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Abstract 

 
It has long been suspected that stories 

drawn from the same cultural setting share 
important narrative structure. One example of 
such structure, first identified by Vladimir 
Propp in 1928, is the morphology of a set of 
stories, which describes the set of plot ele-
ments and their allowed sequences. Until now, 
the extraction of morphologies has remained a 
manual task, the purview of anthropological 
virtuosos (e.g., Propp, Lévi-Strauss, Dundes, 
Campbell); reproduction or validation of their 
analyses is a time-consuming, prohibitively 
difficult endeavor.  I demonstrate a technique 
called Analogical Story Merging that derives a 
morphology given a set of stories.  It incorpo-
rates Forbus & Gentner's Structure Mapping 
Engine as well as a method called Bayesian 
Model Merging for inducing a grammar from a 
corpus of positive examples.  I present the out-
put of the basic implementation when applied 
to a small example story corpus, a set of sum-
maries of Shakespearean plays. 
Keywords: Analogical story merging; Ana-
logical mapping; Analogical generalization; 
Narrative morphology; Folktales; Vladimir 
Propp; Structure Mapping Engine; Bayesian 
model merging 
 

Understanding narrative and narrative 
processes is critical to achieving a complete 
grasp of human cognition.  In particular, narra-
tive's role in transmitting culture-specific in-
formation such as values, norms, and beliefs is 
of special and long-standing interest. It is clear 
that different cultures maintain different sets of 
assumptions about the world that affect par-
ticipants' interpretation and understanding, and 
the stories that are prevalent in a culture seem 
to be important to the transmission of such 

assumptions.  Variously called folktales, fairy 
tales, fables, or myths, these narratives are 
passed down through generations of retelling 
and are thought to be subject to a Darwinian-
like natural selection process, in which por-
tions of the narratives that are congruent with 
the culture are retained and amplified, and 
those that are incongruent are distorted or dis-
carded.  Such an effect was famously shown 
en miniature by Bartlett (1920). 

One strong candidate for culture-specific 
information that may be folded into cultural 
narratives is a common framework for story 
plots.  Readers of even a moderate number of 
tales from a specific culture will note the ha-
bitual recurrence of certain plot elements, such 
as preparatory sequences, motivating events, 
main actions, and end-states. Examples of pat-
terns of repeated plot elements include the 
Three Brothers in Slavic cultures, the Trickster 
in North American native cultures, or Cinder-
ella in the West.  These sequences may reflect 
information such as the culture's assumptions 
regarding cause and effect, the proper response 
to various situations, important life goals, the 
constituents of a good or happy life, or the 
qualities to be demonstrated by a heroic indi-
vidual.  Vladimir Propp presented such a 
framework in his seminal work The Morphol-
ogy of the Folktale (1968), in which he identi-
fied what he called the morphology of a group 
of Russian hero tales – a set of narrative pieces 
(which he called functions) and their subtypes 
along with what was essentially a grammar for 
combining them into stories. 

Following in Propp's footsteps, both 
Dundes (1964) and Colby (1973) worked out 
partial morphologies for, respectively, Native 
American Indian and North Alaskan Eskimo 
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folktales.  What they found was that the mor-
phology for each culture was distinct, but simi-
lar to other known morphologies in important 
ways.  For example, all morphologies seem to 
share a common high-level structure (prepara-
tion, motivation, main actions, conclusion), 
and have significant overlap in rough identity 
of the functions, but vary considerably in spe-
cific function sequences and other details. 

It would be of wide-ranging interest if the 
morphology of a culture could reliably be ex-
posed to scientific investigation.  If morpholo-
gies actually have psychological reality, they 
potentially would be a powerful window into 
cultural thought.  Until now the extraction of 
morphologies has remained a manual task, the 
purview of anthropological virtuosos.  Con-
structing a morphology for a particular culture 
takes many years of reading and analysis, and 
once complete, it is unclear how much the 
morphology owes to the folklorist himself or 
his familiarity with other extant morphologies, 
rather than truly reflecting the character of the 
tales under investigation.  Furthermore, repro-
duction or validation of a morphological 
analysis is a time-consuming, prohibitively 
difficult endeavor. 

Here I demonstrate a technique called 
Analogical Story Merging that for the first 
time gives computational purchase on the 
problem of identifying a morphology from a 
given set of stories.  The algorithm, which has 
been implemented in a computer program, 
takes as input a corpus of stories, the semantics 
of which have been encoded in a computer-
readable representation.  The algorithm incor-
porates an analogical mapper – in particular, 
the Structure Mapping Engine (Falkenhainer, 
Forbus, & Gentner, 1989) – to determine simi-
larity between portions of different stories.  It 
also makes use of a method called Bayesian 
model merging (Stolcke & Omohundro, 1994) 
for measuring the fit of the derived morphol-
ogy to the story corpus.  

The progression of the paper is as fol-
lows.  First I explain model merging, which 
serves as the conceptual framework for the 
algorithm.  Following that, I explain the logic 
behind Analogical Story Merging, and present 

the output of the basic implementation when 
applied to a small story corpus, a set of five 
summaries of Shakespearean plays. Finally I 
discuss the technique's parameter space, what 
infrastructure it requires to truly capitalize on 
its power, and what new types of experiments 
and investigations it enables. 

 
Model Merging 

 
Model merging forms the conceptual 

foundation of Analogical Story Merging.  
Model merging is used to derive a grammar or 
model from a set of examples.  Consider the 
set of two characters sequences {ab,abab}. 
What is the pattern that explains these two 
sequences?  One plausible guess is ab re-
peated one or more times, or, written as a regu-
lar expression, (ab)+.  Model merging allows 
us to find this pattern given the sequences.  For 
the purposes of this work, we will only con-
sider the Bayesian variety of model merging, 
and only as applied to Hidden Markov Models 
(HMMs).  The technique is illustrated in Fig-
ure 1, and proceeds as follows.1  First, we gen-
erate an initial HMM, called M0 in the figure, 
by incorporating each of our examples explic-
itly into the model.  This HMM has six states, 
each of which will emit a single character, 
either a or b, and will generate with 50% 
probability either the sequence ab (top branch) 
or the sequence abab (bottom branch).  Sec-
ond, we define a prior over models, which is a 
probability mass function for how probable a 
model is a priori.  This example uses a 

                                                 
1 Attentive readers will note that the models 
presented in the figure are not written as 
HMMs, with hidden and observable states, but 
rather as regular Markov Models.  This is 
purely to promote clarity of the figure –  no 
state emits both symbols, and so the observ-
able states are left implicit.  The states shown 
in the figure are hidden states, and only the 
emitted symbols are directly observable. 
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Figure 1: Example of Bayesian model merging over an HMM; after Figure 1 from (Stolcke & 
Omohundro, 1994).  The original character sequences are labeled D.  States are represented by a 
circle, and transitions by arrows.  The symbols (either a or b) emitted by a state are listed inside its 
circle.  The symbols S and F indicate start and final states, respectively.  States are numbered, and 
these appear outside each state's circle.  States shaded in one step are merged into the dashed state 
in the next step.  The probabilities of the prior (geometric, p=0.5) and the data given the model are 
given on the right, along with their product, which is proportional to the posterior probability.  The 
merging proceeds until the product cannot be further increased.
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geometric distribution, which formalizes the 
intuition that smaller models are more likely. 
Using the model itself we can calculate the 
probability of seeing the observed data (it is 
25% for M0).  Using Bayes' rule, we can calcu-
late a number proportional to the posterior, 
which is the probability of the model given the 
observed data.  Finally, we search the space of 
state merges, where we merge two states by 
removing them from the model and replacing 
them with a single state that inherits their tran-
sitions and emissions.  The search is driven by 
trying to the find the model that maximizes the 
posterior.  In the figure, states shaded in one 
step are merged together into the dashed state 
in the next step.  The figure shows the step-by-
step progression (found by search) from the 
initial model through a series of merges to the 
final model that maximizes the posterior. The 
first merge combines states 1 and 3 generating 
model M1.  This model still only produces the 
original two examples, but it is smaller than 
M0, so it is more probable.  The second merge 
combines states 2 and 4 to produce M2.  Again, 
no change in the output, but a smaller model.  
The third merge combines states 2 and 6 to 
produce M3, and in this step generalization 
occurs, in that the HMM can now produce any 
string that matches (ab)+.  This reduces 
P(D|M), the probability of the data given the 
model, but by not as much as is gained from 
the increase in the prior.  The final merge pro-
duces M4, a smaller model, and any further 
merging causes a reduction in the posterior. 

 
Analogical Story Merging 

 
Analogical Story Merging (ASM) is a 

special form of model merging, where the 
model in question is a morphology of stories.  
A morphology will be treated for the purposes 
of this paper as an HMM-like structure.  
Propp's morphology consists of 34 states 
(functions) with a set of allowed transitions.  
For example, if a story contains the function 
interdiction to the protagonist, it must proceed 
at some point to the violation of the interdic-
tion function.  The first occurs before the sec-
ond, and the second cannot occur without the 

first.  They both come before any states that 
define the main action and resolution of the 
story (e.g., acquisition of the magical item, 
battle with the villain, marriage of the hero, 
etc.).  Analogical Story Merging proceeds 
along the same line as regular Bayesian model 
merging over HMMs.  The steps are as fol-
lows:  

 
1. Construct the Initial Morphology 

The initial morphology is constructed by 
extracting a sequence of states from each story.  
Each sequence of states is incorporated into 
the initial morphology as a single, linear 
branch.  For the example presented, I define 
each state to be a single event in the story, and 
their order to be the order in which they occur 
in the story timeline.  An initial morphology, 
labeled M0, can be seen at the top of Figure 2, 
where each of the two simple example stories 
with their four constituent events is trans-
formed into a sequence of four states.  Causal 
and temporal linkages are ignored for the pur-
poses of this example, but it will be explained 
later how they need not be left from considera-
tion.  
 
2. Define the Merge Operation 

After the initial morphology is con-
structed, the algorithm requires a merge opera-
tion over states.  Such an operation takes two 
states and replaces them by a single state.  For 
the example presented, I closely follow Stol-
cke & Omohundro, where the merged state 
inherits the weighted sum of the transitions 
and emissions of its parent.  The representa-
tions contained in each event are atomic for the 
purposes of merging, so each state can emit 
any event that is agglomerated into it.  That is, 
if a state S1 emits only event A, and state S2 
emits only event B, then for the purposes of 
calculating P(D|M), the merged state has a 
50% chance of emitting either A or B. 

 
3. Define the Prior over Morphologies  

To perform its search the algorithm re-
quires a prior over the space of morphologies.  
Usually, with no information to the contrary, 
morphologies with fewer states should have 
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higher probabilities.  We must also modulate 
the prior probability on the basis of what is 
inside each state, in that states with similar 
events inside them should be more probable 
than states with dissimilar events.  Thus, if 
event A is similar to B, but not similar to C, 
then a state S1 containing events A and B, 
should have a higher prior probability than 
another state S2 containing events A and C.  
This way we bias the search toward morpholo-
gies that group similar events together into the 
same state.  The simplest approximation to this 
is to disallow non-similar events in the same 
state; of course this is theoretically unsatisfy-
ing, but serves the purpose of illustration, and 
allows for an efficient search.  For the example 
presented, the prior is a geometric distribution2 
with parameter p=0.95, multiplied by the 
product of the individual probabilities of each 
state in the morphology, where the probability 
of each state is 1 if all the events in the state 
are pairwise similar, and 0 otherwise: 

 
(1) 

 
 

(2) 
 
In Equation 1, M is the model, p is the single 
parameter of the geometric distribution, n is 
the number of states in the morphology, and Si 
is the ith state.  In Equation 2, ej and ek are 
events in state Si, and Sim is the similarity 
function.  For these examples, the similarity 
function is implemented by the Structure Map-
ping Engine, where two events are considered 
similar if they have a complete mapping (i.e., 

                                                 
2 Using a geometric function with the above 
mentioned parameter value to describe the 
dependence of the prior upon model size was 
arrived at by a cursory exploration of different 
possibilities and parameter values.  To guard 
against charges that parameter tuning is re-
sponsible for the results, later work will need 
to explore the sensitivity of the algorithm to 
variations in choice of prior. 

every item in the event is mapped to some item 
in the other event), and dissimilar otherwise.3 
4. Search the Merge Space  

The final step is to perform a search of 
the space of merges.  In Bayesian model merg-
ing the posterior drives the search, in that we 
seek the morphology that maximizes the poste-
rior. For the example presented, it was suffi-
cient to perform a search that was exhaustive, 
aside from ignoring portions of the merge 
space that generate morphologies with zero 
probability.  

Figure 2 shows the extraction of a simple 
morphology from two extremely short stories.  
The first story has to do with a boy and girl 
playing, a chasing event, a running away 
event, ending with a thinking event.  The sec-
ond story has to do with a man stalking a 
woman, followed by a scaring event, a fleeing 
event, and ending with a decision event.  At 
some level of analysis these two stories are 
similar.  The chasing and stalking events are 
similar in that they involve the one participant 
following after another, the running away and 
fleeing events are similar because they involve 
movement of one participant away from the 
other, and the thinking and decided events are 
both mental events involving an evaluation.  If 
we represent these aspects of the semantics of 
these events, we can use an analogical map-
ping algorithm, such as the Structure Mapping 
Engine (Falkenhainer et al., 1989) to find the 
semantic and structural similarities.  In the set 
of merges shown in the figure, first the chasing 
and stalking events are merged, then the run-
ning away and fleeing events, and then think-
ing and deciding.  This results in a story mor-
phology that generates stories with an optional 
‘playing’ event at the beginning, a pursuit 
event, followed by an optional ‘emotion’ 
event, followed by the fleeing and evaluation 
events. 

 
                                                 
3 Equation 1 does not define an actual prob-
ability distribution, but because we are inter-
ested in finding the morphology that maxi-
mizes the posterior, not the actual value of the 
posterior, this is of little concern. 
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Figure 2: Example of Analogical Story Merging on two simple stories.  Shown is a series of 
merges leading to the model that maximizes the posterior under the described parameters.  The 
final model can generate not only the two input stories, but an additional two stories that alterna-
tively include or exclude both nodes 1 and 6.  Thus the model has generalized beyond the two in-
put examples.
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Example Morphology 
I demonstrate the output of Analogical 

Story Merging on a small story corpus.  The 
set comprises summaries of five plays by Sha-
kespeare, namely, Macbeth, Hamlet, Julius 
Caesar, Othello, and Taming of the Shrew. The 
summaries were originally written in simple 
controlled English for another analogy system 
(Winston, 1980); the original controlled Eng-
lish is given in (Winston, 1981).  Each sum-
mary contains between 7 and 11 events; each 
event is annotated in the figure with the first 
two letters of the story from which it came 
(e.g., the event represented by state 1, sis-
ters_predict_murder, comes from MAcbeth). 

The generated morphology is interesting 
for a number of reasons.  First, the model cap-
tures important plot similarities and differ-
ences, indicating where one plot branches off 
from another, and where they merge together 
again.  The paths through the model represent-
ing the four tragedies share states, while the 
path representing the single comedy, Taming 
of the Shrew, is in its own separate branch.  
Hamlet and Macbeth share a main branch 
{2,5,6}, with Hamlet detailing persuasion 
leading to the murder, and Macbeth adding a 
detour through the sequence {7,8,9,10} be-
tween states 2 and 5.  They are more similar to 
each other than to Julius Caesar, which shares 
only the initial persuade-murder sequence.  
These similarities are consistent with analogi-
cal mapping considerations, in that a pairwise 
mapper comes to the same similarity conclu-
sions (Winston, 1980).  Also, events that are 
similarly key are grouped together.  Macbeth, 
Hamlet, and Julius Caesar all have murders as 
motivating events; these are grouped into 
states 4 and 7.  Similarly, both Hamlet and 
Macbeth conclude with a `revenge achieved' 
event, involving the killing of the murderer(s); 
these are grouped together into state 6. 

Second, the morphology generalizes from 
the stories presented.  This generalization is 
especially evident at states 9, 10, 20, 22, and 
24, where multiple events occurring in se-
quence have been collapsed to a single state 
that allows an arbitrary number of events of 

those type to occur.  State 10 contains the 
event where the Ghost orders Hamlet to kill 
Claudius, and might be thought of as a gener-
alized ‘conspiracy’ event. States 12 and 13 
contain killing or attacking events close in 
time, and each can be thought of as a ‘fight.’ 

Third, the morphology captures when 
something unusual happens, and sets it off by 
itself.  This is most evident with the whole of 
the Taming of the Shrew, which is sufficiently 
dissimilar from any other play in the set that is 
relegated to its own branch.  This also covers 
state 1, the event in Macbeth involving the 
three witches predicting things to come; de-
spite strong starting similarities between Mac-
beth, Hamlet, and Julius Caesar, there is no 
analogous event, semantically, structurally, or 
temporally, in any other story in the set, and so 
the sisters are set off by themselves. 

There are a number of peculiarities to 
note.  First, it is curious that states 4 and 7 
have not been merged.  Their constituent 
events are certainly similar, and the events in 
question occur one after another.  A similar 
sequence of four attack events are merged into 
the single state 21.  So why not merge 4 and 7?  
The only story in which multiple murdering 
events occur in sequence is Julius Caesar4, and 
thus merging those states together decreases 
P(D|M) more than the increase in prior gained 
from reducing the model size by one state.  
Second, it is curious that states 5 and 13 were 
not merged, which would have agglomerated 
all the suicides that occur at the ends of the 
stories.  However, merging the two would 
make it more likely that a Julius-Caesar-like 
story would have an additional killing at the 
end (rather than a suicide), and this movement 
of probability mass away from the original 
data was not offset by the reduction in model 
size.  In general all questions of “to merge or 
not to merge” reduce to this tradeoff between 
compacting the model and losing fit with the 
original data. 
                                                 
4 Caesar's murder is represented as two events, 
first a murder by Brutus, then a murder by 
Cassius. 
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Figure 3: The morphology produced by running Analogical Story Merging over a set of five sum-
maries of Shakespearean plays:  Macbeth, Hamlet, Julius Caesar, Othello, and Taming of the 
Shrew. Each event is marked with the first two letters of the play from which it came.   As an ex-
ample, the shaded dashed lines indicate the path of Macbeth (circle dashes), Julius Caesar (square 
dashes), and their overlap, which occurs in states 3 and 4. Macbeth and Hamlet have the most plot 
overlap, as expected, followed by Julius Caesar against Macbeth and Hamlet (Winson, 1980).  
Othello shares the final suicide with Julius Caesar.  The Taming of the Shrew is the only comedy, 
and is set off in its own completely separate track.
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Analogical Story Merging Parameters 
 

The Analogical Story Merging algorithm 
has been implemented as set of Java™ 6.0 
libraries.  The design choices and parameters 
follow closely on the steps outlined above.  
First, the implementation allows a user to vary 
how an initial model is constructed from the 
set of examples. Second, the merge operation 
can be modified. Third, it allows an arbitrary 
prior.  Finally, there is no restriction on search 
technique. 

 
Constructing the Initial Model 

I chose to construct the initial model 
from the event sequences in the timeline of the 
stories, but there are numerous other options, 
depending on the type of morphology under 
consideration. One might use the events or-
dered as they are presented in the narrative 
(which can be different than the timeline).  
One might exclude some story events from 
being states (perhaps they are prima facie in-
consequential), or include other non-events as 
states.  One might make a single state out of 
one or more events.  Or, one might choose a 
completely different level of semantics to de-
fine the states, such as causal or temporal rela-
tions. 

 
State Merging Operation 

The merge operation used here does not 
modify the internals of the states, rather treat-
ing states as bags of events.  But a merge op-
eration might invoke some sort of generaliza-
tion, e.g., an analogical generalizer like SEQL 
(Kuehne, Forbus, Gentner, & Quinn, 2000), to 
create a single core symbol for the state from 
the symbols of the merged states.  Such a 
merge operation would require the definition 
of a more complicated function for measuring 
the probability of the data given the model, 
since events observed in the data would not be 
emitted from the generalized state. 

 
Forms of the Prior 

The example presented was a modifica-
tion of a geometric prior with parameter 
p=0.95.  Nevertheless, if there is strong evi-

dence as to the actual size of the morphology 
in question, this can be incorporated into the 
prior using, say, a beta distribution.  Too, the 
portions of the prior which take account of the 
contents of the states can vary widely.  In the 
example presented the modulation is all-or-
none, requiring all events merged into a state 
to be pairwise similar.  But the amount of 
probability assigned to a state could vary ac-
cording to the magnitude of similarity of the 
events in the state, however that may be de-
fined.  In particular, it could be especially val-
uable to consider causal or temporal relations 
connecting events when calculating their simi-
larity – many events that should be grouped 
into the same morphological state share causal 
connections with similar key events in the sto-
ry. 

 
Search Technique 

Finally, the whole range of search tech-
niques is available for searching the merge 
space.  For even a small set of example stories 
the merge space can get quite large, so one will 
want to apply some intelligence to the design 
of the search algorithm. 
 

Next Steps 
 

Where to now that Analogical Story 
Merging is in hand?  The first is, clearly, to vet 
the algorithm on larger sets of stories and to 
explore more fully the parameter space of the 
algorithm. Collecting large, semantically-
annotated story corpora has been an impedi-
ment to research in analogy for quite some 
time.  Fortunately, I have recently completed 
the beta version of a tool called the Story 
Workbench (Finlayson, 2008) that will help 
overcome this roadblock, and allow efficient 
and accurate assembly of large sets of seman-
tically annotated stories.  Russian folktales are 
the obvious choice for the first major story set 
to be collected, because the morphology so 
generated can be compared directly with 
Propp's. 

Once corpora of appropriate size have 
been assembled, and reasonable morphologies 
extracted, the psychological reality of story 
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morphologies can be investigated.  Are people 
sensitive to the pieces of the morphologies 
identified by the algorithm?  Do the mor-
phologies really describe the constraints on 
generation of folktales for the culture in ques-
tion?  These issues can be explored through 
Bartlett-like story recall experiments (Bartlett, 
1920, 1932), where story stimuli are modified 
using the morphology as a guide, with impor-
tant pieces removed, or foreign pieces inserted. 
 

Contributions 
 

The contributions of the work described in this 
paper are as follows.  First, I have suggested 
morphologies as a potentially powerful com-
putational window into cultural thought.  Sec-
ond, I have specified a computationally tracta-
ble representation for morphologies, namely an 
HMM-like structure the states of which con-
tain story events.  Third, I have implemented 
an algorithm I call Analogical Story Merging 
that allows the derivation of a morphology 
from a set of stories.  Finally, I have demon-
strated the output of the algorithm when run 
over a story set containing five summaries of 
Shakespearean plays.  
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