk drive
(HDD), such as an external HDD or the HDD of a comput-
ing device, though embodiments are not limited thereto. A
computing device can be, for example, a laptop computer,
desktop computer, server, cell phone, or tablet, though
embodiments are not limited thereto.

When the term module is used herein, it can refer to
software and/or one or more algorithms to perform the

US 12,293,152 Bl

9

function of the module; alternatively, the term module can
refer to a physical device configured to perform the function
of the module (e.g., by having software and/or one or more
algorithms stored thereon).

When ranges are used herein, combinations and subcom-
binations of ranges (including any value or subrange con-
tained therein) are intended to be explicitly included. When
the term “about” is used herein, in conjunction with a
numerical value, it is understood that the value can be in a
range of 95% of the value to 105% of the value, i.e. the value
can be +/-5% of the stated value. For example, “about 1 kg”
means from 0.95 kg to 1.05 kg.

A greater understanding of the embodiments of the sub-
ject invention and of their many advantages may be had
from the following examples, given by way of illustration.
The following examples are illustrative of some of the
methods, applications, embodiments, and variants of the
present invention. They are, of course, not to be considered
as limiting the invention. Numerous changes and modifica-
tions can be made with respect to embodiments of the
invention.

Example 1

PyTLEX was used for one of the TimeML annotations of
the TimeBank corpus, a file called wsj_0555.tml, which can
be obtained (along with the rest of the corpus) from the
Linguistic Data Consortium (LDC) website (catalog.ldc.u-
penn.edu/LDC2006T08). The following text, shown in the
example below, is a snippet of the TimeML-annotated text
of wsj_0555.tml. The TimeML graph corresponding to the
snippet text is shown in FIG. 1, where it can seen that the
nodes of the graph are either events or times, and the edges
are TimeML relations. Event instance IDs and timelDs are
given in square brackets (DCT=DOCUMENT CREATION
TIME).

[DCT: Oct. 30, 1989,,,,]: Waxman Industries Inc.
said,[,.44; holders of $6,542,000 face amount of its
6Y4% convertible subordinated debentures, dues, .45,
Mar. 15, 2007, 5, have electeds .45 to converty,,a7;
the debt into about 683,000 common shares. The con-
version price is $9.58 a share. The company said, s,
the holders representg;,,4; 52% of the face amount of
the debentures.

Users can read the file and create the TimeML graph as
follows: timeMIL._graph=Graph (‘wsj_0555.tml”). Users can
retrieve any information about the graph, such as links (all
or one by ID), nodes (all or one by ID), incoming links,
outgoing links, JSON output, number of nodes, number of
links, number of link types, etc. The listing in FIG. 6 shows
the output of pyTLEX when the user requests the informa-
tion about the first link of wsj_0555.tml. Moreover, users
can actively manipulate their graph by adding or removing
nodes and links or even constructing entirely custom graphs.
The code snippet shown in FIG. 4 demonstrates the process
of creating a customized graph and adding two new nodes
along with a link. After the TimeML graph is created, users
can perform timeline extraction. Accessing the graph’s par-
titions can be achieved as shown in FIG. 5.

As can be seen from FIG. 1, this TimeML graph has
disconnectivity. PyTLEX can automatically propose a link
based on the values of t12 (Oct. 30, 1989) and t10 (Mar. 15,
2007) through the use of the algorithm for increasing
connectivity. Consequently, pyTLEX suggests the link “t12-
BEFORE—t10” to the user. Users have the option to incor-

10

15

20

25

30

35

40

45

50

55

60

65

10

porate this suggested link, thereby achieving a fully con-
nected graph and, by extension, a fully connected timeline,
as shown in FIG. 8.

Now that there is a fully connected graph, the timeline can
be extracted. Users can retrieve the exact trunk-and-branch
timeline structure using: timeMI_graph.timeline. The out-
put will be as shown in the listing in FIG. 7. As can be seen,
pyYTLEX returns the main timeline, subordinated timelines,
and the attachment points for each subordinated timeline.

After extracting the timeline, users can also retrieve the
indeterminacy score, as well as the indeterminant time
points. For our example, pyTLEX returns 0.125 indetermi-
nacy score, and {t12+, eiid45-} indeterminant time points
after running: IndeterminacyDetector.solve (g). Users can
validate annotations, for example, by checking the ALINK
replacement rule (Rule 4) and the orphaned node rule (Rule
7), as shown in FIG. 10.

Because the graph of wsj_0555.tml is consistent,
pyTLEX’s inconsistency detection method yields an empty
set, indicating the absence of temporal inconsistencies. In
order to elucidate the mechanics of the inconsistency detec-
tion algorithm, wsj_1011.tml can be used, which is a tem-
porally inconsistent file from the TimeBank corpus. Follow-
ing the execution of the graph construction method, users
can run the generate_inconsistent_subgraphs(g) function to
obtain information about the inconsistent cycle. For this
specific file, py TLEX generates an output as shown in in the
listing in FIG. 9, presenting both the inconsistent subgraph
and relevant subgraph details.

Example 2

PyTLEX was tested on the TimeBank corpus, which
contains 183 TimeML annotated news articles (see also
Hanks et al., The TimeBank corpus, In Proceedings of
Corpus Linguistics Conference, pages 647-656, Lancaster,
U K, 2003; which is hereby incorporated herein by reference
in its entirety). In less than nine minutes on a current
consumer laptop (3.0 gigahertz (GHz) Intel Core 17-1185G7
with 32 gigabytes (GB) of RAM), pyTLEX validated the
annotations, extracted timelines, and visualized them. A
screencast video showing the operation can be found at
cognac.cs.fiu.edu/pytlex/.

It should be understood that the examples and embodi-
ments described herein are for illustrative purposes only and
that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application.

All patents, patent applications, provisional applications,
and publications referred to or cited herein are incorporated
by reference in their entirety, including all figures and tables,
to the extent they are not inconsistent with the explicit
teachings of this specification.

What is claimed is:
1. A system for performing temporal analysis on annota-
tions of text, the system comprising:

a processor;

a display in operable communication with the processor;
and

a machine-readable medium in operable communication
with the processor and having instructions stored
thereon that, when executed by the processor, perform
the following steps:

US 12,293,152 Bl

11

1) receiving data comprising text and annotations of the
text;

ii) parsing the annotations;

iil) constructing at least one temporal graph from objects
of the annotations;

iv) partitioning the at least one temporal graph into
temporally connected subgraphs to distinguish between
real-world events and subordinated events in the at
least one temporal graph;

v) transforming the at least one temporal graph to at least
one point algebra (PA) graph;

vi) solving the at least one PA graph to extract a timeline;

vii) identifying and fixing temporal inconsistencies in the
timeline;

viii) calculating an indeterminacy in the timeline;

ix) detecting and fixing disconnectivity in the at least one
temporal graph and the timeline; and

x) visualizing the at least one temporal graph and the
timeline by displaying the at least one temporal graph
and the timeline on the display,

the receiving of the data comprising receiving at least one
file comprising the data,

the at least one file comprising at least one of a .tml file,
a JavaScript object notation (JSON)-style encoding file,
and a plain text file,

the parsing of the annotations comprising using a parser
that is configured to be able to parse annotations of a
tml file, a JSON-style encoding file, and a plain text
file, and

the visualizing of the at least one temporal graph and the
timeline being a react-based visualization such that a
user can interact with the at least one temporal graph
and the timeline in real time.

2. The system according to claim 1, the instructions when

executed further performing the following step:

xi) performing corpus validation of the annotations.

3. The system according to claim 1, the annotations being
TimeML annotations.

4. The system according to claim 3, the objects of the
annotations being TimeML objects.

5. The system according to claim 1, the timeline com-
prising a trunk-and-branch timeline structure.

6. The system according to claim 1, the solving of the at
least one PA graph comprising using a Z3 Python library.

7. The system according to claim 1, the parser being a
Python-based parser.

8. The system according to claim 1, the at least one
temporal graph comprising two or more temporal graphs,

the detecting and fixing disconnectivity in the at least one
temporal graph and the timeline comprising using an
algorithm to automatically increase connectivity of the
two or more temporal graphs, the algorithm being
configured to use temporal reasoning to determine
temporal links between the two or more temporal
graphs.

9. The system according to claim 1, step x) further
comprising visualizing the temporally connected subgraphs
by displaying the temporally connected subgraphs on the
display, and

the visualizing of the temporally connected subgraphs
being a react-based visualization such that a user can
interact with the temporally connected subgraphs in
real time.

10. A method for performing temporal analysis on anno-

tations of text, the method comprising:

1) receiving data comprising text and annotations of the
text;

10

15

20

25

30

35

40

45

55

60

65

12

ii) parsing the annotations;

iii) constructing at least one temporal graph from objects
of the annotations;

iv) partitioning the at least one temporal graph into
temporally connected subgraphs to distinguish between
real-world events and subordinated events in the at
least one temporal graph;

v) transforming the at least one temporal graph to at least
one point algebra (PA) graph;

vi) solving the at least one PA graph to extract a timeline;

vii) identifying and fixing temporal inconsistencies in the
timeline;

viii) calculating an indeterminacy in the timeline; and

ix) detecting and fixing disconnectivity in the at least one
temporal graph and the timeline; and

x) visualizing the at least one temporal graph and the
timeline by displaying the at least one temporal graph
and the timeline on a display,

the receiving of the data comprising receiving at least one
file comprising the data,

the at least one file comprising at least one of a .tml file,
a JavaScript object notation (JSON)-style encoding file,
and a plain text file,

the parsing of the annotations comprising using a parser
that is configured to be able to parse annotations of a
tml file, a JSON-style encoding file, and a plain text
file, and

the visualizing of the at least one temporal graph and the
timeline being a react-based visualization such that a
user can interact with the at least one temporal graph
and the timeline in real time.

11. The method according to claim 10, further compris-

ing:

xi) performing corpus validation of the annotations.

12. The method according to claim 10, the annotations
being TimeML annotations.

13. The method according to claim 12, the objects of the
annotations being TimeML objects.

14. The method according to claim 10, the timeline
comprising a trunk-and-branch timeline structure.

15. The method according to claim 10, the parser being a
Python-based parser, and

the solving of the at least one PA graph comprising using
a /3 Python library.

16. The method according to claim 10, the at least one

temporal graph comprising two or more temporal graphs,

the detecting and fixing disconnectivity in the at least one
temporal graph and the timeline comprising using an
algorithm to automatically increase connectivity of the
two or more temporal graphs, the algorithm being
configured to use temporal reasoning to determine
temporal links between the two or more temporal
graphs.

17. The method according to claim 10, step x) further
comprising visualizing the temporally connected subgraphs
by displaying the temporally connected subgraphs on the
display, and

the visualizing of the temporally connected subgraphs
being a react-based visualization such that a user can
interact with the temporally connected subgraphs in
real time.

18. A system for performing temporal analysis on anno-

tations of text, the system comprising:

a processor;

a display in operable communication with the processor;
and

US 12,293,152 Bl

13

a machine-readable medium in operable communication
with the processor and having instructions stored
thereon that, when executed by the processor, perform
the following steps:

1) receiving data comprising text and annotations of the
text;

ii) parsing the annotations;

iil) constructing at least one temporal graph from objects
of the annotations;

iv) partitioning the at least one temporal graph into
temporally connected subgraphs to distinguish between
real-world events and subordinated events in the at
least one temporal graph;

v) transforming the at least one temporal graph to at least
one point algebra (PA) graph;

vi) solving the at least one PA graph to extract a timeline;

vii) identifying and fixing temporal inconsistencies in the
timeline;

viii) calculating an indeterminacy in the timeline;

ix) detecting and fixing disconnectivity in the at least one
temporal graph and the timeline;

x) performing corpus validation of the annotations; and

xi) visualizing the at least one temporal graph and the
timeline by displaying the at least one temporal graph
and the timeline on the display,

the annotations being TimeML annotations,

the objects of the annotations being TimeML objects,

the timeline comprising a trunk-and-branch timeline
structure,

the solving of the at least one PA graph comprising using
a 73 Python library,

—

5

20

[

5

30

14

the receiving of the data comprising receiving at least one
file comprising the data,

the at least one file comprising at least one of a .tml file,
a JavaScript object notation (JSON)-style encoding file,
and a plain text file,

the parsing of the annotations comprising using a Python-
based parser that is configured to be able to parse
annotations of a .tml file, a JSON-style encoding file,
and a plain text file, and

the visualizing of the at least one temporal graph and the
timeline being a react-based visualization such that a
user can interact with the at least one temporal graph
and the timeline in real time.

19. The system according to claim 18, the at least one

temporal graph comprising two or more temporal graphs,

the detecting and fixing disconnectivity in the at least one
temporal graph and the timeline comprising using an
algorithm to automatically increase connectivity of the
two or more temporal graphs, the algorithm being
configured to use temporal reasoning to determine
temporal links between the two or more temporal
graphs.

20. The system according to claim 18, step xi) further

comprising visualizing the temporally connected subgraphs
by displaying the temporally connected subgraphs on the
display, and

the visualizing of the temporally connected subgraphs
being a react-based visualization such that a user can
interact with the temporally connected subgraphs in
real time.

	Front Page
	Drawings
	Specification
	Claims

