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Abstract

jTLEX is a programming library that provides
a Java implementation of the TimeLine EX-
traction algorithm (TLEX; Finlayson et al.,
2021), along with utilities for programmatic
manipulation of TimeML graphs. Timelines
are useful for a number of natural language
understanding tasks, such as question answer-
ing, cross-document event coreference, and
summarization & visualization. jTLEX pro-
vides functionality for (1) parsing TimeML
annotations into Java objects, (2) construc-
tion of TimeML graphs from scratch, (3) par-
titioning of TimeML graphs into temporally
connected subgraphs, (4) transforming tempo-
rally connected subgraphs into point algebra
(PA) graphs, (5) extracting exact timeline of
TimeML graphs, (6) detecting inconsistent sub-
graphs, and (7) calculating indeterminate sec-
tions of the timeline. The library has been
tested on the entire TimeBank corpus, and
comes with a suite of unit tests. We release
the software as open source with a free license
for non-commercial use.

1 Introduction

TimeML is a standardized temporal annotation
scheme for annotating temporal information in
texts (Pustejovsky et al., 2003a). TimeML annota-
tions can be used to build temporal graphs, where
nodes are events and temporal expressions (i.e.,
times), and edges are temporal relations. TimeML
annotations can be generated using automatic ana-
lyzers (Chambers et al., 2014), manual annotation
(Minard et al., 2016), or some combination of the
two.

While temporal graphs derived from texts can
be deeply informative, they usually only encode
partial orderings of events and times. For many
NLP tasks such as text summarization and visual-
ization (Liu et al., 2012), question-answering (Sa-
quete et al., 2004), and knowledge representation
(Galton, 2009), a total order of all events and times

(i.e., a timeline) is often more useful. Unfortu-
nately, timelines are rarely explicit in texts and usu-
ally cannot be read off from texts directly. There
have been a few prior attempts to extract timelines
from temporal graphs, however, these works have
certain limitations: they do not handle all TimeML
relations, they do not separate “real-life” events
and subordinated events, and they do not deal with
multiple possible temporal orders.

These problems were addressed by an approach
called TLEX (TimeLine EXtraction; Finlayson
et al., 2021). TLEX presented a CSP-based so-
lution that extracts exact timelines from a TimeML
graph. TLEX also detects inconsistent TimeML
subgraphs as well as temporal indeterminacy.
TLEX is a formally correct method and the ex-
perimental evaluation on four different TimeML
corpora showed that it has 100% accuracy for ex-
tracting timelines (Finlayson et al., 2021). TLEX
has been used for several NLP tasks such as corpus
validation, evaluating temporal dependency parsers,
and narrative representation (Ocal et al., 2022a,b;
Ocal and Finlayson, 2020). To enable better ac-
cess to this approach for the community, we have
implemented jTLEX, an open-source Java imple-
mentation of TLEX for other researchers in the
field to use. We present jTLEX in this paper.

jTLEX provides several types of functionality.
In its canonical usage, jTLEX takes a TimeML an-
notated file as input, then (1) parses the annotations
into TimeML objects, (2) builds a TimeML graph,
(3) partitions the TimeML graph into temporally
connected graphs to separate real-life events and
subordinated events, (4) transforms the temporally
connected graphs into point algebra (PA) graphs,
and (5) solves the PA graphs to extract a timeline. If
a timeline cannot be extracted, meaning the graph
is temporally inconsistent, (6) it detects the min-
imum inconsistent subgraph and returns it to the
annotator to fix it. Finally, if the order of events and
times are indeterminant (multiple possible order-
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ing), (7) it calculates the temporal indeterminacy.
These steps correspond to steps of the TLEX algo-
rithm as described in Finlayson et al. (2021).

We have tested jTLEX on the entire TimeBank
corpus (Pustejovsky et al., 2003b) which is a
reference corpus for TimeML that contains 183
TimeML annotated news articles. For each file,
jTLEX took no longer than 1 second to extract all
timelines on a currently available, standard con-
sumer laptop (3.0 GHz Intel Core i7-1185G7 with
32GB of RAM) Our demonstration system as well
as a screencast video demonstrating our system is
available1.

2 Library Overview

2.1 User Input
jTLEX processes and allows the manipulation of
all the information available in a TimeML anno-
tation. jTLEX can read in preexisting TimeML
annotations from a .tml file, accept TimeML anno-
tations directly via a JSON-style TimeML encod-
ing, or accept the raw text of TimeML annotations
as a Java String object. TimeML annotations can
be generated via manual annotation by following
the TimeML annotation guide (Sauri et al., 2006)
or by using state-of-the-art TimeML annotators
such as TARSQI (Verhagen et al., 2005), ClearTK
(Bethard, 2013), CAEVO (Chambers et al., 2014),
or CATENA (Mirza and Tonelli, 2016). Note that
there are certain limitations when using automatic
TimeML annotators such as information loss and
temporal inconsistency (Ocal et al., 2022a). Fortu-
nately, jTLEX can detect inconsistencies and help
users to fix them as explained in Section 2.7.

2.2 TimeML Parser
TimeML is an SGML-based annotation scheme to
annotate temporal information in texts. TimeML
defines tags for events (<EVENT>), temporal ex-
pressions (<TIMEX>), temporal signals (<SIG-
NAL>), event instances (<MAKEINSTANCE>), and
links between events and times, namely temporal
link (<TLINK>), subordinated link (<SLINK>), and
aspectual link (<ALINK>). Each tag has attributes
that contain information about a TimeML object.
For example, the "polarity" attribute of <MAKE-
INSTANCE> indicates whether an event is negated
and it contains either POS or NEG values.

jTLEX provides a TimeML parser that can parse
TimeML annotations into a set of TimeML Java

1https://cognac.cs.fiu.edu/jtlex/

objects, including events, times, and links. Addi-
tionally, it can strip the TimeML tags and return
the raw text. The TimeML annotation guide iden-
tifies optional and non-optional attributes for each
TimeML tag. If the input to jTLEX is missing a
non-optional attribute, the parser returns an error
message to the user about which attribute is miss-
ing for which object. Therefore, jTLEX’s TimeML
parser can be used to check compliance of annota-
tions to the TimeML standard.

2.3 Graph Constructor

A TimeML graph is a graph where nodes are events
and times, and edges are TimeML links (as shown
in Figure 1). After jTLEX parses a TimeML an-
notations into the TimeML objects (events, times,
links, etc.), it builds a TimeML graph. Any infor-
mation about the graph can be then programmat-
ically queried, such as the set of links, the set of
nodes, a link by ID, a node by ID, a list of incoming
or outgoing links, and much else.

jTLEX allows users to directly modify the
TimeML graph if they wish. Users can add or
remove links or nodes to the graph, and can also
build their own custom graph by creating an empty
graph and adding events, times, and links. The
graph implementation has a method that returns
a JSON output of the graph. This allows users to
take advantage of existing graph visualization sys-
tem such as React Flow (So, 2018) to inspect the
TimeML annotations.

2.4 Partitioner

As mentioned in Section 2.2, there are three
types of TimeML links. While <TLINK> and
<ALINK> provide information about the temporal
order of events and times, <SLINK> is used for
contexts introducing possible (modal), counterfac-
tual, or conditional relations between two events.
An example is shown below.

(1) Amanda forgot to buy coffee.

The example indicates a counterfactual relationship
between forgot and buy. The event of buy never
happened in the world described in the text, i.e., the
“real world”, and therefore, it needs to be separated.
As described in the TLEX paper, jTLEX imple-
ments this by partitioning a TimeML graph into
temporally connected subgraphs. The partitioner
has two steps: jTLEX walks the graph to partition
the TimeML graph into connected subgraphs. Then
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Figure 1: Visualization of partitioning the TimeML
graph for wsj_0006.tml from the TimeBank corpus.
TLINKs and ALINKs are given in bold, and SLINKs
are in italic. jTLEX partitions the TimeML graph into
five temporally and aspectually connected subgraphs, as
shown by dashed lines.

it further partitions these connected subgraphs into
subgraphs connected only with temporal and aspec-
tual links. We name the subgraph(s) that contains
“real world” events as main subgraph(s), and sub-
graphs that connect to main subgraphs via subordi-
nation links as subordinated subgraphs. A visual
example of this process is shown in Figure 1.

2.5 Transformer
A point algebra (PA) graph is a graph where nodes
are time points and edges are primitive tempo-
ral constraints such as {<, =}. As prescribed
by the TLEX algorithm, jTLEX transforms each
temporally connected subgraph into a PA graph.
Each node and link in the subgraph can be ex-
pressed in time points and constraints. Assume
we have two events (A and B) and A is BEFORE
B. This can be represented in a PA graph as fol-
lows: A− < A+ < B− < B+, where − and +
indicate the start and end time points of a node,
respectively. An example of the transformation of
the TimeML graph in Figure 1 into a PA graph is
shown in Figure 2.

This transformation is necessary because the
timeline is generated by solving the temporal con-
straint satisfaction problem (TCSP) represented by
the PA graph, as discussed in Section 2.6.

2.6 Solver
After the transformer transforms each temporally
connected subgraph into a PA graph, jTLEX as-
signs integers to each time point in the graph us-
ing Java Constraint Programming (JaCoP) library
(Kuchcinski and Szymanek, 2013). The library
then obtains a timeline after sorting the assigned
integers. JaCoP is an open-source java library that
offers a rich set of primitive, logical, conditional,
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Figure 2: Visualization of the output of the transforming
temporally connected subgraphs in Figure 1 into the PA
graph.
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Figure 3: Visualization of the timeline of the TimeML
graph in Figure 1. Grey regions indicate subordinating
links between timelines.

and global constraints as well as configurable solu-
tion search methods. jTLEX by default produces
the smallest solution, which starts at 1 and which
represents each time point difference as a differ-
ence of 1. Users can also use jTLEX to produce a
random solution.

When run over all the PA graphs, jTLEX pro-
duces an exact trunk-and-branch timeline where
the trunk is the main timeline corresponding to the
main subgraph and branches are subordinated time-
lines corresponding to the subordinated subgraphs
as shown in Figure 3. Therefore, the main timeline
consists the global order of “real world” events and
times, while subordinated branches consist subor-
dinated events. Users can retrieve the length of
the timeline, the first and last time points, the main
timeline, subordinated branches, the number of sub-
ordinated branches, the number of time points, and
the list of attachment time points where subordi-
nated branches are connected to the main timeline.
Users can also retrieve the JSON output of the time-
line, and therefore they can visualize the timeline
using a third-party graph visualizer application.

2.7 Inconsistency Detector
As described in the TLEX work, the solver can
only extract a timeline of the TimeML annotation
if the annotation is temporally consistent. If the in-
teger assignment is not possible, then it means the
TimeML graph has temporal inconsistency (Barták
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Figure 4: An example graph that has temporal indeter-
minacy.

et al., 2014). jTLEX provides an inconsistency de-
tector to detect inconsistent cycles in the TimeML
graph.

The inconsistency detection algorithm detects
self-loops, where the start and end node of an edge
is the same such as A-AFTER->A. This can be
removed automatically as users request. For other
non-self-loop cycles, it detects the minimum incon-
sistent subgraph in the TimeML graph. Further,
in the case of two or more inconsistent subgraph
overlaps (have a shared edge), it can distinguish
the subgraphs and return each inconsistent cycle to
the users. A jTLEX output of an inconsistent cycle
is shown in Section 3.

Users can use jTLEX to check if their annota-
tion is temporally consistent. If the annotation is
not consistent, jTLEX returns the links that cause
inconsistency, therefore, users can fix the incon-
sistent annotation. This could be used as a corpus
validation after NLP researchers create a corpus.

2.8 Indeterminacy Calculator

In most cases, natural language texts lack enough
information to specify a full ordering, meaning
there could be multiple different global orderings
of the same events and times. Figure 4 shows a
TimeML graph with just such a temporal inde-
terminacy. The graph indicates a global order of
1− < 1+ < 2 and 3 < 4− < 4+ < 5− < 5+, but
does not specify the relative order of 2 and 3.

jTLEX uses its own algorithm to measure tem-
poral indeterminacy in a timeline. The algorithm
extracts all possible timelines of the graph and com-
pares the shortest timeline with all other possible
timelines. More precisely, it checks whether every
neighboring time point pair in the shortest timeline
is a neighboring time point in other timelines. If
they are not always adjacent, the order of that pair
is indeterminate. With this result, we can actually
represent indeterminate sections on the timeline as
shown in Figure 5. This allows jTLEX to represent
multiple different orderings in a single timeline.

Using jTLEX, users can retrieve the indetermi-
nant sections of a timeline. jTLEX also provides a

1- 1+ 2- 2+ 4- 5- 5+4+3- 3+
<(1)  < < < < < < <<

1- 1+ 3- 3+ 4- 5- 5+4+2- 2+
<(2)  < < < < < < <<

1- 1+ 2- 2+ 4- 5- 5+4+3- 3+
<(3)  < < = < < < <<

1- 1+ 3- 3+ 4- 5- 5+4+2- 2+
<(4)  < < = < < < <<

1- 1+ 2- 3- 4- 5- 5+4+2+ 3+
<(5)  < = < < < < <<

1- 1+ 2- 3- 4- 5- 5+4+3+ 2+
<(6)  < = < < < < <<

1- 1+ 3- 2- 4- 5- 5+4+2+ 3+
<(7)  < < < = < < <<

1- 1+ 2- 3- 4- 5- 5+4+2+ 3+
<(8)  < < < = < < <<

1- 1+ 2- 3- 4- 5- 5+4+3+ 2+
<(9)  < < < < < < <<

1- 1+ 2- 3- 4- 5- 5+4+2+ 3+
<(11)  < = < = < < <<

1- 1+ 3- 2- 4- 5- 5+4+2+ 3+
<(10)  < < < < < < <<

1- 1+ 2- 2+ 4- 5- 5+ 4+
3- 3+

Figure 5: Illustration of the indeterminacy calculation
process. The algorithm extracts all possible timelines.
For the graph in Figure 4, between 2 and 3, there are
11 possible ordering. This temporal indeterminacy is
shown in the grey area in the timeline. Therefore, mul-
tiple possible ordering can be represented in a single
timeline.

standard way of scoring the amount of indetermi-
nacy present in particular timeline.

3 Use Cases

A user guide and license information can be found
on the jTLEX website2. Here we illustrate an ap-
proach for one of the TimeML annotations of the
TimeBank corpus, called wsj_0006.tml. This file
and the rest of the corpus can be obtained from
LDC website3. The following text shown in Ex-
ample (2), is a snippet of the TimeML-annotated
text of wsj_0006.tml. The TimeML graph corre-
sponding to the snippet text is shown in Figure 1,
where we can see that the nodes of the graph are
either events or times, and the edges are TimeML
relations. Event instance IDs and timeIDs are given
in square brackets (DCT = DOCUMENT CREATION

TIME).

(2) [DCT:11/02/891[t9]]: Pacific First Fi-
nancial Corp. said2[ei73] shareholders
approved3[ei74] its acquisition4[ei75] by
Royal Trustco Ltd. of Toronto for $27 a
share, or $212 million. The thrift hold-
ing company said5[ei76] it expects6[ei77] to
obtain7[ei78] regulatory approval8[ei79] and
complete[9[ei80] the transaction10[ei81] by
year-end11[t10].

Users can read the file and create the TimeML
graph as follows:

2https://cognac.cs.fiu.edu/jtlex/
3https://catalog.ldc.upenn.edu/LDC2006T08
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1 Link: {ID = 1, LinkTag = TLINK , Syntax
= "", Temporal Relation = BEFORE ,

Origin = null
2 Signal: {Id = sid12 , String = "by"

}
3 Related to event - Timex: {tID =

t10 , Type = DATE , Value =
1989 -12 -31 , Mod = null ,
Temporal Function = true ,
AnchorID = t9, Begin Point = t0
, End Point = t0, Quantity =
null , Frequency = null}

4 Event Instance - Event Instance:
5 {ID = eiid80 , Tense = PRESENT ,

Aspect = NONE , Part of Speech =
VERB , Polarity = POS , Modality
= "null", Cardinality = "null"

, Signal = null
6 EVENT: eid = e7, class =

ASPECTUAL , stem = complete}
7 }

Listing 1: jTLEX parser output for printing the
information about the first link of the graph.

File tmlFile = new File(fName);
ITimeMLGraph graph = GraphReader.

TimeMLGraph(tmlFile);

Here, fName is the path to the file. Users can
retrieve any information about the graph such as
links (all or one by ID), nodes (all or one by ID),
incoming links, outgoing links, JSON output, num-
ber of nodes, number of links, number of link types,
etc. Using the following code, users can retrieve
the information of the first link:

System.out.print(graph.getLinkById (1));

The output will be as shown in Listing 1. As can
be seen, jTLEX provides all the available informa-
tion in the TimeML annotation about the link and
its components using the TimeML parser.

After the TimeML graph is created, users can
create a TLEX object to perform the timeline extrac-
tion including partitioning, transforming, solving,
inconsistency detection (if the graph is inconsis-
tent), and temporal indeterminacy. Creating the
tlex object is as follows:

TLEX tlex = new TLEX(graph);

Users, can retrieve the exact trunk-and-branch
timeline structure using:

tlex.getTimeline ();

The output will be as shown in Listing 2. As can
be seen, jTLEX returns the main timeline, subordi-
nated timelines, and the attachment points for each
subordinated timeline.

1Main Timeline: {
2eiid75 - = 1
3eiid75+ = 2
4eiid74 - = 3
5eiid74+ = 4
6eiid73 - = 5
7eiid76 - = 5
8eiid73+ = 6
9eiid76+ = 6
10t9 - = 7
11t9+ = 8
12}
13Attachment Points: {eiid77 ->eiid78 ,

eiid77 ->eiid80 , eiid76 ->eiid77 ,
eiid78 ->eiid79}

14Subordinated Timelines: {
15[eiid81 - = 1, eiid80 - = 2, eiid81+ =

3, eiid80+ = 3, t10 - = 4, t10+ =
5],

16[eiid79 - = 1, eiid79+ = 2],
17[eiid78 - = 1, eiid78+ = 2],
18[eiid77 - = 1, eiid77+ = 2]}

Listing 2: jTLEX timeline output for the wsj_0006.tml
file.

1[Graph Type: Main Graph
2Nodes Count = 2
3Links count = 2
4TLinkType: 2
5ALinkType: 0
6SLinkType: 0
7Nodes:
8eiid2048 , t57
9Links: (From -> To)
10(t57 BEFORE eiid2048)
11(eiid2048 BEFORE t57)
12]

Listing 3: jTLEX inconsistent subgraph output for the
wsj_1011.tml file.

Since the graph of wsj_0006.tml is consistent,
jTLEX’s inconsistency detection method returns an
empty set. We illustrate the inconsistency detection
algorithm using a temporally inconsistent file from
the TimeBank corpus, called wsj_1011.tml.

After running the method for graph construction
and creating the tlex object, users can simply call
the method tlex.getInconsistentSubGraphs()
and retrieve the inconsistent cycle. For this file,
jTLEX returns the output show in Listing 3. As
can be seen from the output, jTLEX returns the
inconsistent subgraph along with the information
about the subgraph.

4 Related Work

As we discussed in Section 1, TimeML is a stan-
dardized temporal markup language in the NLP
community. Therefore, many tools have been de-
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veloped for TimeML-related tasks. We can classify
existing TimeML tools into two categories: produc-
ing TimeML annotations and analyzing TimeML
annotations. NLP researchers have concentrated
tools of the first type, in particular for both full
automatic TimeML annotation—such as TARSQI
(Verhagen et al., 2005), ClearTK (Bethard, 2013),
and CAEVO (Chambers et al., 2014)—and tools of
the automatic annotation of sub-parts of TimeML—
such as Evita (Saurí et al., 2005) and NavyTime
(Chambers, 2013) for event detection, GATE-Time
(Derczynski et al., 2016) and SUTime (Chang and
Manning, 2012) for temporal expression recogni-
tion, and CATENA (Mirza and Tonelli, 2016) and
LCC-TE (Min et al., 2007) for temporal relation
extraction.

There are only a small number of tools that evalu-
ate TimeML annotations. Tango is a Java TimeML
parser tool to parse the TimeML annotated docu-
ments and create a TimeML graph (Verhagen et al.,
2006). Tango allows users to modify the graph
and it checks the temporal consistency of the graph
using temporal closure. Tango was used to evalu-
ate the TimeBank corpus, however, Tango did not
report any inconsistency on the TimeBank files.
Using the <TIMEX> values, Tango displays the
graph in a timeline form, where each section con-
tains a <TIMEX> and the events connected to the
<TIMEX>, however, it doesn’t provide the global
order of events. Similarly, TBOX (Verhagen, 2007)
also generates a TimeML graph from a TimeML
annotation, but it further removes the temporal clo-
sure links to display a simplified TimeML graph.
TBOX displays each event in a box shape and
places each box based on the temporal relation
to present the timeline (e.g., if event A is before
event B, then box-A would be on the left of box-B).
However, this representation could be problematic
considering temporal indeterminacy is already high
in TimeML annotations.

TimeML-strict is a Java validation tool that
parses TimeML annotations and validates them
whether they follow strict TimeML annotation
guide rules (Derczynski et al., 2013). It also
fixes missing document creation time (DCT) and
<TEXT> tags in the annotations. CAVaT is a Python
tool that parses TimeML annotations and prints
out the quantitative results such as distributions of
the TimeML objects (Derczynski and Gaizauskas,
2012). Further, it detects self-loops as well as dis-
connectivity in the TimeML graphs. CAVaT detects

the temporal inconsistency of the graph using in-
consistent disclosure. If the graph is inconsistent, it
returns the last added constraint to the inconsistent
cycle. Determining the entire inconsistent cycle
based on one edge is very difficult for the annota-
tors considering the graph size. CAVaT detects 30
inconsistent files in the TimeBank corpus. How-
ever, CAVaT’s inconsistency detection algorithm
only deals with TLINKs and ignores ALINKs and
SLINKs. Later, (Ocal et al., 2022b) showed that by
taking ALINKs into consideration, the TimeBank
corpus actually has 65 inconsistent files.

In addition to these TimeML tools, NLP re-
searchers have also developed ML-based ap-
proaches to extract timelines from TimeML an-
notations (Mani et al., 2006; Do et al., 2012;
Kolomiyets et al., 2012; Leeuwenberg and Moens,
2020). However, these approaches have certain lim-
itations such as they do not deal with all temporal
links (at most 6 out of 13), they do not distinguish
the real-life events and subordinated events, and
they do not handle temporal indeterminacy.

Unlike other tools and approaches, in this
work we provide an open-source implementation
of TLEX, a method for extracting exact time-
lines from a TimeML annotation. Like prior
approaches, TLEX—and by extension, jTLEX—
offers a TimeML parser and a graph constructor.
However, it goes further by separating subordinated
events from real-life events, presenting the global
order of events and times in a novel trunk-and-
branch timeline structure, detecting inconsisten-
cies automatically and helping users to fix them,
representing multiple different orders in a single
timeline, and measuring the indeterminacy score.

5 Discussion

We perform an extensive evaluation of the TLEX
algorithm using the jTLEX output in our forthcom-
ing paper (Ocal and Finlayson, 2023). We perform
sampling evaluation using Simple Random Sam-
pling (Saunders et al., 2009, p. 222), which allows
us to check the correctness of a specific feature
of a set of n members randomly selected from a
population with size N to obtain an estimate of the
correctness of that feature over all the data. Sam-
pling evaluation shows that jTLEX achieved 100%
accuracy on time point ordering and indeterminacy
identification with 95% confidence (Ocal and Fin-
layson, 2023).

Because jTLEX can detect temporal errors in the
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annotations and measure temporal indeterminacy,
it can be used to evaluate automatic TimeML tools
and manual TimeML annotations. An example of
using jTLEX to evaluate automatic TimeML anno-
tators can be found in Ocal et al. (2022a), and for
using it to evaluate gold-standard TimeML annota-
tions, see Ocal et al. (2022b).

6 Conclusion

We presented jTLEX, an open-source Java library
that, for the first time, allows the programmatic ex-
traction of exact timelines from TimeML annotated
texts using a standard Java API. jTLEX provides
many useful methods for the TimeML community
such as TimeML parsing, graph extraction, timeline
extraction, inconsistency detection, and temporal
indeterminacy calculation. jTLEX can for used on
any TimeML annotations in any domain of natural
language. We release jTLEX as an open source
library that is free for non-commercial use4.
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