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Abstract 
Dynamic construction grammar (DCG) is a neurcomputa-
tional framework for learning and generalizing sentence-to-
meaning mappings.  It is inspired by the cue competition 
hypothesis of Bates and MacWhinney, and learns regulari-
ties in the ordering of open and closed class words and the 
corresponding mapping to semantic roles for the open class 
words.  The structure of meaning is a crucial aspect of these 
form to meaning mappings.  Here we describe the DCG 
framework, and the evolution of meaning representations 
that have been addressed.  The first and most basic meaning 
representation is a predicate-argument form indicating the 
predicate, agent, object and recipient.  We developed an ac-
tion recognition system, that detected simple actions and 
used naïve subjects’ narration to train the model to under-
stand. The DCG comprehension model was then extended 
to address sentence production.  The resulting models were 
then integrated into a cooperative humanoid robotic plat-
form.  We then demonstrated how observed actions could be 
construed from different perspectives, and used the produc-
tion model to generate corresponding sentences.  In order to 
allow the system to represent and create meaning beyond 
the single sentence, we introduce the notions of narrative 
construction and narrative function word.  In the same way
that grammatical function words operate on relations be-
tween open class elements in the sentence, narrative func-
tion words operate on events across multiple sentences in a 
narrative.  This motivates the need for an intermediate rep-
resentation of meaning in the form of a situation model that 
represents multiple events and relations between their con-
stituents.  In this context we can now begin to address how 
narrative can enrich perceived meaning as suggested by 
Bruner.

Dynamic Construction Grammar   
The dynamic construction grammar model is a neuro-
computational implementation of concepts developed in 
the Bates and MacWhinney cue competition model (Bates 
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and MacWhinney 1987; Li and Macwhinney 2013) of 
language.  The principal inspiration from cue competition 
is that, across languages, a limited set of cues are available 
for encoding grammatical structure necessary for determin-
ing who did what to whom.   

Figure 1. Grammatical construction comprehension.  Input sen-
tences are separated into open (semantic) and closed class 

(grammatical words).  Grammatical words stimulate the recur-
rent reservoir.  Learnable connections between reservoir and 

readouts that indicate for each ordered semantic word its seman-
tic role in the construction.  Each Semantic word (SW) can par-

ticipate in two phrases, so the Predicate,  

 Amongst these cues are word order and grammatical 
morphology, in the form of free or bound grammatical 
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morphemes.  Free grammatical morphemes can be referred 
to as grammatical function words or closed class words, 
reflecting the notion that they are part of a fixed, closed 
class.  In contrast, semantic words including nouns, verbs, 
and adjectives are part of a more open evolving class and 
can thus be referred to as open class words. 

The DCG project thus set out to develop a neurophysio-
logically motivated system that could explain certain as-
pects of sentence comprehension based on the notion that 
thematic role assignment (determining who did what to 
whom) is encoded by a combination of word order and 
grammatical function word placement.    

 

Figure 2. Dynamic predictive activation of readout neurons that 
code semantic roles as words are presented in real time.  In this 

example, colored lines correspond to readouts that code the roles 
(Agent, Object, Recipient) in the first (1) or second (2) event for 
the first noun in the sentence.  Successive words are presented at 
each tic mark.  Note that as certain grammatical words arrive, 
the predicted meaning is updated.  The system thus entertains a 

dynamic representation of multiple parallel parses. 

 
The task that we set out to model is a task of thematic 

role assignment used by neurologist aphasiologist David 
Caplan and colleagues for assessing agrammatical aphasia 
in stroke patients (Caplan, Baker et al. 1985).  The task 
assesses syntactic comprehension, that is, the ability to 
perform thematic role assignment using purely syntactic or 
grammatical cues.  Subject are read aloud sentences, such 
as “The elephant was shown to the monkey by the giraffe.” 
They are then presented with visual images of an elephant, 
a monkey and a giraffe, and asked to indicate, by pointing, 
which was the agent of the action, the object and the recip-
ient.  The strange use of these animals yields an interpreta-
tion task where there are no semantic cues to thematic role 
assignment. 

 
This task can be considered in the context of behavioral 

sequence processing: a sentence is presented as a sequence 
of words, and the response is a sequence of outputs corre-
sponding to indication of the agent, the object and the 
recipient of the action, in that order.  Dominey and col-
leagues (Dominey, Arbib et al. 1995) developed a model of 
sensorimotor sequence processing, where recurrent con-
nections in the prefrontal cortex encode the spatiotemporal 
structure and history of the input sequence, and modifiable 
corticostriatal connections bind these states to behavioral 
responses.  The fixed recurrent connections provide a dy-
namical state system that is ideally suited for representing 
temporal structure, hence the name temporal recurrent 
network (Dominey and Ramus 2000).  An extension of the 
corticostriatal model to allow the system to work on se-
quences of variables coded in a working memory allowed 
the system to address more abstract sequences (Dominey, 
Lelekov et al. 1998) and artificial grammars (Dominey, 
Inui et al. 2009).  We referred to this extension as the ab-
stract recurrent network (ARN) and demonstrated that the 
resulting TRN and ARN system could simulate the initial 
state of the infant in language acquisition (Dominey and 
Ramus 2000) corresponding to sensitivity to the serial 
structure of syllables (Saffran, Aslin et al. 1996), the pro-
sodic structure of different language classes (Nazzi, 
Bertoncini et al. 1998), and the abstract structure of sound 
sequences (Marcus, Vijayan et al. 1999). 

At this point, we realized that the ATRN model could 
be used to solve the thematic role assignment task of 
Caplan.  Separating open and closed class words, the open 
class words would be stored in the working memory, in-
dexed by their order in the sentence, and the closed class 
words would activate the recurrent network, thus creating a 
dynamic representation of the sentence structure.  The 
system would then be trained to produce an output se-
quence where the first output element would be the posi-
tion of the open class word corresponding to the agent, 
then the object, then the recipient.  We observed that the 
ATRN model could learning the Caplan task, predict 
agrammatic aphasic performance, and predict ERP re-
sponses in healthy subjects (Dominey, Hoen et al. 2003).  
The model thus implements a form of grammatical con-
struction as form to meaning mapping (Goldberg 1995), 
where the sentence is the form component, and a predicate-
argument representation of the thematic roles is the mean-
ing component.  

Neural Dynamics 
The dynamic recurrent network that results from fixed 

connections that model the prefrontal cortex has a rich 
temporal dynamics that is not found in recurrent networks 
where the temporal history is cut off to allow learning in 
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the recurrent connections (Pearlmutter 1995).  This crea-
tion of a dynamic network with fixed recurrent connections 
(Dominey 1995; Dominey, Arbib et al. 1995) was the first 
instance of reservoir computing (see Lukosevicius and 
Jaeger 2009) that was subsequently developed inde-
pendently by Jaeger (Jaeger 2001; Jaeger and Haas 2004) 
and Maass (Maass, Natschlager et al. 2002).   Interestingly, 
because of the neural dynamics in the recurrent network 
and the trained readout connections, activity in the readout 
neurons is dynamic and predictive, as illustrated in Figure 
2.  In this context one can appreciate the dynamic aspect of 
DCG.   

During training, as the input sentence is presented word 
by word, the reservoir traverses a dynamic trajectory of 
activity.  For each sentence in the corpus, the meaning of 
each semantic word is specified as either the Predicate 
(verb), Agent, Object, or Recipient (PAOR) role in the first 
and (optional) second phrase of the sentence.  To further 
understand Figure 2, consider the sentence “the ball that hit 
the block destroyed the pyramid”.  Figure 2 illustrates the 
readout neurons that code the role of “ball”, as either Pred-
icate (verb), Agent, Object or Recipient (the PAOR neu-
rons in Fig 1). During training, we force the readout neu-
rons that code Noun 1 (which is also Semantic Word 1 
(SW1) in Figure 1) to Agent for the first and second phrase 
in the sentence, and apply a learning algorithm that links 
reservoir activity states to activation of these readout neu-
rons (See Hinaut & Dominey 2013 for details).  Note that 
in Fig 1, the PAOR neurons for the second phrase are not 
illustrated, for simplicity.  After training, presentation of a 
sentence with the same structure leads to the neural activa-
tion in Fig. 2, indicating that “ball” is the agent in the two 
phrases.   

As soon as "the" comes in, multiple possibilities for the 
roll of “ball” (the first Noun, and first SW) are activated.  
This includes the hypothesis that N1 (which has not even 
been seen yet) fills the R1 slot. After "that" comes in the 
hypothesis that N1 is O1 is the highest.  This is because of 
other sentence patterns where this is a possibility such as 
“the dog that the cat bit chased the boy” (see Hinaut & 
Dominey 2013).  

The activation of the readout neurons illustrates that the 
model is entertaining multiple parses of the sentence in real 
time, and that these probabilistic parses are confirmed or 
rejected as subsequent disambiguating words arrive.  The 
neural activity thus reflects the statistics of the training 
corpus.  The model is thus clearly situated in a usage-based 
approach to language acquisition  (Tomasello 2000; 
Tomasello 2003).  For both comprehension (Hinaut and 
Dominey 2013) and production (Hinaut, Lance et al. 
2015), the DCG model is able to learn large corpora, and 
then to demonstrate generalization to novel constructions.   

Generalization to untrained constructions 
 Using more efficient linear regression methods from 
reservoir computing for learning the mappings from neu-
rons in the recurrent network (prefrontal cortex) to the 
readout (striatum) allowed the training of the reservoir 
network for sentence comprehension on much larger cor-
pora of grammatical constructions.  The corpora consist of 
matched pairs of sentences, and the corresponding mean-
ings, coded in terms of the assignment of open class ele-
ments to their semantic role in the sentence.  In this con-
text, Hinaut and Dominey (2013) demonstrated that the 
trained model was able to correctly process novel construc-
tions that were not present in the training corpus.  This 
includes the understanding of complex constructions corre-
sponding to sentences such as “The dog bit the cat that 
chased the boy” and “The dog bit the cat that was chased 
by the boy.”  

This generalization is based on the principal that infor-
mation that characterizes the grammatical regularities is 
inherent in the training examples in the corpus.  Exposure 
to a sufficiently rich and demonstrative corpus allows the 
system to generalize to new sentences that are consistent 
with the structure of the corpus. 

A similar generalization capability was observed for 
sentence production (Hinaut, Lance et al. 2015).  The DCG 
sentence production model  essentially reverses the flow of 
information in the comprehension model.  A predicate-
argument representation of meaning is presented as the 
input, and the model learns to generate the corresponding 
sequence of open an closed class words to express the 
meaning.  The notion of different construals of meaning 
becomes important here, when we consider two sentences 
like: 

 
a. The award was given to the student that the principal 
congratulates by the teacher. 
b. The teacher gives the award to the student that the 
principal congratulates. 
 
These two sentences describe the same events, but with 

a different focus or information structure.  Thus, in order to 
be able to generate such sentences, the DCG sentence gen-
eration model requires that this information structure is 
available in the input.  This requirement is achieved by 
using the same representation as in the output structure 
illustrated in Figure 1.  That is input specifies for the or-
dered semantic words the roles they play in the coded 
events. 

Language and Meaning in Robotic Interaction 
Our work in language comprehension is inspired by the 

“miniature language acquisition” challenge set by Feldman 
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and colleagues (Feldman, Lakoff et al. 1990).  We devel-
oped a system that could recognize simple actions per-
formed by human subjects, who narrated their actions at 
the same time.  These paired sentence-event corpora were 
used to train a variant of the DCG model, and then the test 
was to see if the trained system could answer questions 
about future observed actions (Dominey and Boucher 
2005; Dominey and Boucher 2005).  Given the success of 
this first approach, we proceeded with the full DCG mod-
els, integrated into a real-time interaction system for the 
humanoid robot iCub (Hinaut, Petit et al. 2014; Mealier, 
Pointeau et al. 2016), where language comprehension al-
lowed the robot to understand complex commands like 
“Before you push the guitar point to the violin,” in a setup 
where the human and the humanoid robot iCub interact in a 
shared physical space as illustrated in Figure 3.  Likewise, 
language production was used by the robot in order to 
describe spatial scenes that were generated by the human 
placing objects in different configurations as illustrated in 
Figure 3. 

Figure 3.  Human placing objects in a spatial configuration for 
the iCub to describe using the DCG sentence production model 

(from (Hinaut, Petit et al. 2014)). 

 
Depending on the context, the iCub could say “The 

trumpet is to the right of the guitar” or “To the right of the 
guitar is the trumpet” to describe the same scene.  This 
introduces the notion that the same scene can be construed 
in different ways. 

Performance on data from naïve subjects 
In order to demonstrate the flexibility of the system, we 

invited naïve users to describe scenes that took place in the 
shared space, and then we used the resulting sentences to 
generate corpora to train the comprehension model.  The 
use of data from naïve subjects was quite interesting, as 

they used sentence formulations that we had not considered 
when generating our training data.  Examples of novel 
sentences types that were successfully learned and general-
ized with ah leaving-one-out procedure are illustrated in 
Figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Examples of sentences generated by naïve subjects, 
and successfully learned and generalized by the DCG compre-

hension model. 

Construals of Meaning 
The variability that we see in the way that people de-

scribe the same events illustrates the notion of construal.  
Construal refers how one perceives, comprehends and 
interprets the world around them (Feldman 1987).  Garden-
fors and colleagues develop the idea that the same physical 
event can be construed from the perspective of the force 
that causes the event, or the result of the event.   

 

Figure 5.  Meaning construal system. DCG comprehension model 
allows system to understand human action commands, and then 
to generate different construals (in terms of the underlying force 

or result) of these meanings in response to questions from the 
user 
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Correspondingly, the same event can be described with 

verbs that map onto the respective force or result vector 
(Warglien, Gärdenfors et al. 2012). We thus extended the 
cognitive system framework developed for the iCub, as 
illustrated in Figure 5, to include the capacity to associate 
with different physical events the force and result vectors, 
and to allow the system to choose which construal to make, 
based on the attentional context that is created when the 
user asks questions.  Asking a question about “what did 
you do” is associated with the force or cause of the event.  
In contrast, questions about “what happened” are associat-
ed with the result vector (Mealier, Pointeau et al. 2016). 

Narrative Construction 
One of the limitations of the sentence-meaning map-

ping in DCG is that it is limited to single sentences.  Data 
from human electrophysiology demonstrates that humans 
are able to keep a form of situation model in active 
memory so that information that was provided several 
sentences in the past is used in the on-line interpretation of 
new sentences (Hagoort and van Berkum 2007).  More 
generally, human discourse tends to construct articulated 
semantic representations that go beyond a single sentence, 
forming a situation model (Kintsch 1974; Kintsch 1988; 
Zwaan and Radvansky 1998) or mental model (Johnson-
Laird 1983) of the described events.  As stated by Lakoff 
and Narayanan (2010), “Narrative exploits the rich struc-
ture of human event and action representation.  Encoding 
this structure is necessary for representing, reasoning about 
the form and content of narratives.”   

We are developing a system where a situation model is 
assembled by linking event representations that are based 
on the PAOR attributes in Figure 1, and organized around 
an event structure with Initial state, Goal, Action, Result 
and Final state – IGARF.  These events are linked with 
narrative relations (causal, temporal, intentional) from 
successive sentences in the narrative.  This involves an 
extension of the notion of grammatical construction to 
narrative construction.  This in turn involves the introduc-
tion of the notion of narrative function words.  In analogy 
to the way in which grammatical function words operate 
on relations between open class words in a sentence, narra-
tive function words operate on relations between events in 
a situation model  (Mealier, Pointeau et al. submitted).  
Narrative function words including “because, since, then, 
so, before, after” allow the construction of relations be-
tween events in order to construct and enrich a situation 
model representation of meaning. 

The major issue we had to resolve concerned how the 
DCG model could accommodate multiple sentences that 
are linked by their narrative structure and contribute to the 

construction of a coherent meaning representation.  The 
solution was to extend the meaning pole of the DCG mod-
el.  As illustrated in Figure 6, the DCG models have the 
meaning pole that continues to contain a representation of 
the events described in the sentence.  In addition to coding 
the predicate-argument representation of the events, the 
meaning component is supplemented with an optional 
representation of the narrative context as coded by a narra-
tive function word.  This is indicated as narrative Relations 
in Figure 6.  For example, in the sentence “I gave you the 
giraffe because I knew you wanted it”, the meaning com-
ponent represents standard predicate-agent-object-recipient 
(PAOR) the two events gave(I, you, giraffe, and the narra-
tive relations component indicates the narrative function 
word that is now linked to these events.  This link is then 
added to the situation model, as illustrated. 

 

Figure 6.  DCG in narrative enrichment.  Human-robot coopera-
tive interaction generates events, coded in the ABM, and tran-
scribed into the situation model.  Narrative input maps events 

into events in the SM, and allows enrichment of the SM via narra-
tive relations (like “because”) that are coded by narrative func-

tion words.  See text for details.  

From a developmental perspective, the idea is that the 
child or robot will live a particular experience.  This is 
coded in the ABM, and then in a first version of the situa-
tion model.  Incoming narrative will enrich the representa-
tion in the situation model, precisely by introducing these 
narrative relations (Bruner 1990; Bruner 1991).  Our initial 
proof of concept demonstrates the feasibility of this ap-
proach, whereby multiple sentences can be understood in 
the context of a DCG model where the meaning pole is 
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supplemented with a context or narrative relation compo-
nent that allows the meaning of sentences to be embedded 
into the graph structure of a situation model.   

Discussion 
 We present Dynamic Construction Grammar as a neu-

rocomputational approach to integrating ideas from the cue 
competition model into a system that can perform semantic 
role labeling in sentence comprehension, and can generate 
well-formed sentences based on labeled semantic roles as 
input for sentence production.  The DCG framework has 
been applied to sentence comprehension and production.  It 
has been demonstrated to display generalization properties, 
including the ability to understand new construction that 
were not used in training for the comprehension model.  
Because of the dynamic nature of the recurrent network 
that encodes the internal input driven state of activation, 
the model displays real-time dynamic behavior.  This can 
be seen as activation traces in the trained output neurons 
which represent multiple parallel parses as the sentences is 
processed word-by-word. 

A characteristic feature of DCG is that there is very lit-
tle language-specific structure within the dynamic reservoir 
system.  The only language specific aspects are the coding 
of closed class words as input or output neurons for the 
comprehension and production models respectively, and 
the coding of meaning as semantic roles for the ordered 
open class words.  Because the model relies on learning, 
there is a strong need for extensive training corpora.  One 
way to avoid generating labeled corpora by hand is to ex-
ploit human-robot interaction systems where language and 
labeled meaning can be generated automatically.  

Of course, there is a price to pay for this “lean” ap-
proach.  Perhaps one of the most striking weaknesses is 
that verb morphology is not coded – verbs are handled as 
semantic words, period.  One might think that a second, 
weakness is that because they are processed as semantic 
words, verbs lose their role in item-based constructions.  
Actually, we hypothesized that during development, some 
open class words may actually be bound into the construc-
tion, like a closed class word for our model (Dominey 
2006).  When considering a sentence like “John sneezed 
the napkin off the table”, it is debatable whether the corre-
sponding construction “SW1 SW2 the SW3 off the SW4” 
captures the notion that a construction can introduce mean-
ing beyond that provided by the lexical items. 

DCG can be contrasted with several alternate models of 
construction grammar.  Embodied construction grammar 
(ECG) maps sentence form to meaning and includes a rich 
representation of meaning in terms of the execution of 
simulations that among other advantages allow inferences 
to made (Bergen and Chang 2005)  This framework has 

been developed in a rich context that has also been extend-
ed to narrative processing (Lakoff and Narayanan 2010).  
Template construction grammar (TCG) has been developed 
in a context of visual scene parsing that generates the se-
mantic representation part of the form to meaning map-
ping, and the lexical sequence that defines the form part 
(Arbib and Lee 2008).  Part of the motivation for TCG is to 
establish deeper links to the evolution and neurophysiology 
of the language system (Arbib 2012).  Fluid construction 
grammar (Steels and De Beule 2006; Steels 2011) was 
developed to allow open ended grounded dialog, building 
on formal and computational linguistics.  A central motiva-
tion is the creative or fluid aspect of language including the 
invention of new forms to express meaning. 

The narrative construction 
The most challenging aspect of language processing 

concerns the integration of multiple sentences into a coher-
ent narrative.  From our classic grammatical construction 
approach, one sentences maps onto one meaning, and so 
the requirement on the meaning representation is limited to 
what can be expressed in a single sentence.  In the context 
of narrative, this is no longer the case: meaning must be a 
more elaborated representation that can address multiple 
events and diverse relations between them.  This has been 
developed as the notion of situation model or mental mod-
el, and significant effort has been dedicated to addressing 
how multiple sentences are integrated into a situation mod-
el representation (Johnson-Laird 1983; Kintsch 1988; 
Zwaan, Langston et al. 1995; Zwaan and Madden 2004; 
Johnson-Laird 2010). 

Interestingly we find that the notion of grammatical 
construction extends in a rather elegant way to narrative 
construction.   Grammatical constructions map sentence 
form to meaning.  Narrative constructions map multiple 
sentences to a composed meaning in the form of a situation 
model.  Grammatical function words specify relations 
between open class words and their semantic roles.  Narra-
tive function words specify relations between events and 
their constituent elements at the level of the situation mod-
el.  We should note that the notion of narrative function 
word has previously been proposed (Norrick 2001).  Sec-
ond, we do not claim that the presence of narrative func-
tion words creates narrative, nor that narrative requires 
narrative function words.  Rather, we claim that there is a 
class of function words that operate at the level of events 
and relations between them in a situation model.   

We have taken a first step towards extending the DCG 
model into the domain of narrative, with the notion of 
narrative construction.  This can be considered a very early 
step in the development of the narrative capability – in 
particular where adult narrative can be used to enrich event 
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representations in the developing child (Fivush 1994; 
Nelson and Fivush 2004).   

In the context of computational narrative Finlayson has 
demonstrated how machine learning can extract culturally 
relevant plot structures from folktales (Finlayson 2012).  
Such plot structures as villainy or revenge can be recog-
nized based on underlying structure in the framework of 
analogical story merging.  This will have significant im-
pact in understanding how high cognitive representations 
such as cultural norms are transmitted and represents a 
much higher level of sophistication than what we have 
started to address in the current research. 

In this context it is worth noting how Bruner considered 
that narrative is a vehicle for making meaning, including 
understanding the behavior of others as folk psychology 
(Bruner 1990).   Gallagher and Hutto (2008) have further 
addressed how this might work in more detail in the narra-
tive practice hypothesis, and our future research will at-
tempt to model how narrative patterns can provide for 
aspects of folk psychology.  

DCG takes a stance on issues of learnability and learn-
ing in language acquisition, and it takes a stance on the 
neurophysiological bases of these language related func-
tions.  Future research should attempt to determine whether 
these stances are to be validated.  Also, because of its flex-
ibility and learning, DCG is beginning to be seen as a use-
ful component of natural language interaction systems for 
robots.  This too remains a potentially fruitful avenue for 
future research. 
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